

Benchmarq... The brains behind the battery. TM

1997 Data Book

BENCHMARQ® Microelectronics, Inc. 17919 Waterview Parkway Dallas, Texas 75252 Fax: (972) 437-9198

Fax: (972) 437-9198
Tel: (972) 437-9195
E-mail: benchmarq@benchmarq.com
World Wide Web: http://www.benchmarq.com

BENCHMARQ 1997 Data Book

Copyright© 1997, BENCHMARQ Microelectronics, Inc. All rights reserved.

No part of this book may be reproduced in any form or means, without express permission from Benchmarq.

This data book contains new product information. Benchmarq reserves the right to make changes in its products without notice.

Benchmarq assumes no responsibility for use of any **products** or circuitry described within. No license for use of intellectual property (patents, copyrights, or other rights) owned by Benchmarq or other parties is granted or implied.

Benchmarq does not authorize the use of its components in life-support systems where failure or malfunction may cause injury to the user. If Benchmarq components are used in life-support systems, the user assumes all responsibilities and indemnifies Benchmarq from all liability or damages.

Benchmarq is a registered trademark, and "Benchmarq... The brains behind the battery" and Power Gauge are trademarks of BENCHMARQ Microelectronics, Inc.

IBM is a registered trademark of International Business Machine Corporation. U.L. is a registered trademark of Underwriters Laboratory. Rayovac and Renewal are registered trademarks of Rayovac Corporation.

Our Products

At **Benchmarq**, we provide integrated circuit and module solutions for power-sensitive and portable electronics systems.

Power-sensitive AC-powered systems in the office and industry must gracefully deal with the loss of power, maintaining the integrity of important data and self-sufficiently continuing critical operation. Portable systems share the design requirements of their **powercord-bound** counterparts, but add entirely new challenges—including power supervision, energy **manage**ment, data security, and size minimization.

The product families described in this data book directly **address** these requirements, **taking** full advantage of advanced analog and digital VLSI **technologies** and state-of-the-art battery and packaging expertise. Power supervision, energy management, size reduction, **nonvolatil**ity, data security, and retrofit capability are integral to Benchmarq's product line.

Our Commitment

When you **choose** to integrate Benchmarq **products** within your own, be assured that **Benchmarq** is committed to providing the specific solutions you need today and to developing creative solutions to the growing challenges of tomorrow---supported by the **best** customer service and the highest overall quality.

The drive for excellence in all dimensions of quality is a cornerstone of our company.

Data Book Organization

This data book is organized into general information sections and product family sections.

You can locate information in this book in several ways.

To locate information by:	See pages:
Table of Contents	v - vii
Alphanumeric Product Index	viii – ix
Family Summary and Selection Guides	x – xvi
Product Cross-Reference Tables	xvii – xviii
Ordering Information	xix
Data Sheet Types	xx

Chapters 1 through 6 contain detailed product information. Chapter 7 includes packaging information, and Chapter 8 describes **Benchmarq's** commitment to quality and the processes we use to ensure reliability in our products. Chapter 9 lists sales offices and distributors.

For More Information ...

If you haven't found it here ... Ask!

Benchmarq maintains an updated product listing on the World Wide Web at the URL listed below. Browse the Benchmarq Home Page for the latest **Benchmarq** product information and sales office locations at:

http://www.benchmarq.com

To send us e-mail to be added to our mailing list or to get further information, contact Benchmarq at:

benchmarq@benchmarq.com

Additional Benchmarq information is available from your Benchmarq distributor or sales office (listed in the back of this Data Book), or by contacting Benchmarq Customer Service at (800) 966-0011 or (972)437-9195.

Alphanumeric Product Indexviii	
Family Summary and Selection Guides	
Product Cross-Reference Tables	
Ordering Informationxix	
Data Sheet Types	
••	
Fast Charge ICs 1	
bq2002 Fast Charge IC1-1	
bq2002C Fast Charge IC	1
bq2002T Fast Charge IC With ΔT/Δt	9
DV2002L2/TL2 Fast Charge Development System	9
bq2003 Fast Charge IC	1
DV2003L1 Fast Charge Development System	3
DV2003L3 Fast Charge Development System1-40	5
DV2003S1 Fast Charge Development System	7
DV2003S2 Fast Charge Development System1-49	9
Application Note: "Using the bq2003 to Control Fast Charge'	1
Application Note: 'Step-Down Switching Current Regulation	
Using the bq2003 Fast Charge IC"	9
Application Note "Using the bg2003 With High-Side Current	
Sensing in a Switch-Mode Charger'	5
bq2004 Fast Charge IC1-8'	7
DV2004L1 Fast Charge Development System1-10	01
DV2004L3 Fast Charge Development System1-10	03
DV2004S1 Fast Charge Development System1-10	05
DV2004S3 Nickel/Li-Ion Development System1-10	07
bq2004E Fast Charge IC	11
DV2004ES1 Fast Charge Development System1-17	25
DV2004ES3 Nickel/Li-Ion Development System1-12	
bq2005 Dual-Battery Fast Charge IC	31
DV2005L1 Fast Charge Development System1-14	43
DV2005S1 Fast Charge Development System1-1-2	47
DV2005S3 Nickel/Li-Ion Development System1-1	51
Application Note: "Using the bq2005 to Control Fast Charge'1-1:	53
bq2007 Fast Charge IC1-1	71
DV2007S1 Fast Charge Development System1-13	85
Application Note: "Using the bq2007 Display Mode Options"	89
Application Note: 'Using the bq2007 Enhanced Features for Fast Charge'	95
bq2031 Lead-Acid Fast Charge IC	09
DV2031S1 Fast Charge Development System1-22	23
Application Note: Wsing the bq2031 to Charge Lead-Acid Batteries"1-2	25
Application Note: 'Switch-Mode Power Conversion Using the bq2031"	41
bq2053 Lithium Ion Pack Supervisor ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	57
Application Note: 'Using the bq2053 Lithium Ion Pack Supervisor'1-20	65
bq2054 Lithium Ion Fast Charge IC	73
DV2054S1 Fast Charge Development System1-2	87
EV205x bq2050, bq2053, and bq2004/E Li-Ion Evaluation System	89
bq2058 Lithium Ion Pack Supervisor1-2	93
bq2902 Rechargeable Alkaline Charge IC	05
bq2903 Rechargeable Alkaline Charge IC	13
EV2903 bq 2903 Evaluation System1-32	23

Gas Gauge ICs	2
bq2010 Gas Gauge IC	. 2-1
EV2010 bq2010 Evaluation System	2-19
Application Note: "Using the bq2010 A Tutorial for Gas Gauging"	
bq2011 Gas Gauge IC	2-29
EV2011 bq2011 Evaluation System	
bq2011J Gas Gauge IC	2-51
bq2011K Gas Gauge IC	2-69
EV2011J/K bq2011J/K Evaluation System	2-87
bq2012 Gas Gauge IC	
EV2012 bq2012 Evaluation System	2-109
bq2014 Gas Gauge IC With External Charge Control	2-111
bq2014H Gas Gauge IC With External Charge Control	2-131
EV2014 bq2014 Evaluation Board	
EV2014x Gas Gauge and Fast Charge Evaluation System	
Application Note: "Using NiMH and Li-Ion Batteries in Portable Applications"	2-139
DV2043S7 Level 2 Smart Charger With Dual Battery Selector	
bq2040 Gas Gauge IC With SMBus Interface	
bq2050 Lithium Ion Power Gauge™ IC	
bq2050H Lithium Ion Power Gauge™ IC	
EV2050 Power Gauge Evaluation Board	
bq2090 Gas Gauge IC With SMBus v.95 Interface	2-221
bq2091 Gas Gauge IC With SMBus v.95 Interface	2-245
Battery Management Board-Level Products	3
bq2110/L NiCd or NiMH Gas Gauge Module	3-1
bq2111L NiCd Gas Gauge Module With LEDs	
bq2112/L NiCd or NiMH Gas Gauge Module With Slow Charge Control	
bq2114/L NiCd or NiMH Gas Gauge Module With Charge Control Output	
bq2150/L Lithium Ion Power Gauge Module	
bq2153 Lithium Ion Pack Supervisor Module	
bq2164 NiCd or NiMH Gas Gauge Module With Fast Charge Control	
bq2165/L Li-Ion Gas Gauge Module With Pack Supervision	
bq2190L Smart Battery Module With SMBus v.95 Interface and LEDs	
bq2193L Rechargeable Alkaline Charger Module	3-61
Static RAM Nonvolatile Controllers	4
bq2201 Nonvolatile Controller (by one)	- 4-1
bq2202 SRAM Nonvolatile Controller With Reset	4-9
bq2203A Nonvolatile Controller With Battery Monitor	
bq2204A Nonvolatile Controller (by four)	
bo2502 Integrated Backup Unit	

Real-Time Clocks	5
bq3285 Real-Time Clock IC	<u>5-1</u>
bq3285E/L Real-Time Clock IC	5-2 1
bq3285EC/LC Real-Time Clock IC	, 5-45
bq3287/bq3287A Real-Time Clock Module	
bq3287E/bq3287EA Real-Time Clock Module	
bq4285 Real-Time Clock With NVRAM Control ,,,,,	5 - 77
bq4285E/L Enhanced RTC With NVRAM Control	5-97
bq4287 Real-Time Clock Module With NVRAM Control	<u>5</u> .123
bq4287E Enhanced RTC Module With NVRAM Control	5-129
bq4830Y RTC Module With 32Kx8 NVSRAM	5-135
bq4832Y RTC Module With 32Kx8 NVSRAM	5-149
bq4842Y RTC Module With 128Kx8 NVSRAM	5-165
bq4845/Y Parallel RTC With CPU Supervisor	5-181
bq4847/Y RTC Module With CPU Supervisor	5-199
bq4850Y RTC Module With 512Kx8 NVSRAM	
bq4852Y RTC Module With 512Kx8 NVSRAM	
Application Note: "Using the bq4845 for a Low-Cost RTC/NVSRAM Subsystem'	
Application Note: Typical PC Hookups for RTCs'	
Application Note: *Using RAM Clear Function'	
Application Note: "Time-Base Oscillator"	
Application Note: "Using bq3285E/L in a Green or Portable Environment'	5-269
Nonvolatile Static RAM	6
bq4010/Y—8 K x 8 Nonvolatile SRAM	
bq4011/Y—32K x 8 Nonvolatile SRAM	6-11
bq4013/Y—128K x 8 Nonvolatile SRAM	
bq4014/Y—256K x 8 Nonvolatile SRAM	6-31
bq4015/Y—512K x 8 Nonvolatile SRAM	
bq4016/Y—1024Kx8 Nonvolatile SRAM	6 -51
bq4017/Y—2048Kx8 Nonvolatile SRAM	
bq4024/Y—128K x 16 Nonvolatile SRAM	
bq4025/Y—256K x 16 Nonvolatile SRAM	6-81
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

Part No.	Description	Page
bq2002	Fast Charge IC	1-1
bq2002C	Fast Charge IC	1-11
bq2002T	Fast Charge IC With ΔT/Δt	1-19
bq2003	Fast Charge IC	1-31
bq2004	Fast Charge IC	1-87
bq2004E	Fast Charge IC	1-111
bq2005	Dual-Battery Fast Charge IC	1-131
bq2007	Fast Charge IC	1-171
bq2010	Gas Gauge IC	2-1
bq2011	Gas Gauge IC	2-29
bq2011J	Gas Gauge IC	2-51
bq2011K	Gas Gauge IC	2-69
bq2012	Gas Gauge/Fast Charge IC	2-89
bq2014	Gas Gauge IC With External Charge Control	2-111
bq2014H	Gas Gauge IC With External Charge Control	2-131
bq2031	Charge IC for Lead Acid Batteries	1-209
bq2040	Gas Gauge IC With SMBus Interface	2-149
bq2050	Lithium Ion Power Gauge TM IC	2-179
bq2050H	Lithium Ion Power Gauge TM IC	2-199
bq2053	Lithium Ion Pack Supervisor IC	1-257
bq2054	Lithium Ion Fast Charge IC	1-273
bq2058	Lithium Ion Pack Supervisor IC	1-293
bq2090	Gas Gauge IC With SMBus v.95 Interface	2-221
bq2091	Gas Gauge IC With SMBus v.95 Interface	2-245
bq2110/L	NiCd or NiMH Gas Gauge Module	3-1
bg2111L	NiCd Gas Gauge Module With LEDs	3-7
bq2112/L	NiCd or NiMH Gas Gauge Module/Slow Charge Control	3-13
bg2114/L	NiCd or NiMH Gas Gauge Module/Charge Control Output	3-19
bq2150/L	Lithium Ion Power Gauge Module	3-25
bq2153	Lithium Ion Pack Supervisor Module	3-31
bq2164	NiCd or NiMH Gas Gauge Module/Fast Charge Control	3-37
bq2165/L	Lithium Ion Gas Gauge Module With Pack Supervision	3-45
bq2190L	Smart Battery Module With SMBus v.95 Interface and LEDs	3-55
bq2193L	Rechargeable Alkaline Charger Module	3-61
bq2201	Nonvolatile SRAM Controller, by One	4-1
bq2202	SRAM Nonvolatile Controller With Reset	4-9
bq2203A	Nonvolatile Controller With Battery Monitor	4-17
bq2204A	Nonvolatile SRAM Controller, by Four	4-25
bq2502	Integrated Backup Unit	4-33
bq2902	Rechargeable Alkaline Charge IC	1-305
bq2903	Rechargeable Alkaline Charge IC	1-313
bq3285_	Real-Time Clock IC	5-1
bq3285E/L	Real-Time Clock IC, Enhanced	5-21
bq3285EC/LC	Real-Time Clock IC	5-45
bq3287/bq3287A	Real-Time Clock Module	5-69
bq3287E/bq3287EA	Real-Time Clock Module, Enhanced	5-73

Alphanumeric Product Index

Part No.	Description	Page
bq4010	8Kx8 Nonvolatile SRAM	6-1
bq4011	32Kx8 Nonvolatile SRAM	6-11
bq4013	128Kx8 Nonvolatile SRAM	6-21
bq4014	256Kx8 NonvolatileSRAM	6-31
bq4015	512Kx8 Nonvolatile SRAM	6-41
bq4016	1024Kx8 Nonvolatile SRAM	6-51
bq4017	2048Kx8 Nonvolatile SRAM	6-61
bq4024	128Kx16 NonvolatileSRAM	6-71
bq4025	256Kx16 NonvolatileSRAM	6-81
bq4285	Real-Time Clock With NVRAM Control	5-77
bq4285E/L	Real-Time Clock With NVRAM Control, Enhanced	5-97
bq4287	Real-Time Clock Module With NVRAM Control	5-123
bq4287E	Enhanced Real-Time Clock Module With NVRAM Control	5-129
bq4830Y	Real-Time Clock Module With \$2Kx8 NVSRAM	5-135
bq4832Y	Real-Time Clock Module With 32Kx8 NVSRAM	5-149
bq4842Y	Real-Time Clock Module With 128Kx8 NVSRAM	5-165
bq4845/Y	Parallel RTC With CPU Supervisor	5-181
bq4847/Y	RTC Module With CPU Supervisor	5-199
bq4850Y	Real-Time Clock Module With 512Kx8 NVSRAM	5-203
bq4852Y	Real-Time Clock Module With 512Kx8 NVSRAM	5-217
DV2002L2	bq2002 Linear Development System	1-29
DV2002TL2	bq2002T Linear Development System	1-29
DV2003L1	bq2003 Linear Development System	1-43
DV2003L3	bg2003 Linear Development System	1-45
DV2003S1	bq2003 Switching Development System	1-47
DV2003S2	bq2003 Switching Development System	1-49
DV2004L1	bq2004 Linear Development System	1-101
DV2004L3	bq2004 Linear Development System	1-103
DV2004S1	bq2004 Switching Development System	1-105
DV2004S3	Nickel/Li-Ion Development System	1-107
DV2004ES1	bq2004E Switching Development System	1-125
DV2004ES3	bq2004E Switching Development System	1-127
DV2005L1	bq2005 Linear Development System	1-143
DV2005S1	bq2005 Switching Development System	1-147
DV2005S3	bq2005 Switching Development System	1-151
DV2007S1	bq2007 Switching Development System	1-185
DV2031S1	bq2031 Switching Development System	1-223
DV2043S7	Level 2 Smart Charger With Dual Battery Selector	2-145
DV2054S1	bq2054 Fast Charge DevelopmentSystem	1-287
EV2010	bq2010 Evaluation System	2-19
EV2011	bq2011 Evaluation System	2-47
EV2011J	bq2011J Evaluation System	2-87
EV2011K	bq2011K Evaluation System	2-87
EV2012	bq2012 Evaluation System	2-109
EV2014	bq2014 Evaluation System	2-133
EV2014x	bq2014 and bq2004 Gas Gauge/Fast Charge Eval. System	2-135
EV2050	bq2050 Power Gauge™ Evaluation Board	2-219
EV205x	bq2050, bq2053, and bq2004E Li-Ion Eval. System	1-289
EV2903	bq2903 Evaluation System	1-323

Fast Charge IC Summary and Selection Guide

Benchmarq's Fast Charge **ICs** provide fast charge control, current regulation support, and pre-charge qua cation and conditioning for rechargeable **batteries**.

- ➤ Fast charging and conditioning of nickel cadmium, nickel metal **hydride**, lead acid, lithium ion, or rechargeable alkaline batteries
- > Flexible current regulation support:
 - Frequency-modulated linear (lowest cost)
 - Switch-mode (most efficient)
 - Gating control (external regulator)
- Easily integrated into systems or as a stand-alone charger

- Direct LED outputs display battery and charge status
- Fast charge termination by delta tempera —
 delta time, negative delta voltage, peak voltage
 detect, minimum current, maximum temperature,
 maximum voltage, and maximum time
- Optional top-off and maintenance charging
- Discharge-before-charge option

 Variable-rate charging uses excess supply current
 to charge batteries during system operation

Fast Charge IC Selection Guide

Battery Technology	Charge Control Output	Termination Method	Key Features	Pins / Package	Part Number	Page Number
NiMH NiCd	Single	-ΔV, peak voltage, time	Low power and small size	8/.300" DIP, 8/.150" SOIC	bq2002	1-1
NiMH NiCd	Single	-ΔV, PVD, max. temp., time	Low power and small size	8/.300" DIP, 8/.150" SOIC	bq2002C	1-11
NiMH NiCd	Single	ΔT/Δt, max. temp., time	Low power and small size	8/.300" DIP, 8/.150" SOIC	bq2002T	1-19
NiMH NiCd	Single	-ΔV, ΔT/Δt, max. temp., voltage, and time	Includes PWM	16/.300" DIP, 16/.300" SOIC	bq2003	1-31
NiMH NiCd	Single	-ΔV, peak voltage, ΔT/Δt, max. temp., voltage, and time	PWM and low- power mode	16/.300" DIP, 16/.150" SOIC	bq2004	1-87
NiMH, NiCd Li-Ion	Single	 -ΔV, peak voltage, ΔΤ/Δt, max. temp., voltage, and time 	PWM, pulsed precharge conditioning	16/.300" DIP, 16/.150" SOIC	bq2004E	1-111
NiMH NiCd	Dual	-ΔV, ΔT/Δt, max. temp., voltage, and time	Sequential charger	20/.300" DIP, 20/.300" SOIC	bq2005	1-131
NiMH NiCd	Single	-ΔV, peak voltage, max. temp, voltage, and time	LCD/LED display	24/.300" DIP, 24/.300" SOIC	bq2007	1-171
Lead Acid	Single	max. voltage, min. current, $-\Delta^2 V$, temp., and time	Temp. compensated thresholds	16/.300" DIP, 16/.150" SOIC	bq2031	1-209
Lithium Ion	Single	max. voltage, min current	1% voltage regulation	16/.300" DIP, 16/.150" SOIC	bq2054	1-273
Rechargeable Alkaline	Single	maximum voltage	2-cell charging	8/.300" DIP, 8/.150" SOIC	bq2902	1-305
Rechargeable Alkaline	Single	maximum voltage	3- or 4-cell charging	14/.300" DIP, 14/.150" SOIC	bq2903	1-313

Pack Protection IC Summary and Selection Guide

Benchmarq's bq2053 and bq2058 Lithium Ion Pack Protection ICs provide reversible overvoltage, undervoltage, and overcurrent protection for lithium ion battery packs.

- Protects two to four Lithium Ion series cells from overvoltage, undervoltage, and overcurrent
- Designed for battery pack integration
 - Small outline package, minimal external components and space, and low cost
 - Drives external N.FET switches
- User-selectable thresholds mask-programmable by Benchmarq

- bq2053 operating current:
 - < 40µA for 4-cell configuration</p>
 - < 20µA for 3-cell configuration</p>
 - < 15µA for 2-cell configuration</p>
 - = <1µA sleep mode
- ▶ bq2058 operating current:
 - < 60µA for 3-cell or 4-cell configuration</p>

Pack Protection IC Selection Guide

Battery Technology	Protection Types	Key Features	Pins / Package	Part Number	Page Number
Lithium Ion	Overvoltage, overcurrent, and undervoltage	2–4 cells Very low power	8/.150" SOIC	bq2053	1-257
Lithium Ion	Overvoltage, overcurrent, and undervoltage	3 or 4 cells Very low power	16/.150" SOIC	bq2058	1-293

Nonvolatile SRAM Summary and Selection Guide

Benchmarq's NVSRAMs integrate—in a single-DIP package—extremely low standby power SRAM, nonvolatile control circuitry, and a long-life lithium cell. The NVSRAMs combine secure nonvolatility (more than 10 years in the absence of power) with standard SRAM pinouts and fast unlimited read/write operation.

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- Industry-standard pinout
- Conventional SRAM operation; unlimited write cycles
- 10 or 5 years minimum data retention in the absence of power
- Battery internally isolated until power is first supplied
- Industrial temperature range available

Nonvolatile SRAM Selection Guide

Density	Config- uration	Tech- nology	Access Time (ns)	Minimum Data - Retention Time	Pins / Package	Part Number ¹	Page Number
64 Kb	8 Kb x 8	NVSRAM	70, 85², 150², 200	10 years	28/DIP	bq4010/ bq4010Y	6-1
256 Kb	32 Kb x 8	NVSRAM	70², 100, 150², 200	10 years	28/DIP	bq4011/ bq4011Y	6-11
1 Mb	128 Kb x 8	NVSRAM	70², 85², 120	10 years	32/DIP	bq4013/ bq4013Y	6-21
0.7.5	256 Kb x 8 NVSRAI		85,120	10 years	32/DIP	bq4014/ bq4014Y	6-31
2 Mb	128 Kb x 16	NVSRAM	85,120	10 years	40/DIP	bq4024/ bq4024Y	6-71
435	512 Kb x 8 NVSRAM		70, 85, 120	10 years	32/DIP	bq4015/ bq4015Y	6-41
4 Mb	256 Kb x 16	NVSRAM	85,120	5 years	40/DIP	bq4025/ bq4025Y	6-81
8Mb	1024 Kb x 8	NVSRAM	70	10 years	36/DIP	bq4016 bq4016Y	6-51
16Mb	2048 Kb x 8	NVSRAM	70	5 years	36/DIP	bq401 ₇ bq4017Y	6-61

Notes:

- 1. "Y" version denotes 10% Vcc tolerance.
- 2. "Y" version available in **-40°C** to **+85°C** industrial temperature range.
- 3. See data sheet for **details**.

Nonvolatile Controller Summary and Selection Guide

Benchmarq's nonvolatile controllers provide power monitoring, write-protection, and supply switching to convert standard SRAM or PSRAM and a backup battery into a reliable, predictable nonvolatile memory. The nonvolatile controller modules are complete battery-backup solutions including an encapsulated 130mAh lithium cell that is isolated until power is applied.

- Power monitoring and switching for 3V battery-backup applications
- ➤ 5V Vcc operation
- ➤ Automatic write-protection during power-up/power-down cycles
- Automatic switching from Vcc to first backup battery and from first backup battery to second backup battery
- Reset output option for system power-on reset
- Less than 10ns chip enable propagation delay
- 5% or **10%** supply operation
- Control up to four banks of SRAM
- Module/DIP or SOIC packages

Nonvolatile Controller Selection Guide

SRAM Banks Controlled	Battery Monitor Outputs	Reset Output	lout (Typ.)	Pins / Package	Part Number	Page Number
1			160 mA	8/NDIP, NSOIC	bq2201	4-1
2		1	160 mA	16/ NDIP, NSOIC	bq2202	4-9
2	J	J	160 mA	16/ NDIP, NSOIC	bq2203A	4-17
4			160 mA	16/ NDIP, NSOIC	bq2204A	4-25
2		1	160 mA	12/ DIP module	bq2502	4-33

Real-Time Clock Summary and Selection Guide

Benchmarq's real-time clocks (RTCs) provide highly integrated clock/calendar solutions for microcomputer-based designs. Each module is a completely self-contained unit, including IC, crystal, and a battery ensuring operation for 10 years in the absence of power. The very compact, low-power *ICs* need only a battery and a crystal for operation. NVSRAM controller versions allow users to make inexpensive SRAM nonvolatile for data and configuration storage in computers, portable equipment, office machines and other applications.

- Clock/calendar counts seconds through years with daylight savings and leap-year adjustments
- ➤ IBM PC AT-compatible clocks include:
 - **5** or 3-Volt operation
 - 114 or 242 bytes of user nonvolatile RAM storage
 - 32KHz output for power management
- Completely self-contained modules operate for more than 10 years in the absence of power

- SRAM-based clocks feature:
 - SRAM interface
 - Up to 512Kbytes of NVSRAM
 - CPU Supervisor
- One minute per month clock accuracy in modules
- Nonvolatile control for an external SRAM
- IC versions require only a crystal and battery

Real-Time Clock Selection Guide

Onboard RAM (bytes)	NVRAM Control	Bus Interface	Voltage	32kHz Output	CPU Super- visor	Pins / Package	Part Number	Page Number
114		Muxed	5V		 	24 I DIP, SOIC 28 / PLCC	bq3285	5-1
242		Muxed	5V	J		24 / DIP, SOIC, SSOP 28 / PLCC	bq3285E	5-21
242		Muxed	5V	1		24 I SOIC, SSOP	bq3285EC	5-45
242		Muxed	3V	/		24 / DIP, SOIC, SSOP	bq3285L	5-21
242		Muxed	3V	/		24 I SOIC, SSOP	bq3285LC	5-45
114		Muxed	5V		1	24 / DIP module	bq3287/ bq3287A	5-69
242		Muxed	5V	J		24 / DIP module	bq3287E/ bq3287EA	5-73
114	1	Muxed	5V			24 / DIP, SOIC 28 / PLCC	bq4285	5-77
114	J	Muxed	5V	1		24 / DIP, SOIC, SSOP, 28 / PLCC	bq4285E	5-97
114	J	Muxed	3V	J		24 / DIP, SOIC, SSOP	bq4285L	5-97
114	✓	Muxed	5V			24 / DIP module	bq 42 87	5-123
114	J	Muxed	5V	J		24 / DIP module	bq4287E	5-129
32K		SRAM	5V			28 / DIP module	bq4830Y	5-135
32K		SRAM	5V		J	32 / DIP module	bq4832Y	5-149
128K		SRAM	5V		1	32 / DIP module	bq4842Y	5-165
0	J	SRAM	5V		J	28 / DIP, SOIC	bq4845/Y	5-181
0	J	SRAM	5V		J	28 / DIP module	bq4847/Y	5-199
512K		SRAM	. 5V			32 / DIP module	bq4850Y	5-203
512K		SRAM	5V		J	36 / DIP module	bq4852Y	5-217

NVSRAM Cross-Reference

Density	Dallas Semiconductor	SGS- Thomson	Benchmarq
64Kb	DS1225AB	MK48Z08	bq4010
	DS1225AD/Y	MK48Z18	bq4010Y
256Kb	DS1230AB	M48Z30	bq4011
	DS1230Y	M48Z30Y	bq4011Y
	DS1630AB	-	Contact factory
	DS1630Y	-	Contact factory
1Mb	DS1245AB	M48Z128	bq4013
	DS1245Y	M48Z128Y	bq4013Y
	DS1645AB	-	Contact factory
	DS1645Y	-	Contact factory
	DS1645EE	-	Contact factory
2M b	-	M48Z256	bq4014
	DS1249Y	M48Z256Y	bq4014Y
	DS1658AB	M46Z128	bq4024
	DS1658Y	M46Z128Y	bq4024Y
4Mb	DS1650 DS1650Y -	M48Z512 M48Z512Y M46Z256 M46Z256Y	bq4015 bq4015Y bq4025 bq4025Y

Real-Time Clock Cross-Reference

Dallas Semiconductor	SGS-Thomson	Benchmarq
DS1285/885	-	bq3285P
DS1285Q/885Q	-	bq3285Q
DS1285S/885S	-	bq3285S
DS1287/887	MK48T87B24	bq3287MT
DS1287A/887A	-	bq3287AMT
DS14285	-	bq4285P
DS14285S	•	bq4285S
DS14285Q	-	bq4285Q
DS14287	-	ьq4287 М Т
DS1643	M48T18	bq4830Y ¹
DS1644	•	bq4830Y
DS1646	-	bq4842Y ²

Notes:

- 1. Memory upgrade.
- 2. Benchmarq's **bq4842** additional features: microprocessorreset, watchdog monitor, clock **alarm**, periodic interrupt.

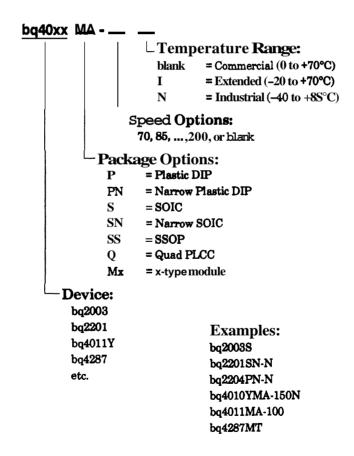
Nonvolatile Controllers Cross-Reference

Dallas Semiconductor	Benchmarq
DS1210	bq2201PN ⁴
DS1210S	bq2201SN ^{1, 4}
DS1218	bq2201PN ⁵
DS1218S	bq2201SN ⁵
DS1221	bq2204APN ^{3, 4}
DS1221S	bq2204ASN ^{2, 3, 4}

Notes:

- 1. Benchmarq's **bq2201SN** is a small 8-pin, 150-mil SOIC, compared to the DS1210S, which is a 16-pin, 300-mil SOIC.
- 2. Benchmarq's bq2204ASN is a small 16-pin, 150-mil SOIC, compared to the DS1221S, which is a 16-pin, 300-mil SOIC.
- 3. Optional "security feature" DS1221 pins are no-connect on the bq2204A.
- 4. Benchmarq's bq2201 and bq2204A do not incorporate a "check battery status" function.

Benchmarq's standard **products** are available in several packages and operating ranges. A valid order number is a sequence of:


Device

Package Options

Speed Options

Temperature Range

Valid options for a specific device are defined in the ordering information **section** at the end of **its** data sheet. Contact your **Benchmarq** sales office about **non-standard requirements** or to place an order. Sales offices are listed at the end of this data **book**.

Important Information

Data Sheet Types

Product information data sheets progress in detail as the product goes from design to full production.

The three types of data sheets are defined below.

- Advance Information: Benchmarq Advance Information data sheets provide information for early product planning. These data sheets describe a product in the design or development stage. Specifications may change in any manner.
- Preliminary: Benchmarq Preliminary data **sheets** provide preliminary **specifications** for product design. They describe a product through its early production stage. Supplementary data may be published at a later date.
- Final: Benchmarq data sheets not labeled Advance Information or Preliminary are considered Final. They describe a product in full production and provide specifications for product design.

Benchmarq reserves the right to make changes to any products without notice.

Engineering Prototype

Prior to full production, Benchmarq may provide limited quantities of Engineering Prototypes. Engineering Prototypes are suitably **tested** for evaluation and restricted use. **Any** necessary errata data accompanies engineering prototype parts. They are marked with the part number and are identified as Engineering Prototypes.

Electrostatic Discharge (ESD) and Integrated Circuit (IC) Handling

Benchmarq ICs, as all ICs, are sensitive to electrostatic discharge (ESD). Although Benchmarq ICs are designed to withstand high ESD voltages, improper handling may cause damage. Standard ESD-prevention handling procedures should be followed. ESD-prevention considerations include proper grounding of operators, work surfaces and chip-handling equipment; appropriately high relative humidity levels; and use of antistatic handling and packaging materials. The ICs should be stored and shipped in antistatic tubes. The antistatic tubes containing the ICs must be brought to the same potential as the work area/operator before the individual ICs are handled.

Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

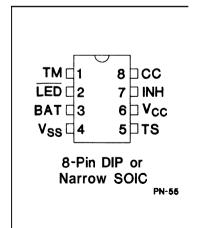
Fast Charge IC

Features

- Fast charge of nickel cadmium or nickel-metal hydride batteries
- Direct LED output displays charge status
- Fast charge termination by
 -ΔV, peak voltage detection
 (PVD), maximum temperature
 and maximum time
- Internal band-gap voltage reference
- Optional top-off charge
- Selectable pulse trickle charge rates
- Low-power mode
- 8-pin 300-mil DIP or 150-mil SOIC

General Description

The bq2002 Fast Charge IC is a low-cost CMOS battery charge controller providing reliable charge termination for both NiCd and Nii battery applications. Controlling a current-limited or constant-current supply allows the bq2002 to be the basis for a cost-effective stand-alone or system-integrated charger. The bq2002 integrates fast charge with optional top-off and pulsed trickle control in a single IC for charging one or more NiCd or NiMH battery calls.


Fast charge is initiated on application of the charging supply or battery replacement. Fur safety, fast charge is inhibited if the battery temperature and voltage are outside configured limits.

Fast charge is terminated by any of the following:

- Peak voltage detection (PVD)
- Negative delta voltage (-**△V**)
- 8 Maximum temperature
- Maximum time

After **fast** charge, the bq2002 optionally tope-off and pulse-trickles the battery per the **pre-configured** limits. Fast charge may be **inhibited** using the INH pin. The **bq2002** may also be placed in **low-standby-power** mode to reduce system power **consumption**.

Pin Connections

Pin Names

TM	Tier mode select input	TS	Temperature sense input
LED	Charging status output	Vcc	5.0V ±20% power
BAT	Battery voltage input	INH	Charge inhibit input
V_{SS}	System ground	CC	Charge control output

Sept. 1996 B 1/10

Pin Descriptions

TM **Timer mode input**

TM is a three-level input that controls the settings for the fast charge safety timer, voltage termination mode, top-off, pulse-trickle, and voltage hold-off time.

LED Charging output status

This open-drain output indicates the charging status.

BAT Battery input voltage

BAT is the battery voltage sense input. This potential is generally developed by a high-impedance resistor divider network connected between the positive and negative terminals of the battery.

Vss System ground

TS Temperature sense input

This input is for an external battery temperature monitoring thermistor.

Vcc Vcc supply input

5.0V ±20% power input.

INH Charge inhibit input

When high, the **bq2002** suspends the fast charge in **progress**. When returned low, the **bq2002** resumes operation at the point where initially suspended.

CC Charge control output

CC is an open-drain output that is used to control the charging current to the battery. CC switching to high impedance (Z) enables charging current to flow, and low to inhibit charging current. CC is modulated to provide top-off, if enabled, and pulse trickle.

Functional Description

Figure 1 illustrates the charge control status during a bq2002 charge cycle. Figure 2 outlines the various bq2002 operational states and their associated conditions, which are described in detail in the following sections.

Charge Action Control

The **bq2002** initiates a charge action by the application of power on Vcc or by battery replacement. Control of the charge action is then determined by inputa from TM, TS, and BAT.

Following charge initiation, the **bq2002** checks for acceptable battery voltage and temperature. If the battery voltage or temperature is **outside** of the fast charge **limits**, pulse-trickle **initiates** at a rate determined by the TM pin. If the battery temperature and voltage **are** valid at charge initiation, fast charge **begins**.

The **bq2002** then **tests** for the full-charge conditions: ΔV , PVD, maximum temperature, or maximum time.

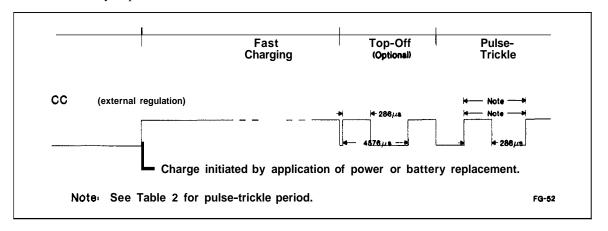


Figure 1. Example Charging Action Events

2/10 Sept. 1996 B

Charge Status Indication

<u>A fast</u> charge in **progress is uniquely** indicated when the LED pin **goes** low. The LED pin is driven to the **high-Z** state for all conditions **other** than fast charge. *Figure* 2 outlines the state of the LED pin during charge.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum allowable values. The voltage presented on the battery sense input, BAT, should **represent** a **single-cell** potential for the battery under charge. A **resistor-**divider ratio of:

$$\frac{R1}{R2} = N - 1$$

is recommended to maintain the battery voltage within the valid range, where N ie the number of cells, R1 is the resistor connected to the positive battery terminal, and R2 is the resistor connected to the negative battery terminal. See Figure 3.

Note: This reaistor-divider network input impedance to BAT should be above $200K\Omega$ to protect the bq2002.

A ground-referenced negative temperature coefficient thermistor placed in close proximity to the battery may be used as a low-cost temperature-to-voltage transducer. The temperature sense voltage input at TS is developed using a resistor-thermistor network between Vcc and Vss. Sea Figure 3.

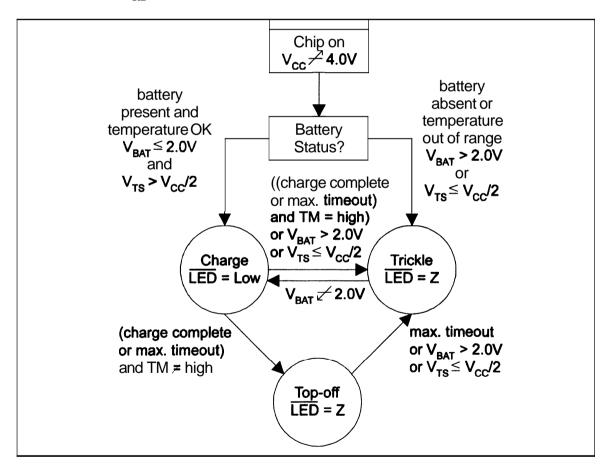


Figure 2. Operational Summary

Sept. 1996 B 3/10

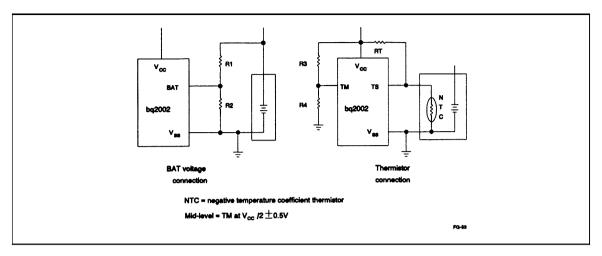


Figure 3. Voltage and Temperature Limit Measurement

TM Pin

The TM pin is a three-level pin used to select the various charge timer, top-off, voltage termination mode. trickle rates, and voltage hold-off periods. Table 1 describes the various states selected by the TM pin. The mid-level **selection** input is developed by a resistor divider between Vcc and ground. See Figure 3.

Charge Initiation

Application of power or battery voltage falling from above 2V initiates a charge action. If the battery is within the configured temperature and voltage limits, the bq2002 begins fast charge. The valid battery voltage range is BAT < 2V. The valid temperature range is TS > 0.5 • Vcc. If the battery voltage or temperature is outside of these limits, the bq2002 pulse-trickle charges until the next valid charge initiation.

The bq2002 continues to fast charge the battery until termination by one or more of the four possible termination conditions:

- Peak voltage detection (PVD)
- Negative delta voltage (-ΔV)
- Maximum time
- Maximum temperature (TCO)

VBAT > VMCv stops fast charge or top-off.

Voltage Termination Hold-off

A hold-off time occurs at the start of fast charging. During the hold-off time, the PVD and -AV terminations are disabled (see Table 1). Once past the initial fast charge hold-off time, the PVD and -AV terminations are re-enabled. Maximum temperature is not affected by the hold-off period.

PVD and -AV Termination

The bq2002 has two modes for voltage termination depending on the state of TM. For standard $-\Delta V$ (TM = high), if $V_{\rm BAT}$ is lower than any previously measured value by 12mV typical, the fast charge phase of the charge action is terminated. For PVD termination (TM = low or mid), a threshold of 0 to 5mV typical is used. The PVD and $-\Delta V$ tests are valid for: 1V < BAT < 2V.

Maximum Time and Temperature

The bq2002 also terminates fast charge for maximum temperature (TCO) and maximum time. TCO reference levels provide the maximum limits for battery temperature during fast charge. If this limit is exceeded, then fast charge or optional top-off charge is terminated.

Maximum time selection is programmed using the TM pin. Time settings are available for corresponding charge rates of %2, 1C, and 2C.

4/10 Sept. 1996 B

Top-off Charge

An optional top-off charge phase is selected to follow fast charge termination for 1C and ½ rates. This may be necessary to accommodate battery chemistries that have a tendency to terminate charge prior to achieving full capacity. With top-off enabled, charging continues after fast charge termination for a period of time selected by the TM pin (see Table 1). During top-off, the CC pin is modulated at a duty cycle of 286µs active for every 4290µs inactive. This results in an average rate ½ that that of the fast charge rate. Maximum time and temperature (TCO) terminations are the only methods enabled during top-off.

Pulse-Trickle Charge

Pulse-trickle is used to compensate for self-discharge while the battery is idle in the charger. The battery is pula-trickle charged after fast charge or top off by driving the CC pin active for a period of 286µs for every 18.0ms of inactivity for 1C and 2C selections, and 286µs for every 8.86ms of inactivity for $\frac{6}{2}$ selection This results in a trickle rate of $\frac{6}{2}$ for the top-off enabled mode and $\frac{6}{2}$ otherwise.

Charge Inhibit

Fast charge and top-off may be inhibited by using the INH pin of the bq2002. When high, the bq2002 suspends all fast charge and top-off activity and the internal charge timer control. INH freezes the current state of LED until inhibit is removed. Temperature detection h not affected by the INH pin. During charge inhibit, the bq2002 continues to pulse-trickle charge the battery per the TM eelection When INH returns low, charge control and the charge timer resume from the point where INH went active.

Low-Power Mode

When BAT is driven above VPD, the bq2002 assumes a low-power operational etate. Both the CC pin and the LED pin are driven to the high-Z etate. The operating current of the bq2002 is reduced to less than 1µA in this mode. Subsequently, when BAT returns to a value below VPFD, trickle charge is initiated.

Table 1. Fast Charge Safety Time/Hold-Off/Top-Off Table

Corresponding Fast Charge			Fad Charge Top-off and Safety Time (minutes)	PVD and -AV Hold-Off Time (seconds)	Top-Off	Pulse- Trickle	Pulsed Trickle Period
Rate	—тм—	Termination	Typical	Typical	Rate	Rate	(ma)
C/2	Mid	PVD	160	600	C/32	C/64	9.14
1C	Low	PVD	80	300	C/ ₁₆	C/64	18.3
2C	High	-AV	40	150	Disabled	C/32	18.3

Notes:

 $T_A = 25$ °C, $V_{CC} = 5.0$ V.

 $Mid = 0.5 \cdot V_{CC}$

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3	+7.0	V	
Topr	Operating ambient temperature	0	+70	°C	Commercial
TsTG	Storage temperature	-40	+85	°C	
TSOLDER	Soldering temperature		+260	°C	10 sec max.
TBIAS	Temperature under bias	-40	+85	္	

Note:

Permanent device damage may **occur** if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating **Conditions** detailed in this data **sheet**. **Exposure** to conditions beyond the operational limits for extended **periods** of time may **affect** device reliability.

DC Thresholds (TA = 0 to 70°C; VCC ±20%)

Symbd	Parameter	Rating	Tderance	Unit	Notes
V _{TCO}	Temperature cutoff	0.5 • V _{CC}	±5%	٧	V _{TS} ≤ V _{TCO} inhibits charge
V _{MCV}	Maximum cell voltage	2	±5%	v	V _{BAT} > V _{MCV} inhibits/terminates charge

6/10 Sept. 1996 B

Recommended DC Operating Conditions (TA = 0 to 70℃)

Symbol	Condition	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.0	15.0	6.0	V	
V _{DET}	-ΔV, PVD detect voltage	1		2	v	
VBAT	Battery input	0		Vcc	V	
V _{TS}	Thermistor input	0.5		Vcc	V	TS < 0.5V prohibited
VIH	Logic input high	0.5			V	INH
V III	Logic input high	Vcc - 0.5			V	TM
Vim	Logic input mid	$\frac{\mathrm{V_{CC}}}{2}-500\mathrm{mV}$	-	$\frac{\text{V}_{\text{CC}}}{2} + 500 \text{mV}$	v	тм
$v_{\scriptscriptstyle \rm IL}$	Logic input low			0.1	V	INH
VIL.	Logic input low		-	0.5	V	тм
V_{OL}	Logic output low	•		0.8	V	$\overline{\text{LED}}$, CC, $I_{OL} = 10\text{mA}$
$ m V_{PD}$	Power down	Vcc · 1.5		Vcc • 0.5		V _{BAT} ≥ V _{PD} max. powers down bq2002; V _{BAT} < V _{PD} min. = normal operation.
Icc	supply current	-	-	250	μΑ	Outputs unloaded, Vcc = 5.1V
I_{SB}	Standby current			1	μА	$V_{\rm CC}$ = 5.1V, $V_{\rm BAT}$ = $V_{\rm PD}$
IoL	LED, CC sink	10			mA	@V _{OL} = V _{SS} + 0.8V
IL	Input eakage			±1	μА	INH, CC. V = V _{SS} to V _{CC}
Ioz	Output leakage in high- Z state	-5	-	•	μА	LED, CC

Note: All voltages relative to Vss.

Sept. 1996B 7/10

Impedance

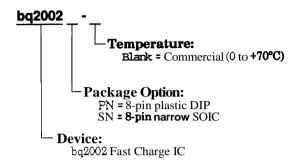
Symbol	Parameter	Minimum	Typical	Maximum	Unit
RBAT	Battery input impedance	50			MR
Rrs	TS input impedance	50			MΩ

Timing (TA = 0 to +70°C; VCC ±10%)

Symbo	l Parameter	Minimum	Typical	Maximum	Unit	Notes
dfcv	Fast charge safety time variation	0.80	1.0	1.20		

Note: Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

8/10 Sept. 1996 B


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	3	Was: Table 1 gave the bq2002 Operational Summary. Is: Figure 2 gives the bq2002 Operational Summary.	Changed ^{table} to figure.
1	5	Added Termination column to table and Top-off values.	Added column and values.

Note: Change 1 = Sept. 1996 B changes from July 1994.

Sept. 1996 B 9/10

Ordering Information

10/10 Sept. 1996 B

Fast Charge IC

Features

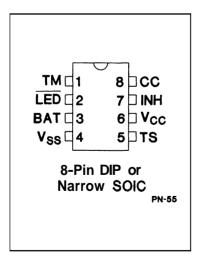
- ➤ Fast charge of nickel cadmium or nickel-metal hydride batteries
- ➤ Direct **LED** output displays charge statue
- Fast charge termination by

 ΔV, peak voltage detection

 (PVD), maximum temperature, and maximum time
- > Selectable pulse trickle charge rates
- ➤ Low-power mode
- &pin 300-mil DIP or 150-mil SOIC

General Description

The bq2002C Fast Charge IC is a low-cost CMOS battery charge controller providing reliable charge termination for both NiCd and NiMH battery applications. Controlling a current-limited or constant-current supply allows the bq2002C to be the basis for a cost-effective stand-alone or systemintegrated charger. The bq2002C integrates fast charge with pulsed trickle control in a single IC for charging one or more NiCd or NiMH batters.


Fast charge is initiated on application of the charging supply or battery replacement. Far safety, fast charge is inhibited if the battery temperature and voltage are outside configured limits.

Fast charge is terminated by any of the following:

- Peak voltage detection (PVD)
- Negative delta voltage $(-\Delta V)$
- Maximum temperature
- Maximum time

After fast charge, the bq2002C pulse-trickle charges the battery according to the pre-configured limits. Fast charge may be inhibited using the INH pin. The bq2002C may also be placed in low-standby-power mode to reduce system power consumption.

Pin Connections

Pin Names

TM	Timer mode select input	TS	Temperature sense input
LED	Charging status output	Vcc	5.0V ±20% power
BAT	Battery voltage input	INH	Charge inhibit input
V_{SS}	System ground	CC	Charge control output

Dec. 1995

PIn Descriptions

TM Timer mode input

TM is a three-level input that **controls** the settings for the **fast** charge safety timer, voltage **termination** mode, **pulse** trickle, and voltage hold-off time.

LED Charging output status

This open-drain output **indicates** the charging status.

BAT Battery input voltage

BAT is the battery voltage sense input. This potential is generally developed by a **high-impedance resistor** divider network **connected** between the positive and negative terminals of the battery.

Vss System ground

TS Temperaturesense input

This input is for an external battery temperature monitoring thermistor.

V_{CC} V_{CC} supply input

5.0V ±20% power input.

INH Charge inhibit input

When high, the **bq2002C** suspends the fast charge in **progress**. When returned low, the

bq2002C resumes operation at the point where initially suspended.

CC Charge control output

CC is an open-drain output that is **used** to control the charging current to the **battery**. CC switching to high **impedance** (Z) enables charging current to flow, and low to inhibit charging current. CC is modulated to provide pulse trickle.

Functional Description

Figure 1 illustrates the charge control **statue** during a **bq2002C** charge cycle. Table 1 outlines the **various bq2002C** operational **states** and their **associated** conditions, which are **described** in detail in the following sections,

Charge Action Control

The **bq2002C** initiates a charge action by the application of power on Vcc or by battery replacement. Control of the charge action is then determined by the inputs from TM, TS, and BAT.

Following charge initiation, the **bq2002C** checks for acceptable battery voltage and temperature. If the battery voltage or temperature is **outside** of the fast charge limits (charge pending), pulse-trickle initiates at a rate determined by the TM pin. If the battery temperature and voltage **are** valid at charge initiation, fast charge **begins**.

The **bq2002C** then tests for the full-charge **conditions**: -**\Delta V**, PVD, maximum temperature, or **maximum** time.

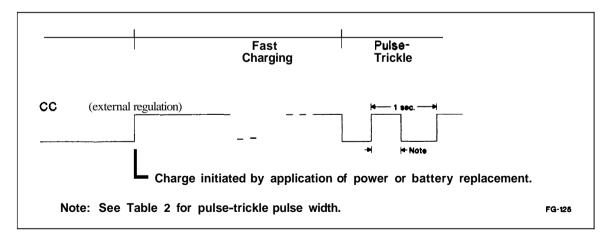


Figure 1. Example Charging Action Events

2/8 Dec. 1995

Charge Status Indication

A fast charge in progress is uniquely indicated when the LED pin goes low. The LED pin is driven low for 500msec, then high-Z for 500msec during the charge pending state. The LED pin is driven to the high-Z state for charge complete. Table 1 outlines the state of the LED pin during charge.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum allowable values. The voltage presented on the battery sense input, BAT, should represent a single-cell potential for the battery under charge. A resistor-divider ratio of:

$$\frac{R1}{R2} = N - 1$$

is recommended to maintain the battery voltage within the valid range, where N is the number of cells, R1 is the resistor connected to the positive battery terminal, and R2 is the resistor connected to the negative battery terminal. See Figure 2.

Note: This resistor-divider network input impedance to BAT should be above $200 \text{K}\Omega$ to protect the **bq2002C**.

A ground-referenced negative temperature coefficient thermistor placed in close proximity to the battery may be used as a low-cost temperature-to-voltage transducer. The temperature sense voltage input at TS is developed using a real-tor-thermistor network between Voc and Vss. See Figure 2.

Table 1. bq2002C Operational Summary

Charge Action State	Conditions	CC Output	<u>LED</u>
Battery absent	Vbat ≥ Vmcv	Trickle charge activated for period specified in Table 2	High Z
Charge initiation	Vcc applied, VBAT drops from 2 VMCV to < VMCV (battery replaced)	-	
Charge pending	Vts < Vtco or Vbat < Vlbat	Trickle charge activated for period specified in Table 2	500ms low 500ms high-Z
Fast charging	Charge initiation occurred and V _{TS} > V _{TCO} and V _{LBAT} < V _{BAT} < V _{MCV}	High Z	Low
Charge complete	-ΔV or PVD or maximum time or maximum temperature'	-	High Z
Trickle	Charge complete or Charge Pend	Trickle charge activated for period specified in Table 2	-
Charge inhibit	INH high	Trickle charge activated for period specified in Table 2	_2
Low power	V _{BAT} > V _{PD}	High Z High Z	

Notes:

- 1. **VBAT** > VMCV stops fast charge.
- 2. **LED reflects** state prior to inhibit.

Dec. 1995

3/8

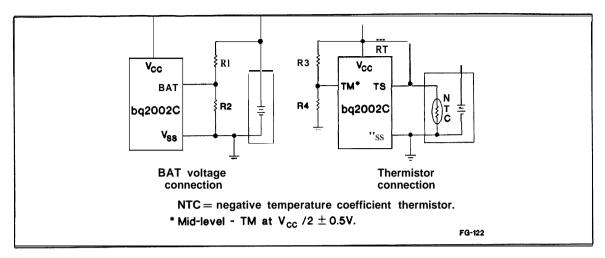


Figure 2. Voltage and Temperature Limit Measurement

TM Pin

The TM pin is a three-level pin used to select the various charge timer, voltage termination mode, trickle rates and voltage hold-off periods. Table 2 describes the various states selected by the TM pin. The mid-level selection input is developed by a **resistor** divider between Vcc and ground. See Figure 2.

Charge Initiation

Application of power or battery voltage falling from above 2V initiates a charge action. If the battery is within the configured temperature and voltage limits, the bq2002C begins fast charge. The valid battery voltage range is VLBAT < BAT < 2V. The valid temperature range is TS > 0.5 • VCC. If the battery voltage or temperature is outside of these limits, the bq2002C pulse-trickle charges until the temperature and voltage are within specified limits.

The bq2002C continues to fast charge the battery until termination by one or more of the four **possible** termination conditions:

- Peak voltage detection (PVD)
- Negative delta voltage (-AV)
- Maximum time
- Maximum temperature (TCO)

VBAT > VMCV stops fast charge.

Voltage Termination Hold-off

A hold-off time occurs at the start of fast charging. Duriig the hold-off time, the PVD and -AV terminations are disabled (see Table 2). **Once** past the initial fast charge hold-off time, the PVD and -AV terminations are re-enabled. Maximum temperature is not affected by the hold-off period.

PVD and -∆V Termination

The bq2002C has two modes for voltage termination depending on the state of TM. For standard AV (TM = high), if VBAT is lower than any previously measured value by 12mV typical, the fast charge phase of the charge action is terminated. For PVD termination (TM = low or mid), a threshold of 0 to 5mV typical is used. The PVD and -AV tests are valid for: 1V < BAT < 2V.

Maximum Time and Temperature

The bq2002C also terminates fast charge for maximum temperature (TCO) and maximum time. TCO reference levels provide the maximum limits for battery temperature during fast charge. If this limit is exceeded, then fast charge is terminated.

Maximum time selection is programmed using the TM pin. Time settings are available for corresponding charge rates of %2, 1C, and 2C.

Dec. 1995

Top-Off Charge

A .optional top-off charge **phase** is selected to follow fast charge termination for **1C** and **% rates**. This may be necessary to accommodate battery chemistries that have a tendency to terminate charge prior to achieving full capacity. With top-off enabled, charging **continues** after fast charge termination for a period **cf** time selected by the TM pin (see Table **2. During top-off**, the **CC** pin is modulated at a duty cycle of 73ms active for every **1097ms** inactive. This results in an average **rate 1/16th** that of the fast charge rate. Maximum time and **temperature** (**TCO**) terminatione **are** the only methods enabled during **top-off**.

Pulse-Trickle Charge

Pulse-trickle is used to **compensate** for self-discharge while the battery **is** idle in the charger. The battery is pulse-trickle charged after fast charge by driving the **CC** pin active for a period **specified** in Table **2. This** results in a trickle rate of **C**₅₂ for all modes.

Charge Inhibit

An input **stimulus** can be applied to the INH input pin to synchronize the voltage sampling at the BAT input pin. providing design/application flexibility. A low-high-low pulse can be applied to this input to synchronize sampling on the falling edge, if the input pulse width is greater than 100ns but less than 8.5ms (synchronized charge termination). Time between these input pulses must be less than the synchronized period specified in Table 2, or the bo2002C enables 'free-run' voltage-based detection (automatic charge termination). If the **INH** input remains high for greater than 12ms, the bo2002C resets the voltage-based history used for PVD or -AV detection. This condition (pause) also suspends the charge timer and fast charge or top-off activity until the INH pin returns low. A pause condition must precede a transition from automatic charge termination to synchronized charge termination.

Low-Power Mode

When BAT is driven above Vpp, the **bq2002C** assumes a **low-power** operational **state**. Both the CC pin and the **LED** pin are driven to the high-Z state. The operating current of the **bq2002C** is reduced to **less** than **1µA** in this mode. **Subsequently**, when BAT returns to a value below Vppp, trickle charge is initiated.

Table 2. Fast Charge Safety Time/Hold-Off Table

Corresponding Fast Charge Rate	тм	Fast Charge and Safety Time (minutes)	PVD and -∆V Hold-Off Time (seconds)	Pulse- Trickle Rate	P u b Trickie Period (seconds)	Pulse- Trkkk Pulse Width (ms)	Synchronized Period (seconds)
c/2	Mid	160	300	C/32	1	62	9.4
1C	Low	80	150	C/32	1	31.	18.7
2C	High	40	75	C/32	1	15	18.7

Notes: $T_A = 25$ °C, $V_{CC} = 5.0$ V.

Mid = 0.5 * Vac.

Dec. 1995

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3	+7.0	v	
Topr	Operating ambient temperature	0	+70	°C	Commercial
Tstg	Storage temperature	-40	+85	°C	
TSOLDER	Solderingtemperature		+260	°C	10 sec max.
TBIAS	Temperature under bias	-40	+85	°C	

Note:

Permanent device damage may occur if **Absolute** Maximum **Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds (TA = 0 to 70°C; VCC ±20%)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
V _{TCO}	Temperature cutoff	0.5 • Vcc	±5%	٧	V _{TS} ≤ V _{TCO} inhibits charge
V _{MCV}	Maximum œll voltage	2	±5%	V	V _{BAT} > V _{MCV} inhibits/terminates charge
VLBAT	Minimum cell voltage	0.84	±20%	V	V _{BAT} < V _{LBAT} pends charge

6/8 Dec. 1995

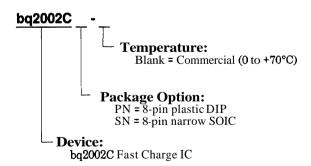
7/8

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbol	Condition	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.0	5.0	6.0	V	
VDET	-ΔV, PVD detect voltage	1		2	V	
VBAT	Battery input	0		Vcc	V	
VTS	Thermistor input	0.5		Vcc	V	TS < 0.5V prohibited
V _{IH}	Legic input high	0.5			V	INH
, 	Logic input high	Vcc • 0.5			V	TM
VIM	Logic input mid	$\frac{\mathrm{V_{CC}}}{2}-500\mathrm{mV}$		$\frac{\text{V}_{\text{CC}}}{2} + 500 \text{mV}$	V	тм
Vil	Logic input low			0.1	V	INH
1111	Logic input low			0.5	V	TM
Vol	Legic output low			0.8	V	LED, CC, I _{OL} = 10mA
$\mathbf{V}_{ ext{PD}}$	Power down	Vcc · 1.5		Vcc • 0.5	v	VBAT ≥ VPD max. powers down bq2002C; VBAT < VPD min. = normal operation.
Icc	Supply current			500	μА	Outputs unloaded, Vcc = 5.1V
I_{SB}	Standby current			1	μA	$V_{CC} = 5.1V$, $V_{BAT} = V_{PD}$
IoL	LED, CC sink	10			mA	$@V_{OL} = V_{SS} + 0.8V$
IL	Input leakage			±1	μA	INH, CC, V = V _{SS} to V _{CC}
Ioz	Output leakage in high- Z state	-5			μА	LED, CC

Note: All voltages relative to Vss.

Impedance


Symbol	Parameter	Minimum	Typical	Maximum	Unit
RBAT	Battery input impedance	50			MR
RTS	TS input impedance	50			MR

Timing (TA = 0 to +70°C; VCC ±10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
dfcv	Fast charge safety time variation	0.88	1.0	1.12		

Note: Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

Ordering Information

8/8 Dec. 1995

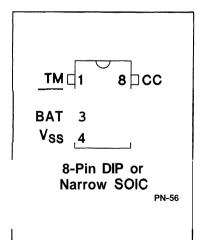
bq2002T

Fast Charge IC With △T/△t

Features

- Fast charge of nickel cadmium or nickel-metal hydride batteries
- Direct LED output displays charge status
- Fast charge termination by Δ temperature/Δ time, maximum temperature, and maximum time
- Optional top-off charge
- Selectable pulse-trickle charge rates
- Low-power mode
- 8-pin 300-mil DIP or 150-mil SOIC

General Description


The bq2002T Fast Charge IC is a low-cost CMOS battery charge controller providing reliable charge termination for both NiCd and NiMH battery applications. Controlling a current-limited or constant-current supply allows the bq2002T to be the basis for a cost-effective stand-alone or system-integrated charger. The bq2002T integrates fast charge with optional top-off and pulsed trickle control in a single IC for charging one or more NiCd or NiMH cells.

Fast charge is initiated on application of the charging supply or battery replacement. For safety, fast charge is inhibited if the battery temperature and voltage are outside configured limits. Fast charge is terminated by any of **the following:**

- Delta temperature/delta time (ΔΤ/Δt)
- Maximum temperature
- Maximum time

After fast **charge**, the **bq2002T** optionally tops-off and pulse-tricklee the battery per the **pre-configured** limits. Fast charge may be inhibited **using** the INH pin. The **bq2002T** may **also** be placed in low-standby-power mode to reduce system power **consumption**.

Pin Connections

Pin Names

1M	Timer mode select input	TS	Temperature sense input
LED	Charging status output	V_{CC}	5.0V ±20% power
BAT	Battery voltage input	INH	Charge inhibit input
v_{ss}	System ground	CC	Charge control output

Sept. 1996 B

Pin Descriptions

TM Timer mode input

TM is a three-level input that **controls** the **settings** for the fast charge safety timer, **top**-off, and pulse-trickle.

LED Charging output status

This open-drain output indicates the charging status.

BAT Battery input voltage

BAT is the battery voltage sense input. **This** potential is generally developed by a **high-impedance** resistor divider network connected between the positive and negative terminals of the battery.

Vss System ground

TS Temperature sense input

This input is for an **external** battery temperature monitoring negative temperature coefficient (NTC) **thermistor**.

Vcc Vcc supply input

5.0V ±20% power input.

INH Charge inhibit Input

When high, the **bq2002T** suspends the fast charge in progress. When returned low, the **bq2002T** resumes operation at the point where initially suspended.

CC Charge control output

CC is an open-drain output that is used to control the charging current to the **battery**. **CC** switching to high impedance (**Z**) **enables** charging current to flow, and low to **irrhibit** charging current. CC **is** modulated to provide **top-off**, if enabled, and pulse-trickle.

Functional Description

Figure 1 illustrates the charge control status during a bq2002T charge cycle. Figure 2 outlines the various bq2002T operational states and their associated conditions, which are described in detail in the following sections.

Charge Action Control

The **bq2002T** initiates a charge action by the application of power on **Vcc** or by battery replacement. Control of the charge action is then determined by inputs **from** TM, TS, and BAT.

Following charge initiation, the **bq2002T** checks for acceptable battery voltage and temperature. If the battery voltage or temperature is outside of the fast charge **limits**, pulse-trickle **initiates** at a rate determined by the TM pin. If the battery temperature and voltage are valid at charge initiation, fast charge **begins**.

The **bq2002T** then **tests** for the full-charge conditions: $\Delta T/\Delta t$, maximum temperature, or maximum time.

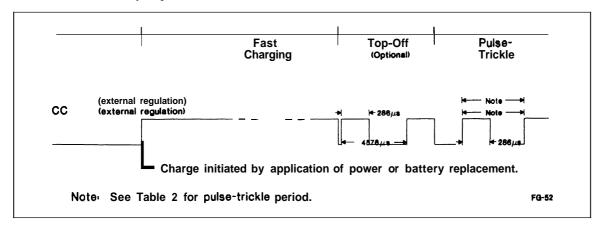


Figure 1. Example Charging Action Events

2/10 Sept. 1998 B

Charge Status Indication

A fast charge in **progress is uniquely** indicated when the **LED** pin goes low. The **LED** pin is driven to the high-Z state for all conditione other than fast charge pend. inhibit, or **fast** charge. Figure 2 outlines the state of the **LED** pin during a charge cycle.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum allowable values. The voltage presented on the battery sense input, BAT, should represent a single-cell potential for the battery under charge. A resistor-divider ratio of:

$$\frac{R1}{R2} = N - 1$$

is recommended to maintain the battery voltage within the valid range, where N is the number of cells, R1 is the resistor connected to the positive battery terminal, and R2 is the resistor connected to the negative battery terminal. See Figure 3.

Note: This resistor-divider network input **impedance** to BAT should be above **200K\Omega** to protect the **bq2002T**.

A ground-referenced negative temperature coefficient thermistor placed in close proximity to the battery should be used as a low-cost temperature-to-voltage transducer. The temperature senee voltage input at TS is developed using a resistor-thermistor network between Vcc and Vss. See Figure 3.

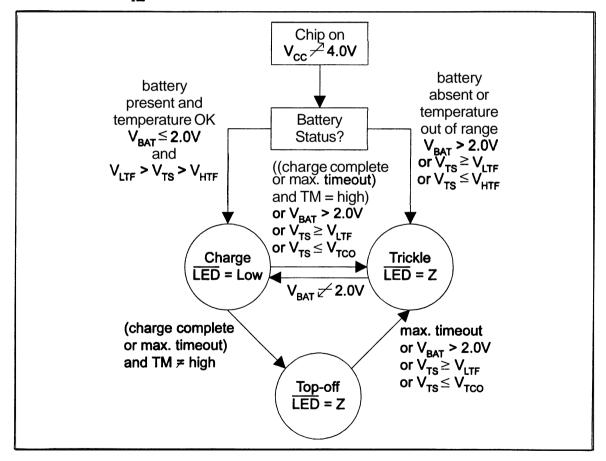


Figure 2. Operational Summary

Sept. 1996 B 3/10

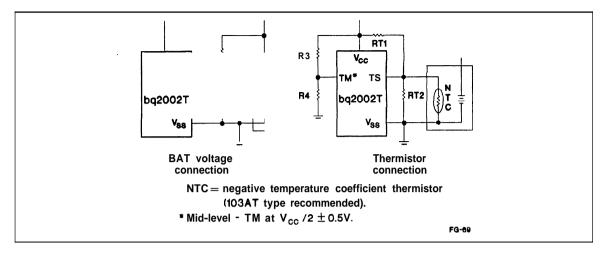


Figure 3. Voltage and Temperature Limit Measurement

TM Pin

The TM pin is a three-level pin used to select the various charge timer, top-off, voltage termination mode, trickle rates, and voltage hold-off periods. Table 1 describes the various **states** selected by the TM pin. The mid-level selection input is developed by a resistor divider between Vcc and ground. **See** Figure 3.

Charge Initiation

Application of power or battery voltage falling from above 2V initiates a charge action. If the battery is within the configured temperature and voltage limits, the bq2002T begins fast charge. The valid battery voltage range is BAT < 2V. The valid temperature range is between the internal low-temperature fault reference (V_{LTF} = 0.4 • V_{CC}) and the external hot-temperature fault reference (V_{HTF} = 0.25 • V_{CC}). If the battery voltage or temperature is outside of these limits, the bq2002T pulse-trickle charges until the battery enters the valid charge range. The hot-temperature cut-off reference (V_{TCO} = 0.225 • V_{CC}) provides hysteresis between the maximum temperature cut-off and the valid charge temperature.

The **bq2002T** continues to fast charge the battery until termination by one or more of the three **possible** termination conditions:

- Delta temperature/delta time (ΔT/Δt)
- Maximum time
- Maximum temperature (TCO)

VBAT > VMCV stops fast charge or top-off.

∆T/∆t Fast Charge Termination

The bq2002T uses ΔT/Δt fast charge termination. The bq2002T makes a termination decision based on delta temperature/delta time (ΔT/Δt) every 19 seconds typical. If VTEMP is 25.6mV (typical) less than the voltage measured 60 seconds previously, the fast charge phase of the charge is terminated.

The $\Delta T/\Delta t$ test is valid only for:

Using the recommended resistor divider network and thermistor, this represents a detection threshold of **1°C/minute** typical at **30°C**. The valid charge temperature range corresponds to 10°C (LTF), 43°C (HTF), and **50°C (TCO)**, respectively.

Maximum Time and Temperature

The **bq2002T** also **terminates** fast charge for maximum temperature **(TCO)** and maximum time. TCO reference level **(Vrco =** 0.225 • **Vcc)** provides the maximum **limit** for battery temperature during fast charge. Once fast charge is initiated, exceeding TCO terminates fast charge or optional top-off charge.

Maximum time selection is programmed using the TM pin. Time settings are available for corresponding charge rates of **64, 1C,** and 2C.

Sept. 1996 B

Top-off Charge

An optional top-off charge phase **is selected** to follow fast charge termination for **1C** and **%** rates. **This** may be necessary to accommodate battery chemistries that have a tendency to terminate charge prior to achieving full capacity. With top-off enabled, charging continuea after **fast** charge termination for a period of time selected by the TM pin(see Table 1). During top-off, the CC pin is modulate at a duty cycle of **286µs** active for every **4290µs** inactive. **This results in** an average rate **½6th** that of the **fast** charge rate. **Maximum** time and temperature (TCO) terminations are the only methods enabled during top-off,

Pulse-Trickle Charge

Pulse-trickle is used to compensate for self-discharge while the battery is idle in the charger. The battery is **pulse-trickle** charged after fast charge or top off by driving the **CC** pin active for a period of **286µs** for every **72.9ms** of inactivity for **1C** and **2C** selections, and 286µs for every **17.9ms** of inactivity for **C4** selection. **This** results in a trickle rate of **C426** for the **1C** rate and the **C4** rate, and **C428** for the **2C** rate.

Charge Inhibit

Fast charge and top-off may be inhibited by using the INH pin of the bq2002T. When high, the bq2002T suspends all fast charge and top-oft activity and the internal charge timer. Fast charge termination due to maximum temperature is not affected by the ZNH pin. INH freezes the current state of LED until inhibit is removed. During charge inhibit, the bq2002T continues to pulse-trickle charge the battery per the TM selection. When INH return low, charge control and the charge timer resume from the point where INH went active and the $\Delta T/\Delta t$ circuit is reset.

Low-Power Mode

When BAT is driven above Vpp, the bq2002T assumes a low-power operational state. Both the CC pin and the LED pin are driven to the high-Z state. The operating current of the bq2002T is reduced to less than 6pA in this mode. Subsequently, when BAT returns to a value below Vpp, trickle charge is initiated. A new charge cycle begins when BAT falls below 2V.

Table 1. Fast Charge Safety Timepop-Off Table

Corresponding Fast Charge Rate	ТМ	Fwt Charge Top-off and Safety Time (minutes) Typical	Top-Off Rate	Puise- Trickle Rate	Pulse- Trickle Period (ms)
C/4	Mid	320	C/64		18.3
1C	Low	80	c/ ₁₆	C/ ₂₅₆	73.1
2C	High	40	Disabled	C/ ₁₂₈	73.1

Notes: $T_A = 25^\circ$

 $T_A = 25^{\circ}C$, $V_{CC} = 5.0V$.

 $Mid = 0.5 \cdot Vac.$

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3	+7.0	V	
Topr	Operating ambient temperature	0	+70	°C	Commercial
TSTG	Storage temperature	-40	+85	°C	
TSOLDER	Soldering temperature		+260	°C	10 sec max.
TBIAS	Temperature under bias	-40	+85	°C	

Note:

Permanent device **damage** may **occur** if Absolute Maximum Ratings are exceeded. Functional **operation** should be limited to the **Recommended** DC Operating Conditions **detailed** in **this** data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds (TA = 0 to 70°C; vcc ±20%)

Symbd	Parameter	Rating	Tolerance	Unit	Notes
VTCO	Temperature cutoff	0.225 • Vcc	±5%	V	V _{TS} ≤ V _{TCO} inhibits charge
VHTF	High-temperature fault	0.25 • Vcc	±5%	V	VHTF ≤ V _{TS} ≤ V _{LTF} initiates charge
V _{LTF}	Low-temperature fault	0.4 • Vcc	±5%	V	VTS > VLTF inhibits charge
V _{MCV}	Maximum cell voltage	2	±5%	v	V _{BAT} > V _{MCV} inhibits/terminates charge

6/10 Sept. 1996 B

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.0	5.0	6.0	V	
VBAT	Battery input	0		Vcc	V	
VTS	Thermistor input	0.5		Vcc	V	TS < 0.5V prohibited
V _{IH}	Logic input high	0.5			V	INH
VIII	Logic input high	Vcc • 0.5			V	TM
V _{IM}	Logic input mid	$\frac{\text{Vcc}}{2}$. 500mV		$\frac{V_{CC}}{2} + 500 \text{mV}$	v	тм
VIL	Logic input low			0.1	V	INH
A IIT	Logic input low			0.5	V	тм
Vol	Logic output low			0.8	V	LED, CC, IOL = 10mA
$ m V_{PD}$	Power down	Vcc • 1.5		Vcc - 0.5	v	VBAT > VPD max. powers down bq2002T; VBAT < VPD min. = normal operation.
Icc	Supply current			500	μА	Outputs unloaded, Vcc = 5.1V
I _{SB}	Standby current			1	pi	$V_{CC} = 5.1V$, $V_{BAT} = V_{PD}$
I _{OL}	LED, CC sink	10			mA	@V _{OL} = V _{SS} + 0.8V
IL	Input leakage			±1	μA	INH, TM, V = V _{SS} to V _{CC}
Ioz	Output leakage in high- Z state	-5			μА	LED, CC

Note: All voltages relative to Vss.

Impedance

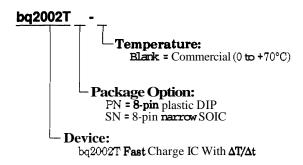
Symbol	Parameter	Minimum	Typical	Maximum	Unit
RBAT	Battery input impedance	50			MΩ
R _{TS}	TS input impedance	60			MΩ

Timing (TA = 0 to +70°C; VCC ±10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Note8
dfcv	Fast charge safety time variation	0.80	1.0	1.20		

Note: Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

8/10 Sept. 1996 B


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	3	Was: Table 1 gave the bq2002 Operational Summary. Is: Figure 2 gives the bq2002 Operational Summary.	Changed table to figure.
1	5	Added Top-off values.	Added values.

Note: Change 1 = Sept. 1996 B changes from Aug. 1994.

Sept. 1996 B

Ordering Information

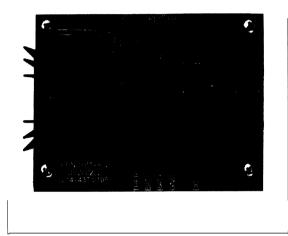
10/10

Product Brief DV2002L2/TL2

Fast Charge Development System

Control of LM317 Linear Regulator

Features

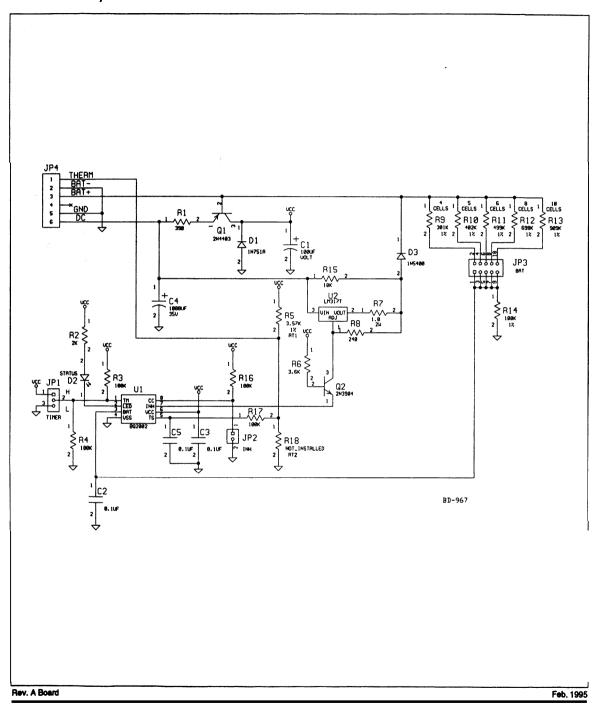

- bq2002 fast charge control evaluation and development
- ➤ Charge current sourced from an on-board linear regulator (up to 1.5 A)
- Fast charge of 4, 5, 6, 8, or 10 NiCd or NiMH cells (contact Benchmarq for other cell counts)
- Fast charge termination by negative delta voltage (-ΔV) or peak voltage detect, maximum temperature and maximum time
- > -ΔV/peak voltage detect, hold-off, top-off, maximum time, and number of cells are jumper-configurable
- ➤ Inhibit fast charge by logic-level input

General Description

The DV2002L2 Development System provides a development environment for the bq2002 Fast Charge IC. The DV2002L2 incorporates a bq2002 and a linear regulator to provide fast charge control for 4 to 10 NiCd or NiMH cells.

The fast charge is terminated by any of the following: -AV or peak voltage detect, maximum temperature, maximum time, and inhibit command. Jumper settings select the voltage termination mode, the hold-off, top-off, and maximum time limits.

The user provides a power supply and batteries. The user configures the DV2002L2 for the number of cells, voltage, charge termination mode, and maximum charge time (with or without top-off).



Please review the bq2002 data sheet before using the DV2002L2 board.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you can contact the factory for one.

Feb. 1995 Rev. A Board

DV2002L2/TL2 Board Schematic

Fast Charge IC 1

Features

- Fast charge and conditioning of nickel cadmium or nickel-metal hydride batteries
- Flexible current regulation:
 - Frequency-modulated switching current regulator
 - Gating control for use with external regulator
- Easily integrated into systems or as a stand-alone charger
- Pre-charge checks for temperature and voltage faults
- Direct LED outputa display battery and charge status
- Fast charge termination by A temperature/ Δ time, - Δ V, maximum temperature, maximum time, and maximum voltage
- Optional top-off charge

General Description

The bq2003 Fast Charge IC provides comprehensive fast charge control functions together with high speed switching power control circuitry on a monolithic CMOS device.

Flexible control of constant-current or current-limited charging eupply allows the bo2003 to be the basis of a cost-effective solution for stand-alone and system-integrated chargers for batteries of one or more cells.

Switch-activated discharge-beforecharge allows bq2003-based chargers to support battery conditioning and capacity determination.

High-efficiency power conversion is accomplished using the bq2003 as a frequency-modulated controller for switched regulation of the charging current. The bq2003 may alternatively be **used** with a transistor or SCR to gate an external charging current.

Fast charge may begin on application of the charging supply, replacement of the battery, or switch depression. For safety, fast charge is inhibited until the battery temperature and voltage are within configured limits.

Temperature, voltage, and time are monitored throughout fast charge. Fast charge is terminated by any of the **following**:

- Delta temperature/delta time $(\Delta T/\Delta t)$
- Negative delta voltage $(\cdot \Delta V)$
- Maximum temperature
- Maximum time
- Maximum voltage

Pin Connections

CCMD	_ 1	16 □ V _{CC}
DCMD (2	15 DIS
DVEN	3	14 DMOD
TM ₁	4	13 □ CHG
TM ₂	∃ 5	12 TEMP
TS	∃ 6	11 DMCV
BAT	□ 7	10
V _{SS} [∃ 8	9 ⊟ SNS

Pin Names

CCMD	Charge command/select	SNS	Sense resistor input
DCMD	Discharge command	TCO	Temperature cutoff
DVEN	-ΔV enable/disable	MCV	Maximum voltage
TM_1	Tier mode select 1	TEMP	Temperature status output
TM_2	Tier mode select 2	CHG	Charging status output
TS	Temperature sense	MOD	Charge current control
BAT	Battery voltage	DIS	Discharge control
V_{SS}	System ground	V_{CC}	5.0V ±10% power

Sept. 1996 F

The bq2003 uses delta temperature/delta time (\(\Delta Ty\Delta t\)) and/or negative delta voltage (\(\Delta V\)) as primary decisions for fast charge cutoff. \(\Delta Ty\Delta t\) detection is very reliable for fast charge temperature for NiCd and NiMH batteries and is compatible with varying current during charge. \(\Delta Ty\Delta t\) requires the use of a single thermistor to monitor the rate of temperature increase for contacted cells. Compared to the delta temperature method (using two sensors and comparing battery temperature to ambient temperature), the \(\Delta Ty\Delta t\) approach is relatively immune to corruption when the initial battery temperature and ambient temperature are significantly different.

-AV detection monitors the voltage **across** all of the **cells** and is very reliable **as** a primary charge terminator for NiCd batteries. -AV detection for the **bq2003** may be disabled temporarily (for periods of time when the current fluctuates) or permanently.

To provide maximum safety for the battery and system, fast charging also terminates based on a hot-temperature catoff threshold (TCO), a safety time period, and a maximum cell voltage threshold (MCV). To avoid possible premature fast charge termination when charging batteries after long **periods** of storage, the maximum voltage and -AV testa are disabled during a short "hold-off" period at the start of charge.

The **bq2003** may be **configured** to have one, two, or three charge **stages**. With a two-stage fast charge configuration, the fast charge stage controlled by the **bq2003** is preceded and followed by a continuous trickle charge at a rate controlled by a current-limiting resistor outside the **bq2003**.

With a three-stage charge configuration, the fast charge stage is followed by a "top-off" charge stage at ½ the fast charge rate. This allows the battery to be quickly and safely brought to a completely full charge state. Following "top-off," externally controlled trickle charge maintains the battery at a minimal charge-sustaining level (i.e., ½0 or ½0). The maximum top-off time period is the same as for the safety time period selected for fast charge, with TCO or MCV as backup terminations.

Discharge-before-charge may be **switch-selected** to discharge the battery to a nominal **1V** per cell (VEDV) and then automatically fast charge the battery. Discharge-before-charge on demand provides conditioning services (useful to **correct** or prevent the NiCd voltage depression, or "memory,' effect) and capacity-determining services (discharge to empty to calibrate battery capacity).

Charger status is indicated by readily distinguishable LED patterns showing:

- Charge pending
- Discharge
- Fast charge in progress
- Charge complete
- Battery removed or charge aborted

Cold or hot temperature faults are indicated by the temperature LED.

Figure 1 shows a block diagram of the **bq2003** Fast Charge IC.

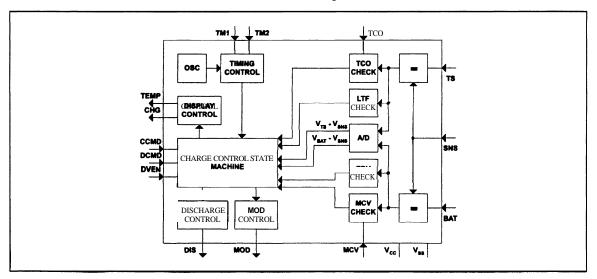


Figure 1. Block Diagram

2/12 Sept, 1996 F

Pin [Descriptions
DATE	eo 11 1

BAT Single-cell voltage input

Single-cell voltage referenced to SNS for the battery pack being charged. This is generally developed by a high-impedance **resistor** divider network connected between the **positive** and the negative terminals of the battery.

MCV Maximum-Cell-Voltage threshold input

Maximum **single-cell** voltage. If the **difference** in potential between BAT and SNS (pirs 7 and 9) is greater than or equal to the voltage at the MCV input, then all charging activity is **inhibited**. (See **Figure** 3.)

Note: For valid device operation, the **voltage** level on **MCV must** not **exceed** 0.6 • Vcc.

TS Temperature sense input

Input referenced to SNS for external battery temperature monitoring thermistor. $\Delta T/\Delta t$ determination is valid only for $V_{TCO} \le V_{TS} \le V_{TCO} + 0.2V_{CC}$.

TCO Temperature cutoff threshold input

Maximum allowable battery temperature voltage. If the potential between TS and SNS (p i 6 and 9) is less than the voltage at the TCO input, then any fast charging or top-off charging is terminated. (See Figure 3.)

CCMD, Charge initiation and discharge-beforecharge control inputs

These two pine control charge initiation and discharge-before-charge. When both CCMD and DCMD pins are connected to Vcc or when both are connected to Vss, charge automatically initiates on battery replacement or when Vcc is applied. Charge is also initiated by (1) a rising edge to Vcc at CCMD if both CCMD and DCMD are connected to Vss, or (2) a falling edge to Vss at CCMD if both CCMD and DCMD are connected to Vcc.

Discharge-before-charge is initiated at any time by: (1) a rising edge to Vcc at DCMD if both DCMD and CCMD are connected to Vss, or (2) a negative-going pulse (from Vcc to Vss and then back to Vcc) at DCMD if both DCMD and CCMD are connected to Vcc.

DVEN -AV enable input

This input controls the - ΔV charge termination test. If DVEN is high, the - ΔV test is enabled. If DVEN is low, - ΔV test is disabled. DVEN may *change* state at any time.

Discharge FET control output

Push-pull output **used** to control an external transistor to discharge **the** battery before charging. DIS **is** active high.

TEMP Temperature status output

Push-pull output indicating temperature status. **TEMP** is low if the temperature input voltage at the TS pin is not within the acceptable **temperature window** to initiate fast charging.

CHG Charging status output

Push-pull output indicating **charging status**. See Table 1, **bq2003** Operational **Summary**, for output pattern **details**.

TM₁, Timer mode inputs

TM₁ and TM₂ are three-level inputs that control the settings for fast *charge* safety timer and "top-off" enable/disable. See Table 2 for details.

MOD Current-switching control output

MOD is a **push/pull** output that **is used** to control the charging **current** to the battery. MOD switches high to **enable** charging **current** flow and low to inhibit charging current flow.

SNS Charging current sense input

SNS controls the switching of MOD based on an external sense resistor. This provides the reference potentials for both the TS and BAT pins (pins 6 and 7).

If SNS is **connected** to **Vss**, MOD switches high at the **beginning** of charge and low at the end of charge.

V_{CC} supply input

5.0 V, ±10% power input.

Vss Ground

Sept. 1996 F

Functional Description

Figure 2 illustrates charge control and display status during a bq2003 charge cycle. Table 1 outlines the various bq2003 operational states and their associated conditions, which are described in detail in the following sections.

Charge Action Control

The **bq2003** charge action is controlled by inputs from the CCMD, DCMD, and **DVEN** input pins and from the TM₁ and TM₂ programming input pins.

The bq2003 controls the initiation of a charge action, checks for acceptable battery temperature (between LTF—low temperature fault and HTF—high temperature fault) and voltage (between EDV-end-of-discharge voltage and MCV—maximum cell voltage), and performs

any required discharge-before-charge operation prior to fast charging. Once fast charging is initiated, the bq2003 tests for the full charge conditions: delta temperature/delta time ($\Delta T/\Delta t$) and/or negative delta voltage (ΔV), with temperature cutoff (TCO), time, and voltage safety terminations.

Charge Status Indication

Charge status is indicated by the CHG output. The CHG output may be connected **directly** to an **LED** indicator. The various charge action states and associated CHG output patterns are **described** in Table 1.

Temperature **status** is indicated by the **TEMP** output. The TEMP output may be connected **directly** to an LED indicator. **TEMP** is in the high state whenever battery temperature is within the temperature window **defined** by the V_{LTF} and V_{HTF} temperature limits. When the

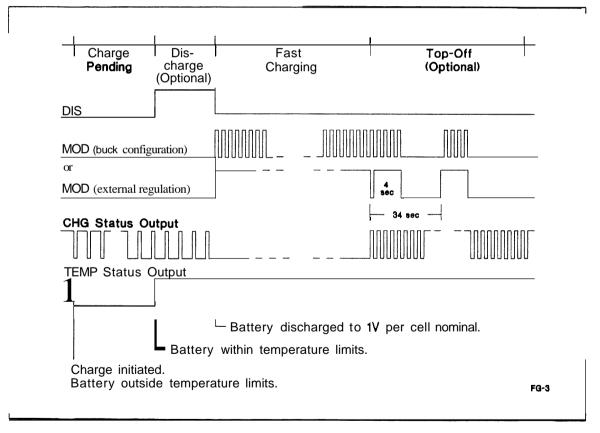


Figure 2. Example Charging Action Events

4/12

battery **temperature** is **outside these** limits, **TEMP** is in the low state, as indicated in Table 1.

In all **cases**, if the battery voltage at the BAT pin exceeds the voltage threshold at the MCV pin, both CHG and **TEMP outputs** are **held** high regardless of other conditions.

Table 1. bq2003 Operational Summary

		MOD	DIS	CHG Stat	us Output
Charae Action State	Conditions	Output	Output	Low	High
Battery absent/abort	V _{CELL} ¹ ≥ V _{MCV}	Low	Low		Continuous
(1) CCMD = Vss and Vcc applied or VcEU drops from ≥ VMCV to Charge initiation < VMCV (battery insertion) or (2) CCMD = Vcc and low-going pulse applied to CCMD		Low	Low		Continuous
Discharge-before-charge initiation (optional)	DCMD low-to-high transition	Low	Low	•	Continuous
Pending Initiation occurred and VTEMP 2 > VLTF or VTEMP 5 VHTF or VCELL 5 VEDV		Low	Low	½ sec 1/8 sec	1% sec
Discharge-before-charge initiation and VHTF < VTEMP < VLIF and VEDY < VCEIL < VMCV		Low	High	13/8 sec	¹⁄8 sec
Fast charging	Initiation occurred and VHTP < VTEMP < VLTF and VEDV \(\text{VCELL} \(\text{VMCV} \)	Law if V _{SNS} > 250mV, nominal; high if V _{SNS} < 220mV, nominal	Low	Continuous	
Charge complete	-AV ≥ 12mV nominal or ΔVTEMP/ΔT > 14mV/minute or VTEMP < VTCO or maximum time or maximum voltage	Low	Low	¹∕8 sec	¹∕8 sec
Top-off (optional; see Table 2)	Charge complete and top-off time not exceeded and VTEMP > VTCO and VCELL < VMCV	Activated per V _{SNS} (see fast charging state) for 4 sec of every 34 sec	Low	½ sec	½ sec
Temperature State	Conditions	Т	EMP Statu	s Output	
Temp fault	V _{TEMP} ≤ VHTF of VLTF ≤ V _{TEMP}		Lov	v	
Temp OK	V _{HTF} < V _{TEMP} < V _{LTF}		Hig	h	

Notes:

- 1. VCELL = VBAT · VSNS
- 2. $V_{TEMP} = V_{TS} V_{SNS}$.
- 3. The bq2003 cannot detect battery removal during the hold-off period (see Voltage Termination Hold-**off).** If the battery **is** removed between the start of fast **charge** and the end of the hold-off period, then MOD may remain active and CHG remain high until the hold-off period expires.

Sept. 1996 F 5/12

Battery Voltage and Temperature Measurement

Battery voltage and **temperature** are monitored for maximum and minimum allowable values. The **bq2003** requires that the thermistor used for temperature measurement have a negative temperature **coefficient**. See **Figure** 3.

The per-cell voltage for a battery containing N cells is defined by the resistor divider ratio:

$$\frac{R_1}{R_2} = N-1$$

where R₁ is the resistor connected to the positive battery terminal, and R₂ is the resistor connected to the negative battery terminal.

External Trickle Resistor

An external trickle resistor serves two **purposes** in the charging system. First, it supplies a high-voltage reference that allows the **bq2003** to detect a battery **insertion**. Second, it supplies a small amount of trickle current to the battery that can be used to condition a deeply **discharged** battery for charging or maintain the charge **state** of a fully charged battery.

Temperature and Voltage Prequalifications

Discharge and charge **are** both prequalified by battery temperature and voltage. For **discharge** and charge to be performed, the battery temperature and voltage must fall within predetermined acceptable limits.

PAT voltage connection

Thermistor connection

FG-8

Figure 3. Voltage and Temperature Limit Measurement

VCELL (VBAT - VSNS) is compared to an internal low-voltage reference, VEDV (0.2 • VCC), which is the minimum acceptable battery voltage for fast charging.

VTEMP voltage is compared to the internal lowtemperature reference, V_{LTF} (0.4 • Vcc) and the internal hot-fault temperature reference, V_{HTF} [& * V_{LTF}) + ($\frac{1}{8}$ * V_{TCO})], where V_{TCO} is the cutoff temperature reference level on the TCO pin.

These **limits** establish the acceptable temperature **sense** voltage window for fast charge initiation. If the battery fails either of these two **prequalifications** for discharge or charge, the **bq2003** enters a charge-pending mode, waiting for battery voltage and temperature to become acceptable.

In the case of a battery that is too warm or $t\infty$ cool, the charge action starts when the battery temperature becomes acceptable. In the case of deeply discharged batteries (voltage $t\infty$ low), the bq2003 waits until the battery voltage is an acceptable level before starting the charge action. In the case of a faulty battery, **VBAT** may never reach an acceptable voltage level, causing the bq2003 to remain in the charge-pending state.

Initiating Charge Action and Discharge-Before-Charge

The **CCMD** and **DCMD** pins are described together in **this** section because these pine must be tied to the same potential for proper functionality.

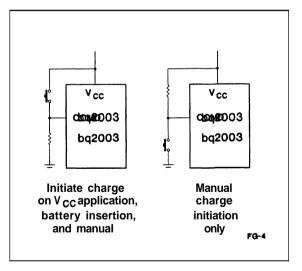


Figure 4. Charge Action Initiation

6/12 Sept. 1996 F

A battery charge action (**prequalification**, **fast** charge, and optional **"top-off"**) is initiated under control of the **CCMD** pin. The **DCMD** pin **supports** automatic diecharge to **Vedy** before charge to provide conditioning as well as capacity calibration.

Because the CCMD and DCMD pins must be tied to the same potential, these pins can be treated electrically in two ways. Both pins can be connected to Vcc or to Vss. Either treatment allows for automatic charge initiation on battery replacement or when Vcc is applied. Battery replacement is recognized when the voltage at the BAT pin falls from above the MCV pin reference level to below that level.

Otherwise, charge is initiated by: (1) a rising edge to Vcc at CCMD if both CCMD and DCMD are connected to Vss, or (2) a falling edge to Vss at CCMD if both CCMD and DCMD are connected to Vcc.

Diecharge-before-charge is initiated at any time by: (1) a rising edge to Vcc at DCMD if both DCMD and CCMD are connected to Vss, or (2) a negative-going pulse (from Vcc to Vss and then back to Vcc) at DCMD if both DCMD and CCMD are connected to Vcc.

When the discharge begins, the DIS output goes high to activate an external transistor that connects a load to the battery. When discharge reaches VCRIL = VEDV, DIS goes low and fast charge begins (provided the pre-charge qualifications are met).

Fast Charge

Once temperature and voltage prequalifications are met and any required discharging of the battery is completed,

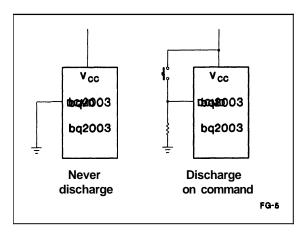


Figure 5. Discharge-Before-Charge

fast charging begins and continues util termination by one or more of the five possible termination conditions:

- Delta temperature/delta time (ΔT/Δt)
- a Negative delta voltage (-ΔV)
- a Maximum temperature
- Maximum charge time
- Maximum battery voltage

Voltage Termination Hold-Off

At the start of fast charging, there h a hold-off time during which AV and maximum cell voltage (MCV) termination-are disabled. (See Table 2) Once past the initial fast charge hold-off time, these terminations are re-enabled.

ΔΤ/Δt and maximum temperature **terminations** are **ret** affected by the hold-off period.

-AV Fast Charge Termination

The bq2003 makes a termination decision based on negative delta voltage (-AV) every 34 seconds. If VCRIL is lower than any previously measured value by 12mV typical, the fast charge phase of the charge action is terminated.

The - Δ V test is valid only for V_{MCV} - (0.2 • V_{CC}) \leq V_{CELL} \leq V_{MCV}. - Δ V detection may be enabled or disabled at any time using the DVEN pin.

ΔT/Δt Fast Charge Termination

The bq2003 makes a termination decision based on delta temperature/delta time (AT/At) every 34 seconds based on temperature measurements over a 68-second time period. If VTEMP + 16mV(typical) is less than the voltage measured 68 seconds previously, the fast charge phase of the charge action is terminated.

The $\Delta T/\Delta t$ test is valid only for $V_{TCO} \le V_{TEMP} \le V_{TCO} + 0.2 \cdot V_{CC}$.

Maximum Voltage, **Maximum** Time, **and Maximum** Temperature Safety Terminations

The bq2003 also terminates fast charge for maximum temperature (TCO), maximum time, and maximum voltage (MCV).

MCV and TCO reference levels provide the maximum limits for battery voltage and temperature during fast charging. If either of these limits is exceeded, both fast charging and any optional top-off charge are terminated.

Sept. 1996 F 7/12

Table 2. Fast Charge Safety Time/Hold-Off/Top-Off Table

Corresponding			Fast Charge Safety Time (minutes)	-∆V/MCV Hold-Off Time (seconds)	Тор
Fast Charge Rate	TM1	TM2	Typical	Typical	Off R-ate
C/4	Low	Low	360	137	Disabled
C/2	Float	Low	180	820	Disabled
1C	High	Low	90	410	Disabled
2C	Low	Float	45	200	Disabled
4C	Float	Float	23	100	Disabled
C/2	High	Float	180	820	C/16
1C	Low	High	90	410	C/8
2C	Float	High	45	200	C/4
4C	High	High	23	100	C/2

Note:

 $T_A = 25$ °C, $V_{CC} = 5.0$ V.

Maximum time selection is programmed using the TM1 and TM2 pins (see Table 1). Time settings are available for corresponding charge rates ranging from C/4 to 4C.

Temperature Monitoring

Temperature is represented as a voltage input to the bq2003 at the TS pin. Generally, this voltage is developed from a thermistor. The bq2003 recognizes an internal voltage level of VLTF = 0.4 • VCC as the Low-Temperature Fault (LTF) level. If VTEMP > VLTF, charging is inhibited (VTEMP = VTS · VSNS). Similarly, the external reference voltage level presented at the TCO pin represents the temperature cutoff point at which tast charging is terminated.

All temperature prequalifications and $\Delta T/\Delta t$ termination may be disabled by connecting TCO to Vss and fixing the TS pin level at $0.1 \cdot V_{CC}$.

Top-Off Charge

An optional top-off charge phase is selectable to follow fast charge termination for charge **rates from** C/2 to 4C. This option **is** selected through the **TM1/TM2** programming pins. (See Table 2.) If selected, the bq2003 tops off the battery at a **pulsed** rate. The charge **carticol** cycle is **modified** so that MOD is activated for only 4 **seconds** of every 34 seconds. This results in a rate 1/sth that of fast charging. Top-off charge proceeds for a time equal to the fast charge safety time (see Table 2). Temperature (TCO) and voltage (MCV) terminations are the only termination methods enabled during 'top off.'

Charge Current Control

The bq2003 controls charge current through the MOD output pin. The current control is designed to support implementation of a constant-current switching regulator. See Figure 6.

Nominal regulated current is:

$I_{REG} = 0.235V/R_{SNS}$

When used in this **configuration**, the charge current is monitored at the SNS input by the voltage drop acmes a resistor, RSNS. RSNS can be **chosen** to provide a variety of charging **currents**.

The MOD pin is switched high or low depending on the voltage input to the SNS pin. If the voltage at the **SNS** pin is less than **Vsnslo** (0.220**V** nominal), the MOD output is switched high to gate charge current through the inductor to the battery.

When the SNS voltage is greater than **Vsnshi** (0.250V nominal), the MOD output is **switched** low--shutting off current from the supply.

The MOD pin can be used to gate an external charging current source. When an external current **source** is **used**, no sense **resistor** is required, and the **SNS** pin is connected to Vss.

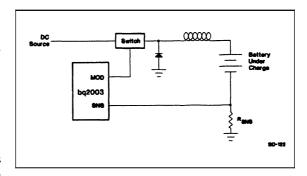


Figure 6. Constant-Current Regulation

Sept. 1996 F

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3	+7.0	V	
		0	+70	°C	Commercial
Topr	Operating ambient temperature	-40	+85	°C	Industrial "N"
Tstg	Storage temperature	-55	+125	"C	
TSOLDER	Soldering temperature		+260	°C	10 sec max.
TBIAS	Temperature under bias	-40	+85	°C	

Note:

Permanent device damage may **occur** if **Absolute** Maximum Ratings are **exceeded. Functional** operation **should** be limited to the **Recommended** DC Operating **Conditions** detailed in **this** data **sheet. Exposure** to conditions beyond the operational **limits** for extended periods of time may affect device reliability.

DC Thresholds (TA = TOPR; VCC ±10%)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
Vsnshi	High threshold at SNS resulting in MOD = Low	0.05 • V _{CC}	M.026	V	Tolerance is common mode deviation.
Vsnslo	Low threshold at SNS resulting in MOD = High	0.044 • V _{CC}	±0.025	V	Tolerance is common mode deviation.
VLTF	Low-temperature fault	0.4 • Vcc	t0.030	V	VTEMP ≥ VLTF inhibits charge
V _{HTF}	High-temperature fault	(½8 • V _{LTF}) + (½8 • V _{TCO})	м.030	v	VTEMP ≤ VHTF inhibits charge
V _{EDV}	End-of-discharge voltage	0.2 • vcc	±0.030	v	VCELL < VEDV inhibits charge

Recommended DC Operating Conditions (TA = 0 to +70℃)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	V	
VCELL	BAT voltage potential	0	•	Vcc	V	V _{BAT} - V _{SNS}
VBAT	Battery input	0	•	Vcc	V	
VTEMP	TS voltage potential	0	•	Vcc	V	V _{TS} - V _{SNS}
V _{TS}	Thermistor input	0	-	Vcc	V	
V _{MC} V	Maximum cell voltage	V _{EDV}	-	V _{EDV} + (0.2 • V _{CC})	v	
V _{TCO}	Temperature cutoff	V _{LTF} - (0.2 • V _{CC})	-	VLTF	V	
V _{IH}	Logic input high	Vcc - 1.0	_	-	v	CCMD, DCMD, DVEN
VIH	Logic input high	V _{CC} - 0.3	-	-	V	TM ₁ , TM ₂
V	Logic input low	•	-	1.0	V	CCMD, DCMD, DVEN
VIL	Logic input low	-	-	0.3	v	TM ₁ , TM ₂
Vон	Logic output high	Vcc - 0.5	-	-	v	DIS, TEMP, CHG, MOD, IOH ≤ -5mA
Vol	Logic output low	-	-	0.5	v	DIS, TEMP, CHG, MOD, IOL≤5mA
Icc	Supply current	•	0.75	2.2	mA	Outputs unloaded
Іон	DIS, TEMP, MOD, CHG source	-5.0	-	-	mA	$@V_{OH} = V_{CC} - 0.5V$
IoL	DIS, TEMP, MOD, CHG sink	5.0	-	-	mA	$@V_{OL} = V_{SS} + 0.5V$
•	Input leakage	-	-	±1	μА	CCMD, DCMD, DVEN, V = Vss to Vcc
IIL	Logic input low source			70	μA	TM_1 , TM_2 , $V = V_{SS}$ to $V_{SS} + 0.3V$
I _{IH}	Logic input high source	-70			μA	TM ₁ , TM ₂ , V = V _{CC} - 0.3V to V _{CC}
I _{1Z}	TM1, TM2 tri-state open detection	-2.0		2.0	μA	TM ₁ , TM ₂ may be left disconnected (float: logic input state
VTHERM	Thermistor input resolution for $\Delta T/\Delta t$		16 ± 4		mV	$V_{CC} = 5.0V, T_A = 2$
-ΔV	Negative delta voltage		12 ± 4		mV	$V_{CC} = 5.0V, T_A = 25$

Note:

All voltages relative to V_{SS} .

10/12

Sec

Impedance

Symbol	Parameter	Minimum	Typical	Maximum	Unit
RBAT	Battery input impedance	60			MQ
R _{MCV}	MCV input impedance	50			MΩ
RTCO	TCO input impedance	60			MΩ
Rsns	SNS input impedance	50			MQ
RTS	TS input impedance	50			MΩ

Timing (TA = 0 to +70°C; VCC ±10%)

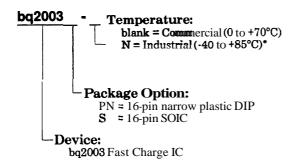
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tpw	Pulse width for CCMD, DCMD pulse commands	1			μв	Pulse start for charge or discharge- before-charge
dfcv	Fast charge safety time variation	0.84	1.0	1.16	•	V _{CC} = 4.5V to 5.5V; see Table 2.
treg	MOD output regulation frequency			100	kHz	Typical regulation capability; Vcc = 5.0V
tmcv	V _{CELL} ≥ V _{MCV} valid period	200	250	300	ms	If VCELL > VMCv for tMCv, then a transition of VCELL < VMCv is recognized as battery replaced. Otherwise, VCELL < VMCv is ignored.

Note:

Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	7	DCMD transition to initiate discharge-before-charge	Was low-to-high; is pulse with period tpw.
1	8	Table 2 % charge rate - ΔV/MCV hold-off time changed	Was 1640 seconds; is 137 seconds.
1	10	Changed MCV allowable voltage range	Was 0.2 • Vcc min and 0.6 • Vcc max; is Vedv min and Vedv + (0.2 • Vcc) max.
2	10	Added tolerance to -AV typical value	Was 12 typ; is 12 ±4 typ.
2	11	Changed impedance parameters	Were 50 typ; are 50 min.
2	11	Changed tree value	Wes 100 typ; is 100 max.
3	3, 6, 7	CCMD and DCMD pins must be tied together	Clarification
4	2	Changed description of -AV fast charge termination from If VCELL is lower than the previous measured value" to If VCELL is lower than any previous measured value"	Clarification
4	11	Added TS input impedance	Additional specification
5	2	Changed block diagram	Changed diagram
5	8	Added Top-Off values to Table 2	Added values


Note: Change **1** = Aug. **1992** B changes from Apr. **1992** A.

Change 2 = Oct. 1992 C "Final" changes from Aug. 1992 B "Preliminary."

Change 3 = Dec. 1992 D changes from Oct. 1992 C.

Change 4 = Oct. 1993 E changes from Dec. 1992 D. Change 5 = Sept. 1996 F changes from Oct. 1993 E.

Ordering Information

Contact factory for availability.

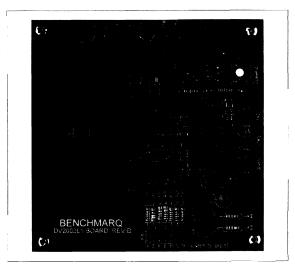
12/12 Sept. 1996 F

Product Brief DV2003L1

Fast Charge Development System

Control of On-Board Linear Current Regulator or External Current Source

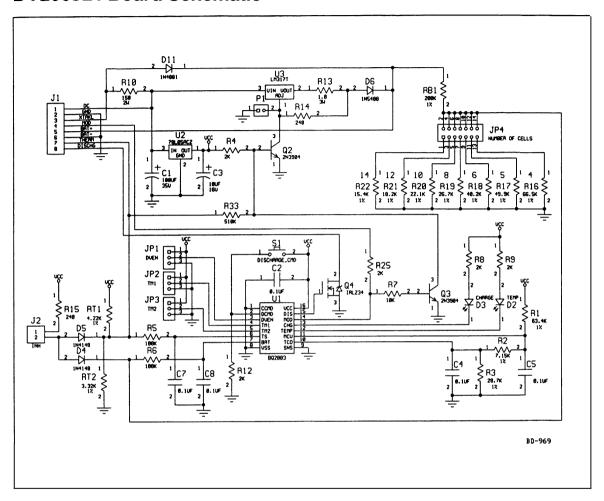
Features


- bq2003 fast charge control evaluation and development
- Charge current sourced from an on-board linear regulator (1.25A, modifiable for 0.1 to 1.5 A) or an external current source
- Fast charge of 4 to 14 NiCd or NiMH cells
- Fast charge termination by $\Delta T/\Delta t$, $-\Delta V$, maximum temperature, time, and voltage
- AV enable, hold-off, top-off, maximum time, number of cells, and off-board current source control are jumper-configurable
- Charging status displayed on charge and temperature LEDs
- Discharge-before-charge control with push-button switch
- Inhibit fast charge by external logic-level input

General Description

The DV2003L1 Development System provides a development environment for the bo2003 Fast Charge IC. The DV2003L1 incorporates a bo2003 and an LM317 linear regulator to provide fast charge control for 4 to 14 NiCd or NiMH cells. The DV2003L1 also supports on/off control of an external current source.

The fast charge is terminated by any of the following: $\Delta T/\Delta t$, $-\Delta V$, maximum temperature, maximum time, maximum voltage, and external inhibit command.


Jumper settings select the $-\Delta V$ enabled state, select the hold-off, top-off, and maximum time limits, and enable the use of an external current source.

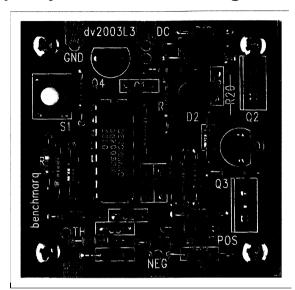
The user provides a power supply and batteries. If the on-board 1.25A linear regulator is disabled, the external current source must have an appropriate digitally controlled switch (active high). The user configures the DV2003L1 for the number of cells, $\text{-}\Delta V$, charge termination enabled or disabled, and maximum charge time (with or without top-off), and commands discharge-before-charge with a push-button switch.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

DV2003L1 Board Schematic

Fast Charge Development System

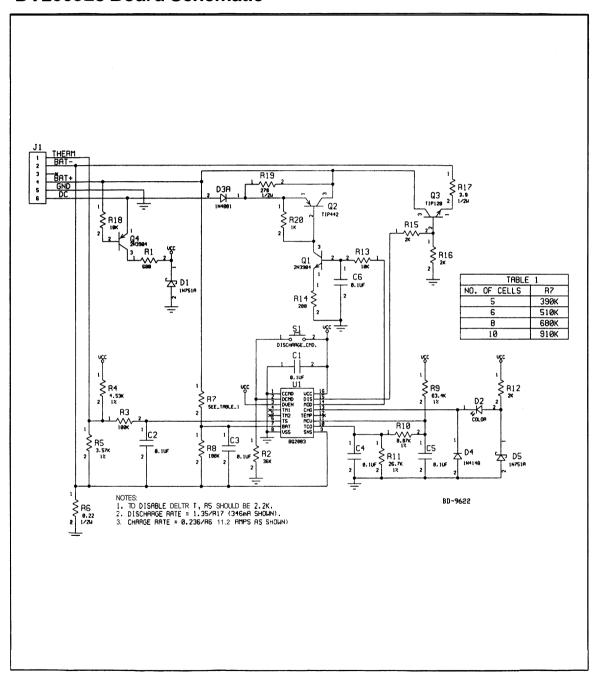
Control of Frequency-Modulated Linear Regulator


Features

- bq2003 fast charge control evaluation and development
- Charge current controlled with frequencymodulated linear design
- Fast charge of 2 to 12 NiCd and/or NiMH cells
- Fast charge termination by $-\Delta V$, $\Delta T/\Delta t$, maximum temperature, time, and voltage
- Discharge-before-charge option

General Description

The bg2003L3 Development System provides a costeffective component-reduced development environment for the bq2003 Fast Charge IC. The DV2003L3 incorporates a frequency-modulated linear regulator for fast charge control of NiCd and/or NiMH cells.


A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

DV2003L3 Configuration—Complete Before Ordering

Contact:	Phone:	
Address:		
Sales Contact:	Phone,	_
DC input voltage (V)		
-AV enabled (yeslno)		
ΔT/Δt enabled (yeslno)		
Number of battery cells (2—12)		
Charge current (A) (1.5A rnax.)		
Battery capacity (mAh)		
Battery type (NiCd and/or NiMH)		
Top-off (yeslno)		
Discharge-before-charge (yeslno)		
Discharge current (mA)		

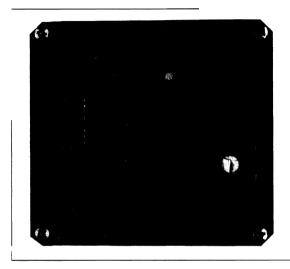
DV2003L3 Board Schematic

Oct. 1994

Fast Charge Development System

Control of On-Board p-FET **Switch-Mode Regulator**

Features

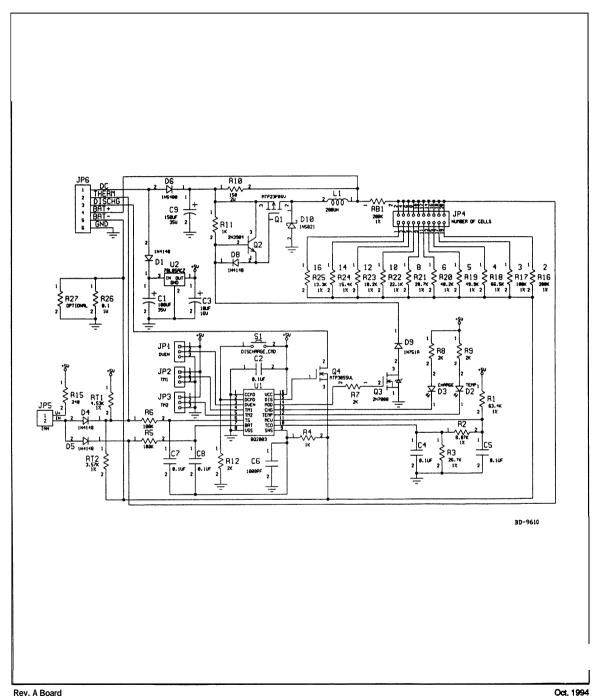

- bq2003 fast charge control evaluation and development
 - Charge current sourced from an on-board switch-mode regulator (up to 3.0 A)
- Fast charge of 2 to 16 NiCd or NiMH cells
- Fast charge termination by delta temperature/delta time $(\Delta T/\Delta t)$, negative delta voltage $(-\Delta V)$, maximum temperature, maximum time, and maximum voltage
 - -AV enable, hold-off, top-off, maximum time, and number of cells are jumper-configurable
- Charging status displayed on charge and temperature LEDs
- Discharge-before-chargecontrol with push-button
- Inhibit fast charge by external logic-level input

General Description

The DV2003S1 Development System provides a development environment for the bq2003 Fast Charge IC. The DV2003S1 incorporates a bg2003 and a buck-type switch-mode regulator to provide fast charge control for 2 to 16 NiCd or NiMH cells.

Review the bg2003 data sheet and the application note, "Using the bq2003 to Control Fast Charge," before using the DV2003S1 board.

The fast charge is terminated by any of the following: $\Delta T/\Delta t$, ΔV , maximum temperature, maximum time, maximum voltage, and external inhibit command. Jumper settings select the $-\Delta V$ enabled state, select the hold-off, top-off, and maximum time limits.



The user provides a power supply and batteries. The user configures the DV2003S1 for the number of cells, -AV charge termination enabled or disabled, and maximum charge time (with or without top-off), and commands discharge-before-charge with push-button switch S1.

A full data sheet of this product is available on our web site (http://www.benchmarg.com), or you may contact the factory for one.

Rev. A Board Oct. 1994

DV2003S1 Board Schematic

Product Brief DV2003S2

Fast Charge Development System

Control of On-Board n-FET Switch-Mode Regulator

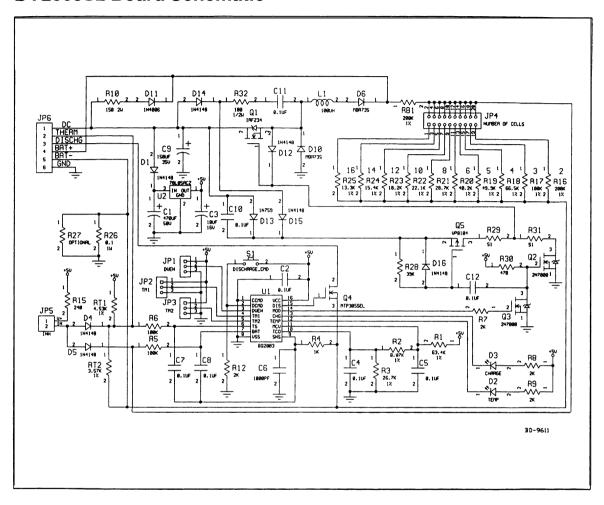
Features

- bq2003 fast charge control evaluation and development
- ➤ Charge current sourced from an on-board switch-mode regulator (up to 6.0 A)
- ➤ Fast charge of 2 to 16 NiCd or NiMH cells
- ► Fast charge termination by delta temperature/delta time (ΔT/Δt), negative delta voltage (-ΔV), maximum temperature, maximum time, and maximum voltage
 - -AV enable, hold-off, top-off, maximum time, and number of cells are jumper-configurable
 - Charging status displayed on charge and temperature LEDs
 - Discharge-before-charge control with push-button switch
- Inhibit fast charge by external logic-level input

General Description

The DV2003S2 Development System provides a development environment for the bq2003 Fast Charge IC. The DV2003S2 incorporates a bq2003 and an n-FET bucktype switch-mode regulator to provide fast charge control for 2 to 16 NiCd or NiMH cells. The primary difference between the DV2003S2 and the DV2003S1 is in the switching FET Q1. The DV2003S1 uses a p-FET for battery charge currents of 3.0A or less, whereas the DV2003S2 uses an n-FET to support charge currents up to 6.0A.

Review the bq2003 data sheet and the application note, "Using the bq2003 to Control Fast Charge," before using the DV2003S2 board. Also review the application note, "Step-Down Switching Current Regulation Using the bq2003," for information concerning trade-offs between using p-FET and n-FET transistors for Q1.


The fast charge is terminated by any of the following: $\Delta T/\Delta t$, $-\Delta V$, maximum temperature, maximum time, maximum voltage, and external inhibit command. Jumper settings select the -AV enabled state, select the hold-off, top-off, and maximum time limits.

The user provides a power supply and batteries. The user configures the DV2003S2 for the number of cells, -AV charge termination enabled or disabled, and maximum charge time (with or without top-off) and commands discharge-before-charge with push-button switch S1.

A full data sheet for this product is available on our web site (http:llwww.benchmarq.com),or you may contact the factory for one.

Feb. 1993

DV2003S2 Board Schematic

PB-0011 Feb.1993

Using the bq2003

to Control Fast Charge

Introduction

This application note describes the use and functions of the **bq2003** gating a current source to fast charge NiCd or NiMH batteries. **Examples** describe the ease with which the **bq2003** is incorporated into applications.

The bq2003 may also serve as the modulator for a switchmode constant-current regulator to provide an efficient charge current source. This is discussed in the Application Note, "Step-Down Switching Current Regulation Using the bq2003 Fast Charge IC.'

Examples for additional applications are being developed. Please contact **Benchmarq** if your application is not supported by one of these examples.

The bq2003 is targeted for applications requiring stateof-the-art fast-charging performance at minimal cost. It provides sophisticated full-charge detection techniques such as ΔT/Δt (delta temperature/delta time) and -ΔV (negative delta voltage) that enable the user to take advantage of advanced battery technologies such as nickel metal-hydride (NiMH) and high-capacity fast-charge nickel cadmium (NiCd). Systems using the bq2003 can be easily upgraded from NiCd batteries to NiMH batteries without system redesign.

Background

cant advantage of the bo2003 over other fast-A s charge solutions is the use of $\Delta T/\Delta t$ and/or -AV as the primary decisions for fast-charge termination. ΔT/Δt detection is one of the most sensitive and reliable methods for fast-charge termination when charging NiMH and NiCd batteries. Near maximum charge acceptance, the temperature rise begins to accelerate at the same time that voltage rise accelerates. The $\Delta T/\Delta t$ decision typically precedes the peak voltage, allowing for minimal overcharge stress.

The $\Delta T/\Delta t$ method also tolerates varying rates of charge, which may be desirable when charging during system operation.

Compared to the AT method, which uses two sensors to monitor battery temperature and ambient temperature. the $\Delta T/\Delta t$ method uses a single thermistor to monitor the rate of temperature increase. This approach is more tolerant in cases when the initial battery temperature is significantly different from the ambient temperature.

bq2003 temperature monitoring may be permanently disabled without affecting other **bq2003** charge-termination functions.

The bg2003 monitors the voltage across the battery to detect. -AV, which is a very reliable charge terminator for NiCd batteries. -AV detection in the **bq2003** may be **temporarily** disabled during periods when the charge current fluctuates greatly or during the beginning of a fast charge to eliminate false peaks, -\Delta V may be **permanently** disabled without affecting other bq2003 charge-terminationfunctions.

To ensure safety for the battery and system, fast charging also terminates based on a hot-temperature cutoff threshold (TCO), a safety time period, and a maximum cell voltage threshold (MCV). To avoid possible premature fast-charge termination when charging batteries after long periods of storage, the bq2003 disables MCV and -AV detection during a short 'hold-off' period at the start of fast charge. This hold-off period is configured as described in the **bq2003** data sheet.

The bg2003 may be configured to have one, two, or three charge stages. As a one-stage charger, the **bq2003** controls charge with no trickle. In a two-stage configuration, the fast-charge stage controlled by the bq2003 is preceded and followed by a continuous trickle charge at a rate controlled by a current-limiting resistor outside of the **bq2003**. In a three-stage configuration, the fast charge is followed by a "top-off charge stage at 1/8 the fast charge rate. This allows the battery to be quickly and safely brought to a full charge state. Following top-off, an external resistor controls trickle charge to the battery at a minimal charge-sustaining rate, typically C/40 or C/50.

Basic Charge-Control Operation

Two detailed applications follow this section. One provides direct control of a linear regulator, and the other provides control of any external current source.

Gating Current

Figure 1 shows an example of external **source** gating. With SNS tied to chip ground, the **bg2003** enables charge current to the battery by taking MOD high at the start of charging and maintaining this state until charging is terminated. In this example, R7, Q2, R15, and Q1 form the switching circuit. When MOD goes high, Q2 switches on turning on Q1. When MOD goes low, the base current in Q1 collapses, breaking the charging path.

The current-handling capability of this circuit is limited by the product of the current gains of the transistors and by the **5mA** drive capability of the MOD pin.

This limitation may be removed by replacing the PNP at **Q1** with a **pFET**. See Table 1 for suggested transistors.

Nov. 1994 C

Q1	Туре	Package	Maximum Current	Maximum Voltage
IRFR9010	pFET	DPAK	5.3	-50
IRFR9022	pFET	DPAK	9.0	-50
IRFR9020	pFET	DPAK	9.9	-50
IRFD9014	pFET	HEXDIP	1.1	-60
IRFD9024	pFET	HEXDIP	1.6	-60
IRF9Z10	pFET	TO-220	4.7	-50
IRF9Z22	pFET	TO-220	8.9	-50
IRF9Z20	pFET	TO-220	9.7	-50
IRF9Z32	pFET	TO-220	15	-50
BD136	PNP	TO-225	1.5	-60
MJE171	PNP	TO-225	3.0	-60
TIP42A	PNP	TO-220	6.0	-60

Note: For very high currents, two paralleled pFETs or an nFET with a high-side driver circuit may be suitable.

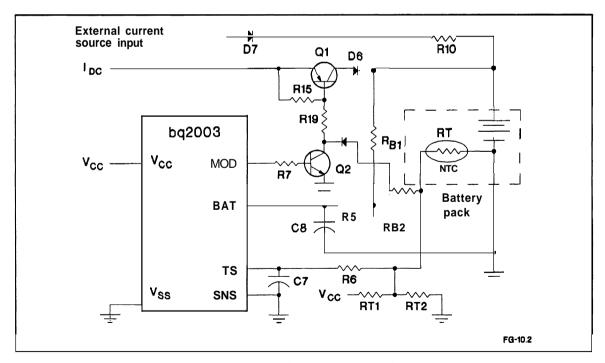


Figure 1. Gated External Source (Bipolar Switch Option)

2/18 Nov. 1994 C

Charge Status

The **charge** status of the 5q2003 is indicated by two outputs. Each output may directly drive an **LED.** One **LED** uses distinctive flashing **patterns** to indicate the current charger status **as:**

Charge Action	Charge Status Output			
State	Low	High		
Battery absent/abort	•	Continuous		
Pending charge (waiting for proper temperature and/or voltage)	1/8 sec	1% sec		
Discharging (optional)	13/8 sec	½ sec		
Fast charging	Continuous	-		
Charging complete	1/8 sec	½ sec		
Top-off (optional)	1/8 sec	½ sec		

A second LED indicates that the battery temperature detected by the bq2003 and associated thermistor is out of range for fast charging.

Charge Initiation

Charge may be initiated by power to the IC, battery replacement, or application of a digital signal. **Configuration** options **are** shown in Figure 2.

Charge initiation by application of power to the IC works as follows: When Vcc is applied, the bq2003 is held in reset for approximately one and one-half seconds. At the end of the reset period, the CCMD pin (pin 1) is sampled and, if CCMD and DCMD are low, a charge cycle initiates as soon as conditions allow.

Charge initiation on battery replacement relies on the BAT pin voltage being greater than MCV in the absence of a battery, and falling below MCV when the battery is carnected. For example, in Figure 1 a resistor R10 is inserted between the positive battery terminal and Ipc. This resistor, in conjunction with RB1 and RB2, is sized to pull the BAT pin (pin 7) above the value programmed on MCV (pin 11, maximum cell voltage threshold) when the battery is removed.

When the battery is replaced in **this case**, the voltage on **BAT** should fall below MCV, at which time a charge cycle initiates as soon as conditions allow (if CCMD and DCMD are low).

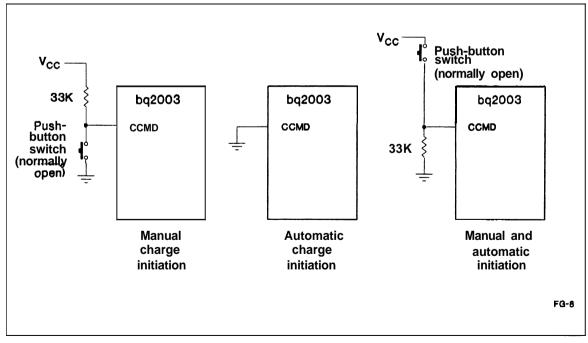


Figure 2. Charge Initiation Network

Nov. 1994 C 3/18

Using the bq2003 to Control Fast Charge

Charge initiation by digital signal occurs on the rising edge of CCMD with **DCMD** low. Digital charge initiation, which is simply a request to charge the battery, results in charging as **soon** as conditions allow.

The charge command may be issued at any time, but charging may be disqualified because the battery voltage or temperature is **outside** programmed limita. **Fast** charging remains pending until all charge qualifications become valid. **When** conditions allow, fast charging begins. A CCMD-initiated charge with battery absent remains pending until battery replacement.

Discharge-Before-Charge

It may be desirable in the application to allow the user to occasionally discharge the battery to a known voltage level prior to charge. The **reason** for **this** may either be to remedy a **voltage-depression** effect found in **some** NiCd batteries or to **determine** the battery's charge capacity.

Figure 3 illustrates the implementation of this function. Discharge-before-charge is initiated on a positive strobe signal on DCMD. This function takes precedence over a charge action and commences immediately when conditions warrant, forcing DIS to a high state until the voltage sensed on BAT falls below Vcc/5. Charging begins as soon as conditions allow.

Care should be taken not to overheat the battery during this **process**; excessive temperature is not a condition that **terminates** discharge.

A strobe on CCMD **terminates** the discharge **phase** and initiates fast charging.

Unlike a CCMD-initiated charge, the discharge-beforecharge function is ignored or terminated when **V**_{BAT} ¬ **V**_{SNS} > **V**_{MCV} (battery removed).

If the discharge-before-charge function **is not** desired, DCMD should be tied to **Vss**.

Configuring the BAT Input

The bq2003 uses the battery voltage sense input on the BAT pin to control discharge-before-charge, qualify charge initiation, terminate charge at an absolute limit, and facilitate negative delta voltage $(-\Delta V)$ detection.

V_{BAT} may be derived from a simple passive network across the battery. As shown in Figure 1, resistors **RB1** and **RB2** are chosen to divide the battery voltage down to the optimal detection range, which is between **V**_{MCV} and **V**_{MCV} – **1V**.

For NiCd and **NiMH** batteries, the battery terminal voltage is divided down to a per-cell potential. If, for example, the battery contains four NiCd cells, **RB1** may be **chosen** as $562K\Omega$ and **RB2** as $187K\Omega$.

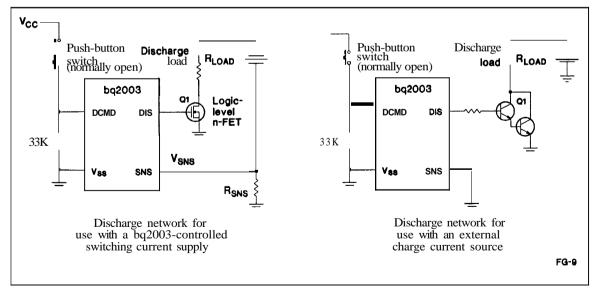


Figure 3. Battery Conditioning Network

4/18 Nov. 1994 C

Although virtually any value may be **chosen** for **RB1** and RB2 due to the high input impedance of the BAT pin, the values selected must not be so low **as** to **appreciably** drain the battery nor so large as to degrade the circuit's **noise** performance. Constraining the **source** resistance **as** seen from BAT between $20K\Omega$ and $1M\Omega$ is acceptable over the bq2003 operating range. Total impedance between the battery terminal and Vss should typically be about $300K\Omega$ to $1M\Omega$. See Table 2.

Notes: (1) Because V_{SNS} may be positive in bq2003 switching regulation applications, the actual internal comparison uses V_{BAT} – V_{SNS}, or V_{CELL}. This internal value V_{CELL} maintains a representative single-cell voltage independent of any current through R_{SNS}.

(2) The R-C time delay in the presentation of **VBAT** must be shorter than **200ms** (tMCV). A longer delay may **result** in a failure to determine "battery replaced.'

Table 2. Suggested **RB1** and RB2 Values for NiCd and NiMH Cells

Number of Cells (VBAT Divisor)	RB1	RB2
4	562 ΚΩ	187 ΚΩ
5	649 ΚΩ	162 ΚΩ
6	590 ΚΩ	118 ΚΩ
8	931 ΚΩ	133 ΚΩ
10	953 ΚΩ	105 ΚΩ
12	374 ΚΩ	34 ΚΩ
14	649 ΚΩ	49.9 ΚΩ
16	750 ΚΩ	49.9 ΚΩ

Configuring the MCV Input

Battery over-voltage protection is accomplished by comparing VCELL to the voltage on the MCV input pin. If VCELL becomes greater than VMCV, both charging and top-offterminate.

A typical MCV value is **1.8V** for NiCd and **NiMH** batteries. The MCV voltage is derived from either of the networks shown in **Figure** 4. The combined network has the advantage of fewer **resistors** in generating both the MCV and TCO thresholds, but loses the independence of **threshold** adjustment.

To detect the presence of a battery, the DC supply voltage must be larger than MCV * N + VLOSST, where VLOSST is defined as the trickle charging path voltage loss and N is the VBAT divisor.

Temperature Sensing and the TCO Pin

The bq2003 uses the temperature sense input on the TS pin to qualify charge initiation and termination. A negative temperature coefficient (NTC) thermistor referenced to SNS and placed in close proximity to the battery may be used as a temperature-to-voltagetransducer as shown in Figure 1. This example shows a simple linearization network constituted by RT1 and RT2 in conjunction with the thermistor, RT. If this temperature sensor is to be used for charge control, it should be directly in contact with the cells.

Temperature-decision thresholds are defiied as LTF (low-temperature fault), HTF (hot-temperature fault), and TCO (temperature cutoff). Charge action initiation is inhibited if the temperature is **outside the** LTF-to-HTF range. In this case, the temperature fault indicator on TEMP is driven low, and charging does not initiate until the battery temperature is within range.

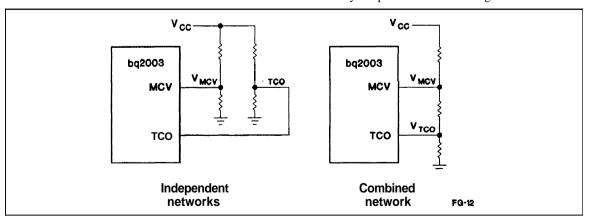


Figure 4. Threshold Networks

Nov. 1994 C 5/18

Using the bq2003 to Control Fast Charge

Once initiated, charging terminates if the temperature is either less than LTF or greater than TCO. The bq2003 interprets the reference points VLTF, VHTF, and VTCO as Vss-referenced voltages, with VLTF fixed at % VCC and VTCO equal to the voltage presented on the TCO pin. See Figure 5. Note that since the voltage on pin TS decreases as temperature increases, VTCO should always be less than % VCC. VHTF is set internally % of the way from VLTF to VTCO. The resistive dividers shown in Figure 4 may be used to generate the desired VTCO.

Note: HTF is not meaningful for **bq2003** switching current regulation chargers. See the Application Note, 'Step-Down Switching Current Regulation Using the **bq2003** Fast Charge IC.'

ΔΤ/Δt detection adds an additional constraint on the selection of temperature sense components. Detection occurs when the voltage TS ¬ SNS declines at a rate between 0.0024 Vcc and 0.0040 Vcc per 68 seconds, with a nominal 5V Vcc producing a nominal detection rate of 14mV/min (16mV/68sec). For example, assuming a 1°C/min desired average ΔΤ/Δt detection rate (ΤΔτ), and minimum and maximum charge temperatures of 0" and 40°C, respectively. Vτco equals:

$$V_{TCO} = (2 \cdot V_{CO}/5) - (0.0028 \cdot V_{CC} \cdot (T_{TCO} - T_{LTF}))$$

= 2 - (0.014 \cdot (40 - 0))
= 1.44V

Table 3 shows the temperature control values that apply for Application Examples 1 and 2, assuming the Fenwal part number 197-103LA6-A01 thermistor. Appendix A explains the derivation of such component values.

New $\Delta T/\Delta t$ samples are **processed** every 34 seconds. To minimize the risk of premature termination, the design

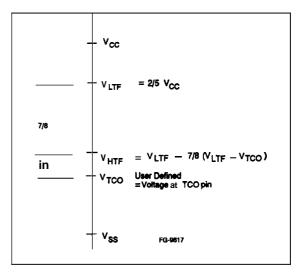


Figure 5. Temperature Reference Points

should be co gured **assuming** a minimum charge cutoff rate of 0.0024 • Vcc, or **10.6mV** per minute (at **25°C**; Vcc = 5V). This is the lowest signal that may be recognized as meeting the decision threshold. Repeating samples cause a decision quickly as the voltage ramps between this minimum threshold and the nominal 14mV per minute. The system is self-compensating in that the thermistor provides age change with increasing the measurement more sensitive at higher temperatures. The last three columns of Table 3 are an example of this relationship.

LTF	HTF	T00		RT1 RT2 (ΚΩ)	DT2	TAT		imum-to-Nom ∆t Rate (℃/π	
(°C)	(℃)	TCO	V _{TCO} (V)		(°C/min)	@ 25℃	@ 35°C	@ 45℃	
10	47	50	1.50	3.65	2.80	1.04	0.94-1.26	0.75-1.00	0.64-0.85

Notes:

- 1. $V_{SR} = OV$.
- Temperature control and qualification may be disabled by tying pin TCO to Vss and fixing the voltage on pin TS to 0.1 • Vcc.

nfi

Vcc Supply

The **Voc** apply provides both power and voltage reference to the bq2003. This reference directly affects BAT voltage and internal time-base voltage measurements.

A 5% or tighter tolerance on **Vcc** is recommended to minimize the error regarding MCV. For example, if **MCV** nominal is set to be 1.8V per cell, a 5% error on **Vcc** results in MCV = 1.71V to 1.89V. This range is acceptable from the perspective that an MCV charge termination represents a faulty battery. The minimum **MCV** must be safely above a "healthy" charging voltage. The maximum MCV must satisfy the requirement to recognize battery removed/replaced (see the section, "Configuring the MCV Input').

The time-base is trimmed during manufacturing to within 5 percent of the typical value with **Vcc** = 5V. The **oscillator varies directly with Vcc**. If, for example, a 6% regulator **supplies Vcc**, the time-base could be in error by as much **as** 10%.

Trickle Resistor

The trickle resistor, **R10**, is sized to limit the constant trickle current, Ir.

$R10 = (V_{DC} - V_{BAT})/I_T$

The resistance of R10 is calculated using IT = charge current desired after full (typically a %20 to%50 rate, possibly lees) and the voltage for a fully charged battery (number of cells • 1.4V).

The wattage rating of **R10 must** accommodate periods of higher IT when **VBAT** is at a lower voltage (no fast-charge pending charge qualification).

A very low trickle current **contributes** to longer battery life, and is particularly critical for NiMH œlls.

Top-Off Charge

The top-off charge option allows for the self-discharge replacement trickle current to be very low, but still provides for filling up the last fraction of capacity after the fast-charge phase has terminated. Top-off occurs at a ½ pulsed rate to prevent excess heat generation, and terminates after a period equal to the safety time-out. It also terminates if TCO or MCV is detected

Top-off is not recommended in **applications where** a battery charge is re-initiated with extremely high frequency (many times per day); for example, when the unit is returned to the charge cradle after each short period of use.

Negative Delta Voltage Fast-Charge Detection

-AV full-charge detection may operate in parallel with the A t detection. If temperature control **is disabled** by design, then -AV should be enabled (**DVEN** to **Vcc**). If -ΔV is enabled, a constant-current charging source **is** required. **Otherwise** a drop in current may cause a **false** -ΔV determination. **DVEN** may change **state** at any time.

Mode Selection Pins TM1 and TM2

These two **pins** are used to select the safety time-out (5 selections, 23 to 360 minutes) and optional top-officharge (4 selections, 23 to 180 minutes, equal to the safety time selection).

The safety time-out should be selected to be longer than any reasonably expected charge time. **The** nominal charge time (Ahr capacity/charge rate) must be factored up to allow for both charge inefficiency and the fact that many batteries hold more than the rated charge. A safety time-out 1.3–1.5 times the nominal time is normally adequate (i.e., 90 minutes for a 1C charge). The safety time-out may be far in excess of the nominal charge time if the temperature monitor is enabled.

Note: If the charge **rate** varies (such as fast charging during system operation using $\Delta T/\Delta t$ termination), then the safety time-out selection should allow for the **slowest** charges that may occur. The 180- or 360-minute selection may be appropriate.

System-Controlled Charge Inhibition

Some in-system chargers may **require** the ability to block fast charge activity when the system is on.

Two small **1N4148-type** diodes—with cathodes connected **outside** the R-C **filter—control** the **bq2003** BAT and TS inputs to provide this capability. A high signal **(INHIBIT)** applied to anodes of theae diodes blocks charge activity. See Figure 8.

With a high signal applied to BAT and TS, charge is inhibited and both LEDs are off. INHIBIT must be high for longer than tmcv max (300ms) if a subsequent low state is to initiate charge.

INHIBIT muld be the system V_{CC}, blocking fast charge at all times the system is ON. **This** may be needed if -AV termination is to be used and the charge supply cannot simultaneously support fast charge and peak system loads.

INHIBIT might also be CPU-controlled, allowing the charger to be inhibited as required by specific situations.

Power Supply Selection

The DC supply voltage, **VDC**, muet satisfy two requirements:

- To support the bq2003 Vcc supply, Vpc muet be adequate to provide for 5V regulation after the losses in the regulator and across D1 (Vpc ≥ 7.7V using the 78L05).
- To support the charge operation, V_{DC} > (number of cells MCV_{MAX}) + V_{LOSS} in the charging path.
 (MCV_{MAX} is the maximum cell voltage threshold with the maximum bq2003 V_{CC}.)

Polarity Reversal Protection

If the DC input has any **risk** of **being** accidentally connected with power (+) and **ground** (-) reversed, then the system input should include either a protection diode to protect against circuit damage or a diode bridge to provide both protection and operation. This **also** increases minimum input voltage for charger operation by **approxi**mately **1V** to 2V.

Using the bq2003 to Control Fast Charge

Layout Guidelines

PCB layout to minimize the impact of system noise on the **bq2003** is important when the **bq2003** is **used as** a switching modulator, with a separate nearby switching regulator, or close to any other **significant** noise source.

- Avoid mixing signal and power grounds by using a single-point ground technique incorporating both a small signal ground path and a power ground path.
- The charging path components and associated traces should be kept relatively isolated from the bq2003 and its supporting components.
- 0.1 μF and 10 μF decoupling capacitors should be placed close together and very close to the Vcc pin.
- 0.1μF capacitors and resistors forming R-C filters connected to pins BAT, TS, TCO, and MCV should be as close as possible to their associated pins.
- Because the bq2003 uses Vcc for its reference, additional loading on Vcc is not recommended.

- **6.** Diode **D1 (1N4148)** is recommended for rectification and firing.
- If the DCMD input is electronically controlled, care should be taken to prevent noise-induced false transitions.
- 8. For **bq2003-modulated** switching applications:
 - A 2KR resistor is required between the MOD pin and the transistor.
 - A 1000pF capacitor/1KΩ resistor R-C filter should be as close as possible to the SNS pin.
 - The 0.1µF capacitors for BAT and TS should be routed directly to SNS and not to ground.

F i i 6 and 7 show an example layout of the **non-**power path circuits in the **"kernel** board' available **from Benchmarq. Figure** 8 is a schematic of the board. Table 4 contains the **parts** list for the board. A comparable layout is recommended.

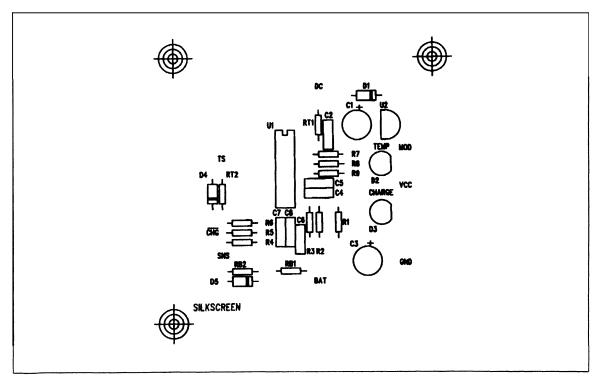


Figure 6. bq2003 Kernel Board Layout, Component Placement

Nov. 1994C

9/18

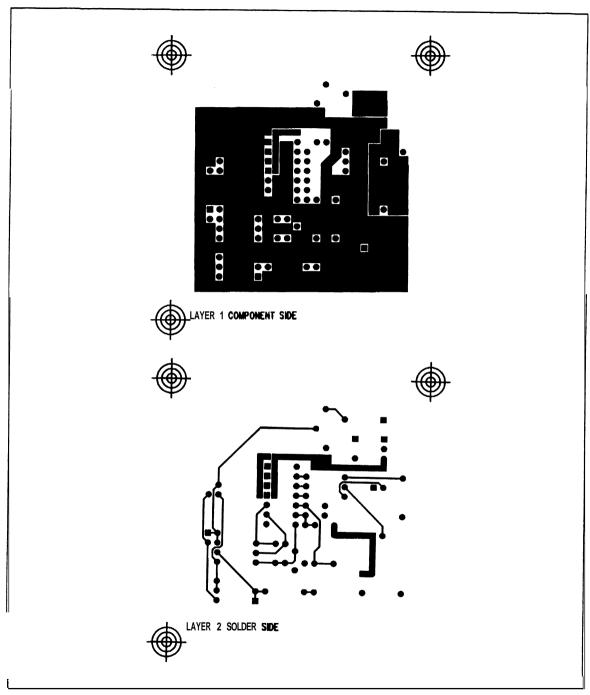


Figure 7. bq2003 Kernel Board Layout

10/18 Nov. 1994 C

Table 4. bq2003 Kernel Board Parts List

10μF 50V electrolytic 0.1μF ceramic 10μF 7V electrolytic 1000pF ceramic 1N4148 HLMP 4700 red LED ser-defined 1% ¼W or ½W carbon film ser-defined 1% ¼W or ½W carbon film 1KΩ 5% ¼W or ½W carbon film
10µF 7V electrolytic 1000pF ceramic 1N4148 HLMP 4700 red LED ser-defined 1% 1/4W or 1/8W carbon film ser-defined 1% 1/4W or 1/8W carbon film
1000pF ceramic 1N4148 HLMP 4700 red LED ser-defined 1% ½W or ½W carbon film ser-defined 1% ½W or ½W carbon film ser-defined 1% ½W or ½W carbon film
1N4148 HLMP 4700 red LED ser-defined 1% ¼W or ½W carbon film ser-defined 1% ¼W or ½W carbon film ser-defined 1% ¼W or ½W carbon film
HLMP 4700 red LED ser-defined 1% ¹ 4W or ¹ 8W carbon film ser-defined 1% ¹ 4W or ¹ 8W carbon film ser-defined 1% ¹ 4W or ¹ 8W carbon film
ser-defined 1% ¹ / ₄ W or ¹ / ₈ W carbon film ser-defined 1% ¹ / ₄ W or ¹ / ₈ W carbon film ser-defined 1% ¹ / ₄ W or ¹ / ₈ W carbon film
ser-defined 1% ½W or ½W carbon film ser-defined 1%½4W or ½W carbon film
ser-defined 1%½W or ½W carbon film
1KΩ 5%½W or ½W carbon film
100 K Ω 5% 1 / $_{4}$ W or 1 / $_{8}$ W carbon film
ser-defined 1% 1/4W or 1/8W carbon film
ser-defined 1%¼W or 1/8W carbon film
eer-defined 1% ¼W or 1/8W carbon film
ser-defined 1% ¼W or 1/8W carbon film
bg2003
LM78L05ACZ
U

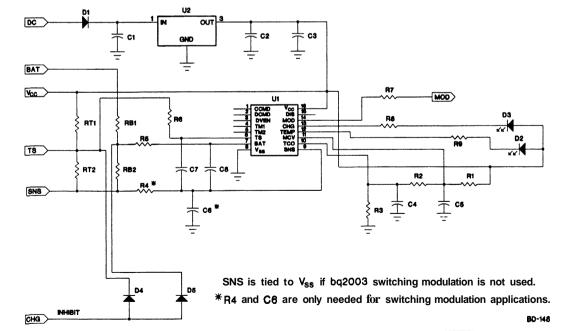


Figure 8. bq2003 Kernel Board Schematic

Nov. 1994 C

11/18

Using the bq2003 to Control Fast Charge

Application Example 1: Linear Regulator

In the example in Figure 9, the **bq2003** is used to implement a linear **regulator/charge controller** that can charge 4 to 12 NiCd or NiMH cells with current regulated up to 1.5A. R₁₆ determines the charge rate per the formula:

$I = 1.25V/R_{16}$

Charge is initiated on battery replaced or Vcc valid. -AV detection is enabled (DVEN high), and discharge control is disabled (DCMD low). MCV = 1.8V; LTF = 10° C; HTF = 47° C; TCO = 50° C; TAT (average Δ T/ Δ t) = 1.04° C/ minute. Timer-mode selection (see data sheet) and trickle resistor R10 selection (see page 7) are determined by the designer.

Components to complete this schematic may be selected from the preceding table:

■ Table 2: BAT network **RB1** and **RB2** values

Table 5 contains the parts list for the board.

Notes: (1) **Temperature** control and qualification may be disabled by tying pin TCO to **Vss** and **fixing** the voltage on pin TS to 0.1 • Vcc.

(2) The voltage drop (VLOSS) across **LM317**, **D6**, and R16 is **4.25V** minimum. The charging supply voltage must be greater than the following:

Number of cells • max. cell voltage + VLOSS

The maximum allowable power loss across the **LM317** depends on the heat sinking.

Table 5. Linear Regulator/Charge Controller Board Parts List

Component Name	Component Description	
C1	10μF 50V electrolytic	
C2, C4, C5, C7, C8	0.1μF ceramic	
C3	10μF 7V electrolytic	
D1	1N4148 or equivalent	
D2, D3	HLMP 4700 red LED	
D6	1N5400	
D7	1N4001	
Q2, Q3	2N3904	
R1	63.4KΩ 1% ¹ / ₄ W or ¹ / ₈ W carbon film	
R2	6.04KΩ 1% ½W or ½W carbon film	
R3	30.1KΩ 1% 1/4W or 1/8W carbon film	
R5, R6	100KΩ 5% 1⁄4W or 1⁄8W carbon film	
R7, R15	10 K Ω 5% ½ W or ½ W carbon film	
R8, R9	1.0KΩ 5% ¼W or ⅓W carbon film	
R10	User-defined 5% carbon film	
R16	1Ω 1% 3W carbon film	
R17	240 Ω 5% ¼ W or ⅓ W carbon film	
R33	510KΩ 5% ¼W or ⅓W carbon film	
RB1	User-defined 1% ¹ / ₄ W or ¹ / ₈ W carbon film	
RB2	User-defined 1% ¹ / ₄ W or ¹ / ₈ W carbon film	
RT	Negative temperature coefficient (NTC) thermistor (see Figure 9)	
RT1	1% 1/4W or 1/8W carbon film (see Figure 9)	
RT2	1% 1/4W or 1/8W carbon film (see Figure 9)	
U1	bq2003	
U2	LM317T	
U3	LM78L05ACZ	

12/18 Nw. 1994 C

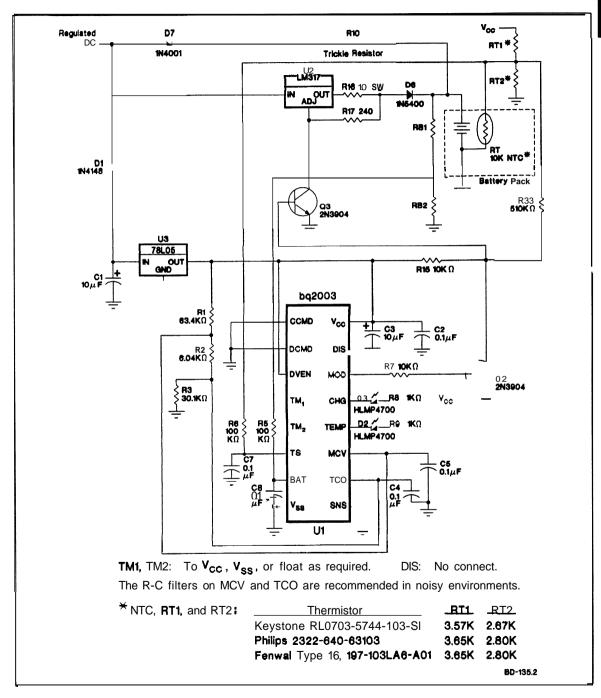


Figure 9. Linear Regulator/Charge Controller

Nov. 1994 C

13/18

Using the bq2003 to Control Fast Charge

Application Example 2: Gated External Current Source

In the example in **Figure** 10, the **bq2003** is used to gate an external current-limited or regulated charge source that can charge **NiCd** or **NiMH** cells.

Charge is initiated on battery replaced or Vcc valid. $-\Delta V$ detection is enabled (DVEN high), and discharge control is disabled (DCMD low). MCV = 1.8V; LTF = 10°C; HTF = 47°C; TCO = 50°C; T $_{\Delta T}$ (average $\Delta T/\Delta t$) = 1.04°C/ minute. Timer-mode selection (see data sheet) and trickle resistor R10 selection (see page 7) are determined by the designer.

Components to **complete this** schematic may be selected from **these** preceding tables:

- Table 1: Power switch **Q1**
- Table 2: BAT network RB1 and RB2 values

Table 5 contains the parts list for the board.

Notes: (1) Temperature control and qualification may be disabled by tying pin TCO to V_{SS} and fixing the voltage on pin TS to 0.1 * V_{CC} .

(2) The charging supply voltage must be greater than the following:

Number of cells * max. cell voltage + VLOSS

Table 6. Gated External Current Source Board Parts List

Component Name	Component Description		
C1	10μF 50V electrolytic		
C2, C4,C5, C7,C8	0.1μF ceramic		
C3	10μF 7V electrolytic		
D1	1N4148 or equivalent		
D2, D3	HLMP 4700 red LED		
D6	• •		
D7	1N4001		
Q1	User-defined pFET		
Q2	2N3904		
R1	63 4kΩ 1% ¼W or ½W carbon film		
R2	6.04kΩ 1% ½W or ½W carbon film		
R3	$30.1 k\Omega$ 1% $^{1}\!4$ W or $^{1}\!8$ W carbon film		
R5, R6	100kΩ 5% ¼W or ⅓W carbon film		
R7	10kΩ 5% 1/4W or 1/8W carbon film		
R8, R9, R15	1kΩ 5% ½W or ½W carbon film		
R10	User-defined 5% carbon film		
RB1	User-defined 1% 1/4W or 1/8W carbon film		
RB2	User-defined 1% 1/4W or 1/8W carbon film		
RT	Negative temperature coefficient (NTC) thermistor (see Figure 10)		
RT1	1% 1/4W or 1/8W carbon film (see Figure 10)		
RT2	1% 1/4W or 1/8W carbon film (see Figure 10)		
U1	bq2003		
u 3	LM78L05ACZ		

14/18 Nov. 1994 C

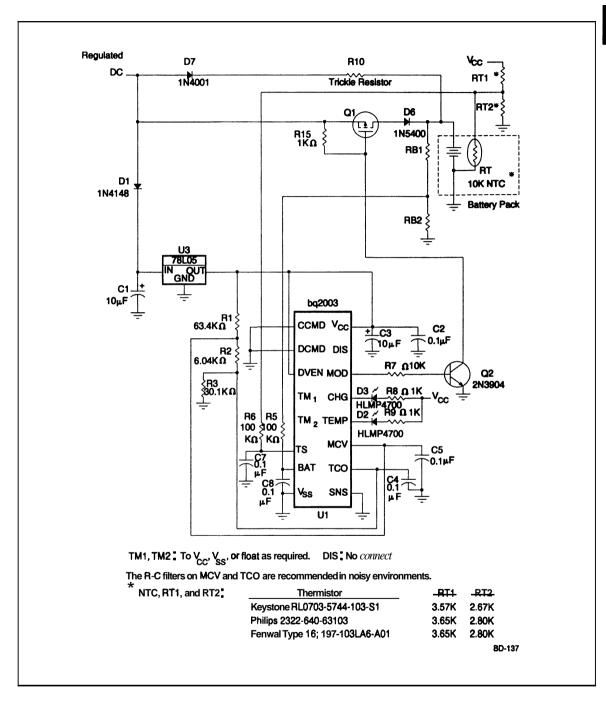


Figure 10. Gating External Current Source

Nov. 1994 C 15/18

Appendix A Determining TemperatureControl Component Values

The bq2003 uses a negative temperature coefficient (NTC) thermistor to determine temperature. The $\Delta T/\Delta t$ sensitivity can be adjusted using different resistor values (RT1 and RT2 in Figure 1 and Application Example 1 and 2) and a different high-temperature cutoff voltage. Table A-1 lists various thermistor manufacturers, with the appropriate part numbers.

Follow these **steps** to determine temperature-control component values (see Figure 5 on page 6):

- 1a. The low-temperature fault (LTF) limit for charging must be established. LTF for charging is determined by the battery specification and the charge rate used. A typical value for the low-temperature limit is 10°C.
 - b. VLTF is set within the bg2003 at 0.4 Vcc.
- 2a. The high-temperature cutoff (TCO) for charging must be established. TCO for charging is determined by the battery specification, the charge rate, and the heat dissipation of the system. Typical values range from 40°C to 50°C, although values outside this range may be applicable.
 - b. The average ΔT/Δt sensitivity from LTF to TCO (TΔT, expressed as ^oC/minute) for termination must be established. As mentioned in this application note, the bq2003 provides a typical ΔT/Δt charge termination of 14 mV per minute. The TAT value is determination of 14 mV per minute.

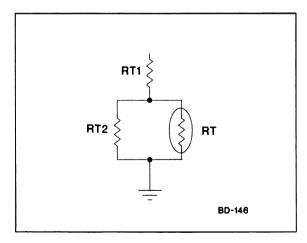


Figure A-1. Resistor Network

mined by the battery **specification**, the charge rate, and the heat dissipation of the system. **Typical** nominal values for TAT range from **0.75°C/min** to **1.5°C/min**.

Relative to the average value TAT, the minimum-to-maximum range of $\Delta T/\Delta t$ at a specific temperature depends on two parameters:

The measurement resolution of the **bq2003**, which contributes a ± 25% error.

The non-linearity of the thermistor between LTF and TCO. As the temperature nears LTF, the expected $\Delta T/\Delta t$ is less than $T_{\Delta T}$ (less sensitive), and as the temperature nears TCO, the expected $\Delta T/\Delta t$ is more than $T_{\Delta T}$ (more sensitive).

The $\Delta T/\Delta t$ range should be considered in **determin**ing the nominal Tat. Nominal Tat should be selected so that its minimum value represents an acceptable (non-premature) termination threshold. Thus a fist **bq2003** sample does not cause a premature termination. Multiple sampling ensures that the termination occurs well before the Tat **max**.

c. The high-temperature cutoff voltage, V_{TCO}, must be established. This V_{TCO} limit is determined by the TAT and may be calculated by:

$$V_{TCO} = 2 \cdot V_{CC} - 0.0028 \cdot V_{CC} \cdot (TCO - LTF) T_{\Delta T}$$

V_{TCO} is provided at the TCO pin by a **resistor-di**vider network as shown in Figures 9 and 10: V_{TCO} = V_{CC} • R3 / (R1 + R2 + R3). In this arrangement, R1 and R2 are selected such that MCV = V_{CC} • (R2 + R3)/(R1 + R2 + R3).

- 4. Select the **thermistor** to be used. If it is not from Table A-1, the thermistor sensitivity at 25°C should be at least 4% and the AR steps between 30°C and 50°C should be comparable to or greater than those in Table A-1 to obtain the appropriate accuracy. Lower values affect the linearity of the ΔT/Δt.
- Determine the thermistor resistance at LTF and TCO
 (RLTF and RTCO, respectively). This may be done using the thermistor temperature versus resistance conversion table provided with the thermistor specification. These tables are usually in 5°C increments.
- **6.** The values for RT1 and RT2 may be calculated by:

$$\begin{split} T1 &= R_{LTF} \bullet (1 - (2/V_{CC}))/(2/V_{CC}) \\ T2 &= R_{TCO} \bullet (1 - (V_{TCO}/(V_{CC} - V_{SNS})))/(V_{TCO}/(V_{CC} - V_{SNS})) \\ RT2 &= ((T2 \bullet R_{LTF}) - (T1 \bullet R_{TCO}))/(T1 - T2) \\ RT1 &= (RT2 \bullet T1)/(R_{LTF} + RT2) \end{split}$$

17118

Table A-1. 10K NTC Thermistor Types and Resistance Values

	Nominal Resistance (Ω) at Temperature							
Temperature (℃)	Keystone Carbon Co. RL0703-5744-103-\$1 (Tel: 814/781-1591)	Philips Components 232284063103 (Tel: 407/743-2112)	Fenwal Electronics Type 16; 197-103LA6-A01 (Tel: 508/478-6000)	Thermometrics C100Y103J (Tel: 908/287-2870)				
-30	188172	173900	177000	-				
-25	138043	128500	-	-				
-20	102263	95890	970700	-				
-15	76461	72230	-	-				
-10	57672	54890	55330	-				
-5	43864	42070	-	-				
0	33630	32510	32650	29588				
5	25988	25310	-	23515				
10	20243	19860	19900	18813				
15	15889	15690	-	15148				
20	12562	12490	12490	12271				
25	10000	10000	10000	10000				
30	8013	8060	8057	8195				
35	6461	6536	•	6752				
40	5241	5331	5327	5593				
45	4276	4373	-	4656				
50	3507	3606	3603	3894				
55	2894	2989	•	3273				
60	2400	2490	2488	2762				
65	2001	2085	-	2342				
70	1677	1753	1752	1993.7				
75	1412	1481	-	1704.0				
80	1194	1256	1258	1462.0				
85	1014	1070	-	1259.1				
90	865.2	915.5	917.7	1088.3				
95	741.0	786.1	-	943.9				
100	636.9	677.5	680.0	821.4				

Using the bq2003 to Control Fast Charge

Application Note Revision History

Change No.	Page No.	Description	Nature of Change
1	13, 15	Changed thermistor values on Figures 9 and 10	Correction
1	12-15	Added component R33 to Figure 9 and Table 5 and R33 and D17 to Figure 10 and Table 6	Correction for cold temperature charge initiation
1	15	Corrected R1 value	Was 6.34K; is 63.4K

Note: Change 1 = Dec. 1992 B changes from Oct. 1992 A.

Step-Down Switching Current

Regulation Using the bq2003 **Fast Charge IC**

Introduction

This application note describes the use of the bq2003 Fast Charge IC as the modulator in a buck-type switchmode regulator to fast charge NiCd and **NiMH** batteries. Please refer to the application note entitled "Using the **bq2003** to Control Fast Charge' for a discussion of bq2003 charge control operation and for descriptions of non-switch-mode applications that gate current-limited sources to control battery charging.

Examples for additional applications are being developed. Please contact Benchmarq if your application is not sup ported by one of these examples.

The bg2003 is targeted for applications requiring stateof-the-& fast-charging performance at minimal cost. It provides sophisticated full-charge detection techniques such as ΔT/Δt (delta temperature/delta time) and -AV (negative delta voltage) that enable the user to take advantage of advanced battery technologies such as nickel metal-hydride (NiMH) and high-capacity fastcharge nickel cadmium (NiCd). Systems using the **bq2003** can be easily upgraded **from** NiCd batteries to NiMH batteries without system redesign.

Background

The **bg2003** may serve as a controller to provide a **switch**mode current source configuration for battery charging. Switch-mode current source regulation is much more efficient than linear current-limited regulators.

The electrical and thermal requirements of the application determine the configuration used with the bq2003. If the charge supply is either current or power-limited at a level compatible with **fast** charging the battery, switch-mode operation may not be **needed**. **The** use of a gated current configuration as **described** in "Using the **bq2003** to Control Fast Charge' is most likely more economical.

If the charge current in a switch-mode application is less than 3A, a p-channel MOSFET buck-type power stage is generally recommended. This is desirable because of the minimal number of support components required for the **bq2003**. If the **switch-mode** charge current is above 3A, using an n-channel FET may be more economical. Several small signal support components must be added for gate drive of the n-channel MOSFET.

Thermal packaging requirements are often the practical limits in electronic design. Basic thermal management or component thermal stress/reliability issues can affect an otherwise successful product. The use of switching power-conversion techniques results in dramatically less heat **being** generated in the product.

A comparison of power loss demonstrates the advantage of switch-mode control versus linear control. Either may be used to charge a four-C-cell NiCd battery pack from a 12V DC source at a rate of 2A. Loss in the switch-mode circuit may be held below 2W, whereaa loss in the linear circuit can be above 12W.

Operational Aspects

In Figures 1 and 2, the bq2003 MOD pin controls the switching transistor **Q1**. In the switch-mode operation, the SNS pin is driven by the high side of the sense resistor R26. The current waveform of the inductor ie represented by a voltage waveform across R26. MOD transitions from high to low after SNS ramps up to 0.250V and from low to high after SNS ramps down to 0.220V. This action sustains a self-referenced oscillation about **these** two thresholds.

Both VTs and VBAT are referenced to Vsns by an internal A-to-D converter. For this reason, both the TS and BAT pine must be well-coupled to SNS using the associated capacitor (C7 and C8) and resistors (R5 and R6). If the waveforms at TS and BAT are viewed with an oscilloscope, the AC content found at SNS is seen at **TS** and BAT. This is normal.

A resistor (R7) is placed in series with the Q3 gate to drive a small signal-switching FET, Q3. Internal bq2003 noise is lowered with this resistor in place.

VLTF, VHTF, and VTCO are voltage-reference points monitored on the TS pin to qualify charge initiation and termination on temperature. Operation of the **bq2003** in a non-switch-mode application is described fully in the application note entitled "Using the **bg2003** to Control Fast Charge.'

When the **bq2003** is used **as** a switch-modecontroller, the application of these reference points is somewhat differ-

- Prior to charge initiation, V_{SNS} = V_{SS}.
- While charging, V_{SNS} (average) = 0.235V.

1/16

Step-Down Switching Current Regulation

Because the **bq2003** internal A·to-D converter **measures** differentially between VTs and VSNs, component selection for temperature qualification of charge initiation must be done assuming VSNs = OV, and component selection for temperature qualification of charge termination must be done assuming VSNs = 0.235V.

Vts is the voltage at the node of RT1, RT2, and the thermistor. The voltage is derived from reference Vcc (5V) by RT1 connected to Vcc and RT2 in parallel with the thermistor connected to SNS. Prior to charging, the voltage being divided is Vcc. When switching regulation is active, the bottom side of RT2 and the thermistor is biased positively by 0.235V, reducing the reference voltage to 4.65V.

Because VTCO and VLTF are both referenced to Vcc, VTs for a particular temperature represents a colder temperature when the switch-mode is inactive than when the switch-mode is active. This effect could negate the HTF charge initiation qualification threshold. VHTF is ½ • VLTF + ½ • VTCO. VTCO is a threshold selected for use when the switch-mode is active. VLTF is internally fixed at 0.4 • VCC. The values of RT1, RT2, and the thermistor that define the LTF temperature (charging off) also define the TCO temperature (switch mode on). The resulting HTF temperature with charging off approaches or may even be above the TCO temperature (switch mode on), limiting the uselfulness of HTF to qualify the start of charge.

The bq2003 bQuick™ design disk is available to optimize these component values and thresholds for specific application objectives.

P-Channel MOSFET Buck-Topology Switch-Mode Charger

In this example, the **bq2003** is used to implement a switching **regulator/charge** controller that can charge 4 to 12 **NiCd** or NiMH **cells** with current regulated up to **3A**.

Figure 1 is a standard configuration for a **pFET switch**-mode charger. MOD drives a **small** signal DMOS FET, **Q3**. When MOD is high, **Q3** is on, **turning** on Q1 via the path through D8 and D9.

L1 inductor current ramps up linearly while MOD is high. L1 current is in series with the battery and R26. The resulting voltage across R26, Vsns, is delivered via R4 to C6 at the SNS pin. The L1 inductor current ramps up linearly until Vsns reaches 0.250V, at which time MOD goes low and Q1 turns off. A flux reversal occurs in L1, causing D10 to conduct. Charge is now being transferred from L1 into the battery. The L1 current ramps

down linearly until **V_{SNS}** reaches **0.220V**. At this point the cycle repeats with MOD going high.

For input voltages that are higher than the rated **Q1 safe** operating gate voltage, Zener diode D9 can be placed in series with the drain lead of **Q3**. The Zener voltage should be sized to allow full **Q1** enhancement while **Q3 is** conducting. See Table 1.

Capacitor C9 is used to provide a low-impedance for the

Table 1. Lookup Table for D9 Selection

+VDC Input (Volts)	Motorola Part No.	Nominai Zener Voltage
Below 15	Shorted	0
15–18	1N749	4.3
18–21	1N755	7.5
21-24	1N758	10
24–27	1N964A	13
27–30	1N966A	16
30–32	1N967A	18
32–35	1N968A	20

Q1 source lead. Without C9 in place, Q1 can be connected to an overly inductive voltage supply. D6 is a blocking diode that **keeps** the battery from discharging via U2 during removal of the DC power source input.

Charge is initiated on battery replaced or **Vcc** valid. -AV detection is enabled (**DVEN** high), and discharge control is disabled (**DCMD** low). MCV = 1.8V; LTF = 10°C; **TCO** = 50°C; **AT/At** at 30°C = 0.82°C/min. (i.e., typical = 1.10°C/min.). Timer-mode selection (see data sheet) and trickle resistor **R10** selection (see page 2-85 of the application note entitled "Using the **bq2003** to Control Fast Charge") are determined by the designer. **R26** is selected such that **ICHG** • **R26** = **0.235V**.

The values of **RB1** and RB2 to complete **this** schematic may be selected **from** Table 2 in the application note entitled **"Using** the **bq2003** to Control **Fast** Charge."

Note: Temperature control and qualification may be disabled by tying the **TCO** pin to **Vss** and **fixing** the voltage on the TS pin to 0.1 * Vcc.

Table 2 lists suggested components for different-rate chargers. Table 3 lists other components shown in Figure 1.

2/16 Dec. 1992

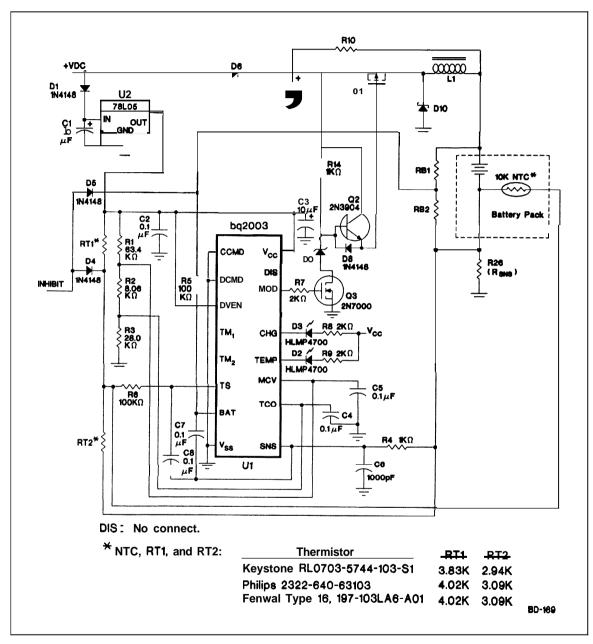


Figure 1. P-Channel MOSFET Switching-Mode Charger

Dec. 1992

Table 2. Suggested Components—P-Channel MOSFET Charger

Suggested Max. Charging Current	QI	D6	D10	C9	L1	
1A	IRF9Z14	1N4001	1N5818	ECA-1VFQ390 39μF/35V/460mΩESR	30 turns, #26 AWG , wound on Magnetics, Inc., P/N 77040 core; nominal inductance 59µH ; GFS Mfg. , Inc., P/N 92-2156-1	
2A	IRF9Z24	1N5821	1N5821	ECA-1VFQ560 56μF/35V/300mΩESR	37 turns, #22 AWG, wound on Magnetics, Inc., P/N 77120 core;	
3A	IRF9Z34	1N5821	1N5821	ECA-1VFQ121 120μF/35V/170mΩESR	nominal inductance 98μH ; GFS Mfg., Inc., P/N 92-2157-1	
Source	International Rectifier	Motorola	Motorola	Panasonic	GFS Mfg., Inc. Dover, NH (603) 742-4375	

Table 3. Other Components—P-Channel MOSFET Charger

Component Name	Component Description		
C1	10μF 35V electrolytic		
C2, C4, C5, C7, C8	0.1μF ceramic		
C3	10µF 10V electrolytic		
C6	1000pF ceramic		
D1, D4, D5, D8	1N4148		
D2, D3	HLMP 4700 red LED		
Q2	2N3904		
Q3	2N7000		
R1, R2, R3	User-defined 1% ¹ / ₄ W or ¹ / ₈ W		
R4	1KΩ 5% ¼W		
R5, R6	100KΩ 5% ¼W or 1/8W		
R7, R8, R9	2KΩ 5% ¹ / ₄ W or ¹ / ₈ W		
R10, R26	User-defined		
RB1	User-defined 1% 1/4W or 1/8W		
RB2	User-defined 1% ¹ / ₄ W or ¹ / ₈ W		
RT1	User-defined 1% 1/4W or 1/8W		
RT2	User-defined 1% ¼W or 1/8W		
U1	bq2003		
U2	LM78L05ACZ		

4/16 Dec. 1992

Step-Down Switching Current Regulation

N-Channel MOSFET Buck-Topology Switch-Mode Charger

The advantage of an **n-FET** buck topology is the priceversus-performance benefit of the n-FET family. The **disadvantage** is the number of additional **components** required to support it.

The schematic in Figure 2 is a standard configuration for an nFET switch-mode charger that can charge 4 to 12 NiCd or NiMH cells with current regulated up to 9A. The Q1 gate must be driven positive with respect to the drain in this application to provide full enhancement of the device. When catch diode D10 is conducting, C11 is charged. When Q1 is conducting, C11 is charging C10. This charge pump allows adequate voltage to drive Q1 into full enhancement via QS. As Q2 conducts, the Q1 gate charge is depleted, causing Q1 to turn off.

Charge is initiated on battery replaced or Vcc valid. -AV detection is disabled (DVEN low), and discharge control is disabled (DCMD low). MCV = 1.8V; LTF = 10°C; TCO = 50°C; AT/At at 30°C = 0.82°C/min. (i.e., typical = 1.10°C/min.). Timer-mode selection (see data sheet) and trickle resistor R10 selection (see page 2-85 of the application note entitled "Using the bq2003 to Control Fast Charge? are determined by the designer. R26 is selected such that I_{CHG} • R26 = 0.235V.

The values for RB1 and RB2 to complete this schematic may be selected from Table 2 in the application note entitled "Using the bq2003 to Control Feet. Charge."

Note: Temperature control and qualification may be disabled by tying the TCO pin to $\bf Vss$ and $\bf fixing$ the voltage on TS pin to $\bf 0.1$ * $\bf Vcc$.

Table 4 lists suggested components for different-rate chargers. Table 5 lists other components shown in Figure 2

Dec. 1992 5/16

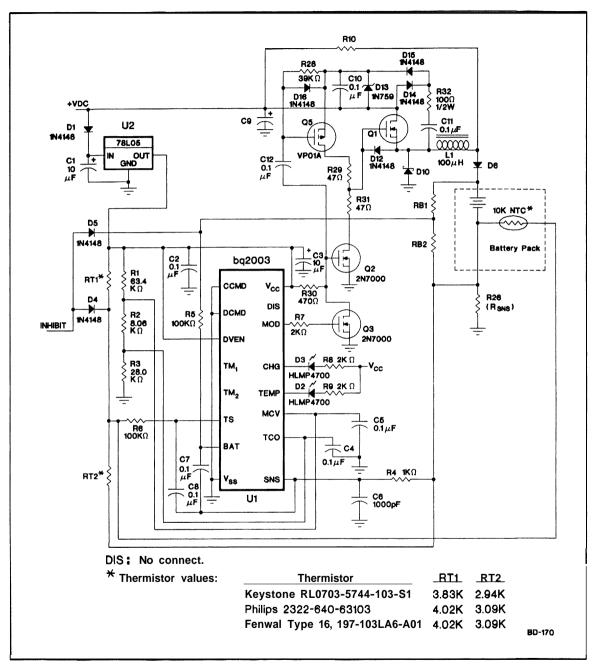


Figure 2. N-Channel MOSFET Switching-Mode Charger

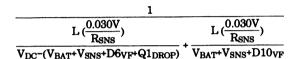
6/16 Dec. 1992

Table 4. Suggested Components-N-Channel MOSFET Charger

Suggested Max. Charging Current	Q1	D6	D10	C9	L1
3A	IRFZ34	1N5821	1N5821	ECA-1VFQ121 120μF/35V/170mΩESR	37 turns, #22 AWG, wound on Magnetics, Inc., P/N 77120 core; nominal inductance 98µH; GFS Mfg Inc., P/N 92-2157-1
6A	IRFZ44	MBR735	MBR735	ECA-1VFQ391 390μF/35V/55mΩESR	33 turns, #18 AWG, wound on Magnetics, Inc., P/N 77310 core; nominal inductance 98μH; GFS Mfg., Inc., P/N 92-2158-1
9A	IRFZ48	MBR1035	MBR1035	ECA-1VFQ681 680μF/35V/34mΩESR	25 turns, #16 AWG, wound on Magnetics, Inc., P/N 77930 core; nominal inductance 98µH; GFS Mfg., Inc., P/N 92-2159-1
Source	International Rectifier	Motorola	Motorola	Panasonic	GFS Mfg., Inc. Dover, NH (603) 742-4375

Table 5. Other Components—N-Channel MOSFET Charger

Component Name	Component Description		
C1	10μF 35V electrolytic		
C2, C4, C5, C7, C8, C10, C11, C12	0.1μF ceramic		
C3	10μF 10V electrolytic		
C6	1000pF ceramic		
D1, D12, D14, D15, D16	1N4148		
D2, D3	HLMP 4700 red LED		
D13	1N759 12V 500mW Zener		
Q2, Q3	2N7000		
Q5	VP01A		
R1, R2, R3	User-defined 1% ¼W or ⅓W		
R4	1KΩ 5% ¼W or ½W		
R5, R6	100KΩ 5% ¼W or ⅓W		
R7, R8, R9	2KΩ 5% ¼W or 1/8W		
R10, R26	User-defined		
R28	2.7 K Ω 5% $\frac{1}{4}$ W or $\frac{1}{8}$ W		
R29, R31	47KΩ 5% ¼W or ½W		
R30	470KΩ 5% ½W or ½W		
R32	100KΩ 5% ½W or ⅓W		
RB1	User-defined 1% 1/4W or 1/8W		
RB2	User-defined 1% 1/4W or 1/8W		
RT1	User-defined 1% 1/4W or 1/8W		
RT2	User-defined 1% ¹ / ₄ W or ¹ / ₈ W		
U1	bq2003		
U2	LM78L05ACZ		


Dec. 1992

Operating Switching Frequency

During Q1 on-time, the L1 current ramps up linearly. During Q1 off-time (D10 conduction), the L1 current ramps down linearly. The rate of rise and fall (slew rate) of L1 current is determined by the inductance value of L1 and the DC voltage placed across L1. The slew rate is usually different between Q1 conduction time and D10 conduction time. This is because the DC voltage across L1 is usually different during these two timing intervals.

The sum of these two timing intervals equals the switching period. The switching period reciprocal equals the switching frequency.

Use the following equation to estimate the switching frequency. $\mathbf{R} =$

where:

F = Frequency in Hertz

L = L1 inductance in Henrys

D6vr = D6 average forward voltage drop

D10vF = **D10** average forward voltage drop

Rsns = R26 value in ohms

Q1DROP= Charge current times Q1 on-state-

resistance

 $= (0.235 \text{V/R}_{SNS}) Q1_{RDSON}$

V_{DC} = Input DC voltage

VBAT = Battery pack **instantaneous** voltage

Charge Current Regulation With Varying System Loads

Systems with an integrated charger and a constant-power external supply may not be capable of fast **charging** the batteries while simultaneously supporting system operation. In such cases the system operation takes priority, and the peak system energy demand must be supported.

In this situation, the charger designer has two options regarding charge during system operation:

 The battery charging current may be held constant at a low level that is supportable during peak system operation loads. During periods of low system power demand, available power is not used. The

- charge time during system operation is typically quite long.
- 2. The battery charging current may be allowed to vary inversely with the system load. As the system power demand decreases, the charge rate increases and vice versa. For portable systems with varying load requirements (such as those using 'power management'), this allows any surplus power during low system activity to be used for battery charging. The charge time during system operation depends on the average system power requirement, not the peak requirement.

Option 1 may be implemented when using the **bq2003** as the charge current regulator by using the system Vcc as an "INHIBIT" signal to pull pins BAT and TS high when the system is on. (See **Figures** 1 and 2 and the System-Controlled Charge Inhibition **discussion** in 'Using the bq2003 to Control Fast Charge.? When the system is on, fast charge is inhibited. The only charge path is the trickle resistor.

Option 2A may be implemented using the **bq2003 as** the charge current regulator with the system load return at the high end of the **sense** resistor R26 (Figure 3). $\Delta T/\Delta t$ charge termination is enabled and -AV termination is disabled.

With a battery pack cell voltage ≥ 1V per cell, the system load always receives its required current. The system load current flows through R26 along with the battery charge current. The battery receives any difference between the programmed charge current and the system load current. If the system load current exceeds the programmed charge current, then no charge current will be delivered to the battery. The system load current biases the SNS voltage via R26, which limits the buck regulator's current delivered to the battery. The total

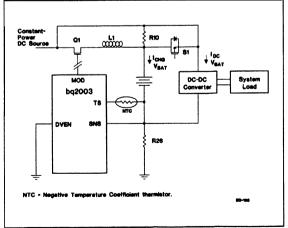


Figure 3. Option 2A

Dec. 1992

8/16

available power may be allocated between the battery charge and **system** operation such that power **used =** (IcHG + IDC) • VBAT.

Using this method, the sense resistor R26 and its associated energy penalty are not in the battery discharge path The charge current is regulated in a variable fashion such that R26 • (ICHG+IDC) = 0.235V.

Charge current regulation may occur until IDc • R26 ≥ 0.250V, Above this point, the MOD output is held low (off). When actively switching, the MOD frequency remains very nearly constant.

If the battery voltage is extremely low, the bq2003 does not begin charging until the battery trickle charges to 1V per cell. This protects the system voltage from being pulled down to an inoperable range by a very low battery.

-AV is disabled to prevent false terminations due to the varying charge current and the battery's internal impedance. Slight but **significant** voltage perturbations at **VBAT** can cause a false -AV charge termination during variations in battery charge current in **this** configuration. ΔΤ/Δt, however, is **not affected** by variations in charge current because the battery's **physical mass** has a relatively slow time constant that naturally integrate **all** variations.

Switch S1 is turned on for battery operation and off during charge. Switch S1 is driven by appropriate logic defined by the needs of the application. The presence or absence of an input DC power source could control this logic. A Schottky diode is a simpler alternative to S1, but the voltage drop may not be desirable.

Option 2B is another variable charge rate approach (Figure 4). This option may be preferred if the available power is considerably more than the maximum ICHQ • VBAT (ignoring voltage loss). In the first approach, the system load return is to the high end of the sense resistor R26, limiting the power used to approximately (ICHG + IDC) • VBAT, with ICHG = 0 when IDC > maximum ICHG.

For **this** second approach to use all the available power, the system load return is at the low end of the sense resistor. This accomplishes the **fastest possible** charge during system operation, but carries a penalty during battery operation because of the energy and voltage **loss** from **discharge** through the **sense** resistor (or the **cost** and impedance of a switch to **bypass** the **sense** resistor).

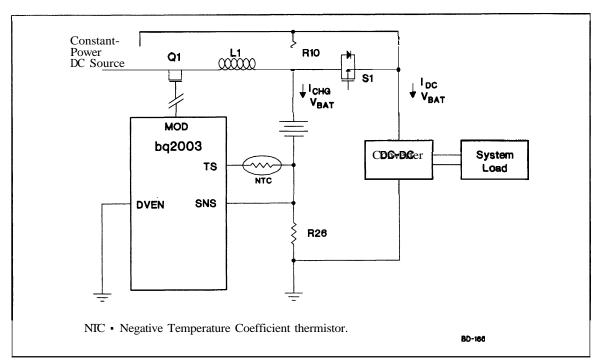


Figure 4. Option 2B

Dec. 1992 9/16

Step-Down Switching Current Regulation

Layout and EMI Considerations

10/16

The beat approach to PC board layout follows the strict rule of a single-point ground return. Sharing high current ground with small signal ground causes undesirable noise on the small signal nodes. Referencing Figures 1 and 2, C2 and C3 should be placed as close as possible to the Vcc pin. C6 should be placed at the SNS pin. C7 and C8 should be associated between the TS/SNS and the BAT/SNS pins, respectively, with short leads. Isolation resistors R5 and R6 should be placed close to the BAT and TS pins.

Layout of power components C9, D10, L1, Q1, and R26 should reduce lead-length paths between these components to an absolute minimum.

If a dual-layer PC board is used, route **signal lines** on the solder side. This leaves the component side to be used **as** a ground plate. **This** technique **reduces noise** on adjacent **nodes** within the circuit and **helps** reduce EMI by giving the high-energy **fields** a ground plane to work **against**.

pFET and nFET Layout Examples

Figures **5–7** illustrate the layout of the p-channel MOSFET **switch-mode** charger board, and Figures 8–10 illustrate the layout of the n-channel MOSFET switch-mode charger board.

Dec. 1992

11/16

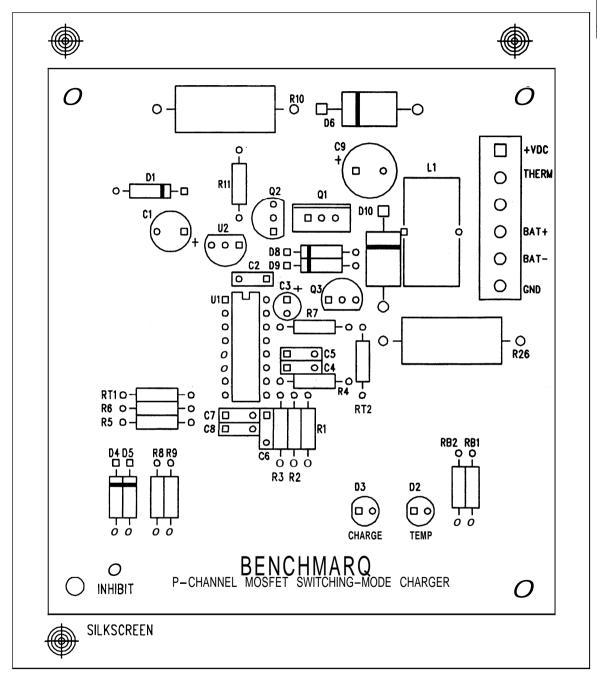


Figure 5. P-Channel MOSFET Switching Charger—Silkscreen

Dec. 1992

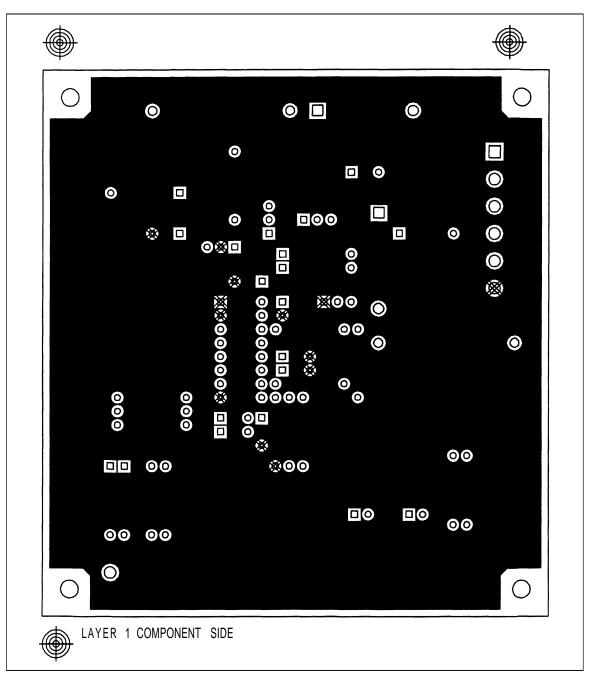


Figure 6. P-Channel MOSFET Switching Charger--Component Side

12/16 Dec. 1992

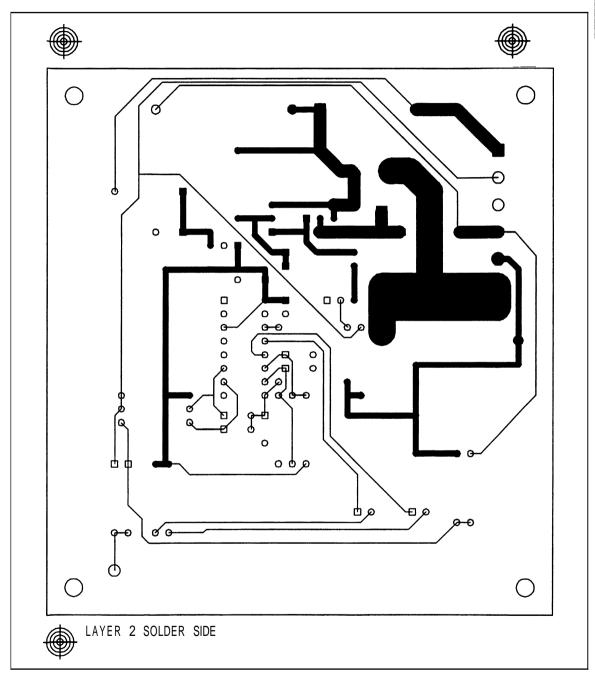


Figure 7. P-Channel MOSFET Switching Charger—Solder Side

Dec. 1992 13/16

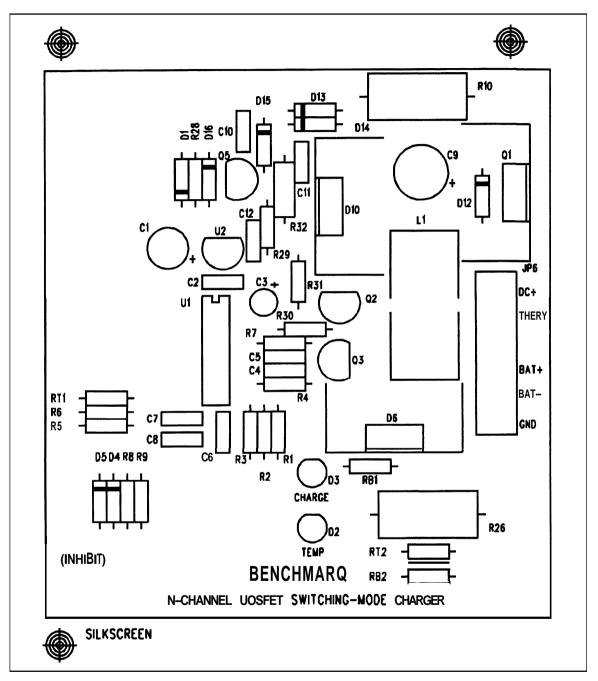


Figure 8. N-Channel MOSFET Switching Charger—Silkscreen

14/16 Dec. 1992

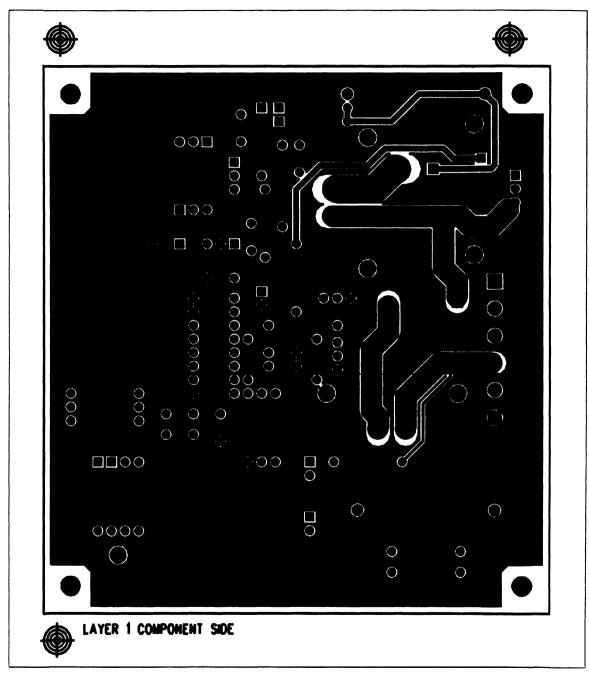


Figure 9. N-Channel MOSFET Switching Charger--Component Side

Dec. 1992

15/16

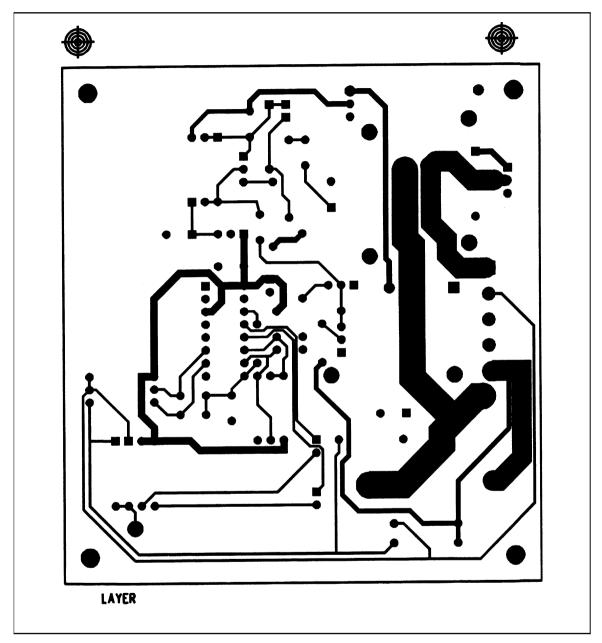


Figure 10. N-Channel MOSFET Switching Charger—Solder Side

16/16 Dec. 1992

Using the bq2003

With High-Side Current Sensing In a Switch-Mode Charger

Introduction

This application note describes the use of the bq2003 in special applications that require high-side current sensing. Some system flexibility is gained with high-side current sensing. The DC source, the minus side of the battery, and the system load are all one common ground point. This simplifies the power-grounding architecture in applications such as automotive chargers for radio products.

Such applications may not allow for the standard lowside current sensing as referenced in the application note, "Step-Down Switching Current Regulation Using the bq2003 Fast Charge IC.

The Circuit

The circuit shown in Figure 1 is similar to the circuit described in Figure 1 of the application note, "Step-Down Switching Current Regulation Using the bq2003 Fast Charge IC," with the following exceptions.

The switching element and its **associated** drive circuitry have been changed to illustrate a high efficiency PNP transistor implementation. You can find a **discussion** of this circuit in application example 2 for the **bq2005**. Also note that the **78L05** has been replaced with a simple **zener** diode plus resistor combination. These two points are unrelated to the use of the bg2003 in a high-side sense mode, but they are important in avoiding confusion over the function of the circuit.

The salient differences between the function of this circuit and that of a normal low-side sense circuit include the following. The sense resietor lies between the inductive element and the positive battery terminal. The negative battery terminal connects to ground. The current signal is translated down to the level required at the SNS input by two small signal transistors forming a "voltagemirror." This "voltage mirror" reflects the voltage across the low ohmic value of the sense **resistor** onto the much larger 1K resistor in the emitter of a PNP transistor. The transistor pair is biased by a current sink formed by an NPN transistor, the base of which is Vcc and the emitter of which connects to ground through an 18K resistor. This arrangement assures that the battery will not be loaded by the bias network when power is not applied and that the best voltage compliance will occur at the regulation current. The collector of the PNP transistor in the "mirror" network will now source the current to

pass through a **1K** resistor referenced to ground to create the signal required at the SNS input.

Both BAT and TS inputs must be translated up by this same voltage to achieve the proper signal levels for normal operation. Accomplish this action at the BAT input by connecting the battery voltage divider between the more poeitive side of the sense resistor and the 1K termination resietor at the SNS input. Take care to ensure that the total bias current of the battery divider network does not **significantly disturb** the current regulator operating point (a bias current of 10µA or less would contribute leas than a 4.3% error). Use a voltage translator at the TS input so that the temperature signal tracks the current signal at the SNS input. This action is accomplished by intercepting the sense current signal on its way to the SNS input with the emitter of another PNP transistor, the base of which is biased to the thermistor connection point.

The connection of a 1K resistor in the emitter of this transistor has the effect of translating the TS signal up by the base-emitter drop in the transistor plus the senese current signal voltage. Buffering this point with a complementary NPN transistor subtracts out a s ter drop, leaving the proper signal to be applied t the TS input. The NPN emitter requires a load resistor which is fulfilled in this example by a 10K resistor. The PNP transistor can now pass on the current signal to the SNS input of the bq2003 through its collector.

Earlier data **books** illustrated the way in which to perform this function using an operational amplifier, but the example limited the applicability to certain specific voltage configurations. This circuit is more univerally applicable and can easily be extrapolated to the bo2004. **bq2005**, and the **bq2007**.

The nurent-sensing **resistor** (R12) is placed between the inductor (L1) and the **positive** side of the battery. To translate the voltage waveform across R12 to the **bq2003** SNS pin, a differential amplifier must be used.

The differential amplifier (U3A) is **configured** with a gain factor of one. Thus, this equation still applies:

$$I_{CHG} = \frac{0.235}{R12}$$

Depending on the application, a protection method to limit the U3A supply voltage may be needed. The TLC272 has a maximum supply voltage of 18 VDC. A small-signal Zener diode (15V nominal, 1N965A) could

Sept. 1996

also be used to clamp this voltage to a eafe level with a series current-limiting resistor.

Note that the U3A input voltages must always be less than the U3A supply voltage. To help meet this requirement, the four equal-value support resistors associated with U3A provide the secondary function of dividing the input voltages by half.

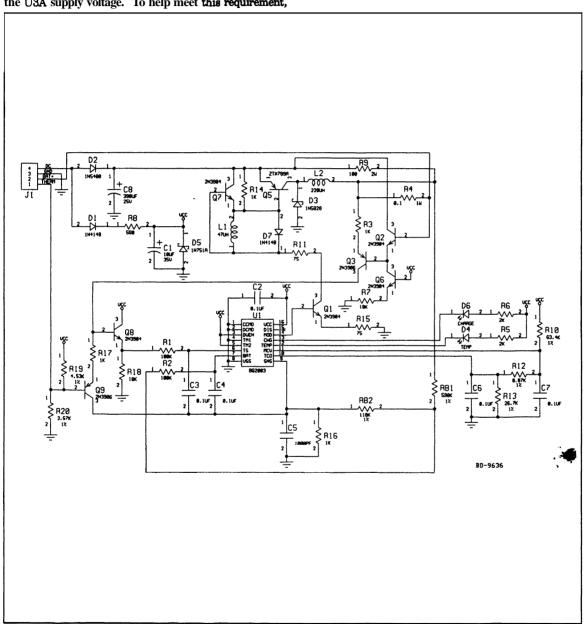


Figure 1. High-Side Sensed p-Channel Diagram

2/2 Sept. 1996

bq2004

Fast Charge IC

Features

- Fast charge and conditioning of nickel cadmium or nickel-metal hydride batteries
- Supports logic-level-controlled low-power mode (< 5μA standby current)
- ➤ Optional peak voltage detect (PVD) fast-charge termination
- Flexible current regulation:
 - Frequency-modulated switching current regulator
 - Gating control for use with external regulator
- 150milSOIC is ideal for integration into portable systems
- Pre-charge qualification for temperature and voltage faults
- Programmable LED outputs display battery and charge status
- Fast charge termination by A temperature/Δ time, -ΔV or peak voltage, and maximum temperature, time, and voltage

General Description

The **bq2004** Fast Charge IC **provides** comprehensive fast charge control functions together with **high-speed** switching power control circuitry on a monolithic CMOS device.

Flexible control of constant-current or current-limited charging supply allows the bq2004 to be the basis of a coat-effective system-integrated charger for batteries of two or more cells. High-efficiency switched constant-current regulation is accomplished using the bq2004 as a frequency-modulated controller. The bq2004 may alternatively be used with a transistor to gate an external charging current or in a cost-effective frequency-modulated linear regulator.

Switch-activated or automatic **discharge-before-charge** allows bq2004-based chargers to support battery conditioning and capacity determination.

Fast charge may begin on application of Vcc to the bq2004, replacement of the battery, or use of the NH pin. For safety, fast charge is inhibited until the battery temperature and voltage are within configured limits.

Temperature, **voltage**, and time **are** monitored throughout fast charge. Fast charge is **terminated** by any of the following:

- Delta temperature/delta time (ΔΤ/Δt)
- Negative delta voltage (-△V) or peak voltage detect
- Maximum temperature
- 8 Maximum time

Maximum voltage

Following fast charge, the bq2004 proceeds with a pulsed top-off charge (if enabled) and a pulsed trickle charge. Figure 1 shows a block diagram of the bq2004 Fast Charge IC.

Pin Connections

DCMD 1	16 □ INH
DSEL 2	15 🗆 DIS
VSEL ☐3	14 DMOD
TM₁ ☐4	13
TM₂□5	12 🗆 Vss
тсо □в	11 LED2
TS □7	10 □ LED1
BAT □ 8	9 DSNS
L	
16-Pin N	larrow DIP
or Nam	ow soic
	DM-47

Pin Names

$\overline{\text{DCMD}}$	Discharge command	SNS	Sense resistor input
DSEL	Display select	LED ₁	Charge status output 1
VSEL	Voltage termination select	LED ₂	Charge status output 2
TM_1	Timer mode select 1	V_{SS}	System ground
TM ₂	Timer mode select 2	Vcc	5.0V ±10% power
TCO	Temperature cutoff	MOD	Charge current control
TS	Temperature sense	DIS	Discharge control output
BAT	Battery voltage	INH	Charge inhibit input

Sept. 1996 C 1/14

Pin Descriptions

DCMD Discharge-before-charge control input

DCMD controls the discharge-before-charge function of the **bq2004**. A negative-going pulse on **DCMD** initiates a discharge to EDV (0.4 • Vcc) followed by a charge if conditions allow. By tying DCMD to ground, automatic discharge-before-charge is enabled by the application of power, by battery replacement, or by a low-to-high transition on the INH pin. DCMD is pulled up internally.

DSEL Display select input

> This three-level input controls the LED_{1,2} charge status indication See Table 2 for details.

VSEL Voltage termination select **input**

> This three-level input controls the voltagetermination technique used by the **bq2004**.

 TM_1 Timer mode inputs $(TM_{1,2})$ TM_2

> TM₁ and TM₂ are three-level inputs that control the **settings** for the **fast** charge safety timer and "top-offfickle charge control. See Table 3 for details.

TCO Temperature **cut-off** threshold input

> Minimum allowable battery temperaturesensor voltage. If the potential between TS and SNS is less than the voltage at the TCO input, then any fast charging or top-off charging is terminated.

TS Temperature sense input

> Input for battery temperature monitoring negative temperature coefficient (NTC) thermistor.

SNS Charging current sense input

> SNS controls the switching of MOD based on an external sense resistor network. This provides the reference potentials for both the TS and BAT pins. If SNS is connected to Vss, then MOD switches high at the beginning of charge, and low at the end of charge. See Figure 2 and Table 1 for details.

Battery voltage input BAT

> BAT is the battery voltage sense input. This potential is limited to between 0.4 • Vcc and 0.8 • Vcc and is generally developed by a high-impedance resistor-divider network connected between the **positive** and the negative terminals of the battery.

LED1. Charge statue outputs LED₂

> Push-pull **outputs** indicating charging status. **See** Figure 2 and Table 2 for details.

VSS Ground

Vcc Vcc supply input

5.0V, **±10%** power input.

MOD Charge current control output

> MOD is a push-pull output that is used to control the charging current to the battery. MOD switches high to enable charging current to flow and low to inhibit charging current flow. **See Figure** 2 and Table 1 for details.

DIS Discharge control output

> Push-pull output used to control an external transistor to discharge the battery before

charging. DIS is active high.

INH Charge inhibit input

> When low, the bq2004 suspends all charge actions, drives all outputs to high impedance, and assumes a low-power operational state. When **transitioning** from low to high, a charge cycle is initiated. See page 8 for details.

Functional Description

Figure 2 illustrates charge control and display status during a bq2004 charge cycle. Table 1 outlines the various **bq2004** operational states and their associated conditions, which are described in detail in the following sections.

Charge Action Control

The bq2004 initiates a charge by the application of power on **Vcc**, by a **battery** replacement, or by a low-to-high transition on the INH pin. Control of the charge action is then determined by the inputs from **DCMD**, VSEL, TS, BAT, and TM12.

Sept. 1996 C

Following charge initiation, the **bq2004** checks for acceptable battery temperature (between LTF—low-temperature fault and HTF—high-temperature fault) and battery voltage (between EDV—end-of-discharge voltage and MCV—maximum cell voltage). Fast charging begins when the voltage and temperature conditions are within these limits. Once the fast charging process begins, the bq2004 tests for the full-charge conditions: AT/At and/or-AV or peak voltage detect (PVD), with temperature, time, and voltage safety terminations.

Charge Status Indication

Table 1 outlines the various charge action **states** and the associated MOD and DIS output states. Table 2 describes the charge status indicated by the LED₁ and LED₂ outputs, which may be connected directly to an LED indicator. In all **cases**, if the battery voltage at the BAT pin exceeds the maximum cell voltage (0.8 • Vcc), the LED₁ and LED₂ outputs are held low.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum and minimum allowable values. The battery voltage sense input, BAT, for a battery pack should be

divided to between $0.8 \cdot V_{CC}$ and $0.4 \cdot V_{CC}$ for proper operation. A resistor-divider ratio of:

$$\frac{R1}{R2} = \frac{N}{2} - 1$$

is recommended to maintain the battery voltage within the valid range, where N is the number of cab, R1 is the resistor connected to the positive battery terminal, and R2 is the resistor connected to the respective SNS pin. See Figure 3.

Note: The resistor-divider network impedance should be above $200 \text{K}\Omega$ to protect the **bq2004**.

The thermistor used for temperature measurement should have a negative temperature coefficient. The temperature sense voltage input at TS is developed using a resistor-thermistor network between Vcc and SNS. See Figure 3.

Battery Removal Detection

Battery removal is sensed by VCRLL (VBAT - VSNS) rising above VMCV (0.8 • VCC). An external resistor, REXT, between the battery positive lead and the charging supply input pulls VCELL above VMCV to detect battery removal.

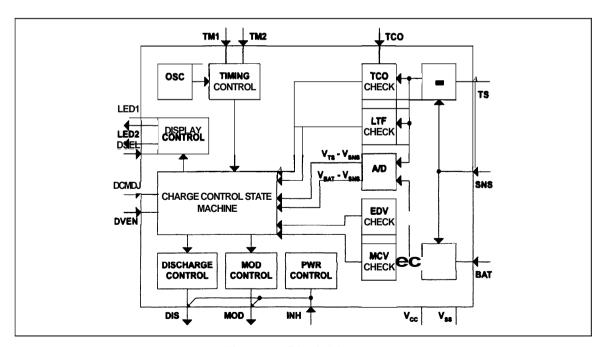


Figure 1. Block Diagram

Sept. 1996 C

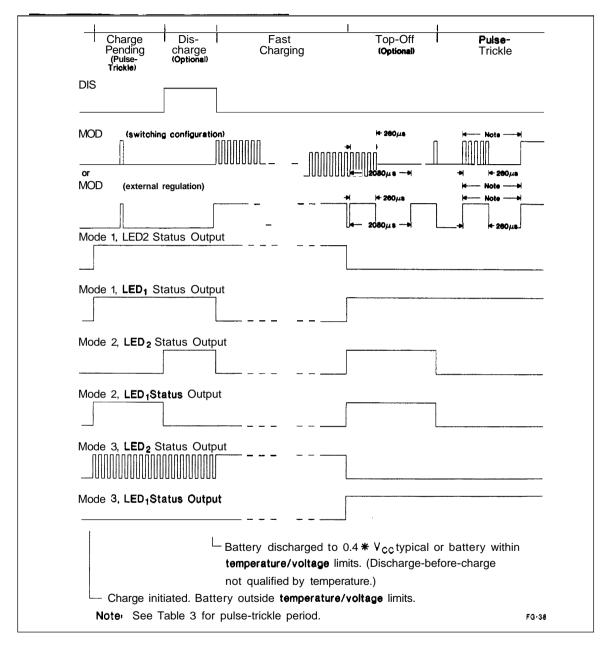


Figure 2. Example Charging Action Events

4/14

Sept. 1996 C

Initiating a Charge Action

A battery charge action is initiated with a battery insertion, application of Vcc to the bq2004, or a low-to-high transition on the INH pin. Battery insertion is recognized when the voltage at the BAT pin falls from above the internal Vmcv reference level to below that level. When Vcc is applied to the bq2004 or when INH transitions from low to high, a charge action begins after a brief reset period.

Temperature and Voltage Prequalification

Before fast charging can begin, the battery temperature and voltage must fall within predetermined acceptable **limits**.

VCELL is compared to an internal low-voltage reference, VEDV (0.4 • V_{CC}), which is the minimum acceptable battery voltage for **fast** charging. The **VTEMP** (VTS • **VSNS**) voltage is compared to an internal hot-temperature fault reference, VHTF ((44 • VLTF) + (¾ • VTCO)) and optionally

Table 1. bq2004 Operational Summary

Charge Action State	Conditions	MOD Output	DIS Output
Battery absent	Vcell ≥ Vmcv	Trickle charge activated per Vsns for period specified in Table 3	Low
Charge initiation	Vcc applied, Vcell drops from 5: VMCV to < VMCV (battery insertion), or INH transitions low to high with battery inserted		_
Discharge-before-charge (optional)	DCMD high-to-low pulse or tied to V _{SS} on charge initiation; VEDV < VCELL < VMCV	Low	High
Pending	Charge initiation occurred and VTEMP ≥ VLTF or VTEMP ≤ VHTF or VCELL < VEDV	Trickle charge activated per Vsns for period specified in Table 3	Low
Fast charging	Charge initiation occurred and VHTF < VTEMP < VLTF ¹ and VEDV ≤ VCELL < VMCV	Low if V_{SNS} > 2 50mV, nominal; high if V_{SNS} < 200mV, nominal .	Low
Charge complete	-ΔV ≥ 6mV/cell or PVD ≥ 0 to 3mV/cell or ΔVτΕΜΕ/ΔΤ > 14mV/minute or VτΕΜΕ < VτCO or VτΕΜΕ > VLTΕ ¹ or maximum time or voltage		-
Top-off (optional; see Table 3)	Charge complete and top-offtime not exceeded and VTEMP > VTCO and VCELL < VMCV	Activated per Vsns (see fast charging state) for 260 µs of every 2080 µs	Low
Trickle	Charge complete and top-off disabled or top-off complete	Trickle charge activated per Vsns for period specified in Table 3	Low
Charge inhibit	INH low	Z	Z

Definitions: $V_{CELL} = V_{BAT} \cdot V_{SNS}$; $V_{MCV} = 0.8 \cdot V_{CC}$; $V_{EDV} = 0.4 \cdot V_{CC}$;

 $V_{TEMP} = V_{TS} \cdot V_{SNS}$; $V_{LTF} = 0.4 \cdot V_{CC}$; $V_{HTF} = ((\frac{1}{4} \cdot V_{LTF}) + (\frac{3}{4} \cdot V_{TCO}))$.

Note: 1. The low-temperature fault is not considered when PVD is enabled.

Sept. 1996 C 5/14

Table 2. bq2004 LED Output Summary

Mode 1	Charge Action State	LED ₁	LED ₂
	Battery absent	Low	Law
DOM - W	Fast charge pending or a discharge-before-chargein progress	High	High
DSEL = Vss	Fast charging	Low	High
	Charge complete, top-off, and/or trickle	High	Low
Mode 2	Charge Action State	LED ₁	LED2
	Battery absent, fast charge in progress or complete	Low	Low
DSEL=	Fast charge pending	High	Low
DSEL = Floating	Discharge in progress	Low	High
	Top-off pending or in progress	High	High
Mode 3	Charge Action State	LED ₁	LED ₂
	Battery absent	Low	Low
DSEL = V _{CC}	Fast charge pending or diecharge-before-chargein progress	Low	1/8 second high 1/8 second low
	Fast charge in progress	Low	High
	Fast charge complete, top-off, and/or trickle	High	Low

to an internal low-temperature fault reference, V_{LTF} (0.4 • V_{CC}). These **limits** establish the acceptable battery and temperature sense voltage window for fast charge initiation. If the battery fails either of these two **pre**-qualifications for charge, the bq2004 **enters** a **charge** pending mode, waiting for the battery voltage and temperature to become acceptable.

In the case of a battery that is too warm or too cold, the charge action starts when the battery temperature becomes acceptable. In the case of deeply discharged batteries (voltage too low), the **bq2004** waits until the battery voltage is at an acceptable level before **starting** fast charge. In the case of a faulty battery, **VBAT** may never reach an acceptable voltage level, causing the **bq2004** to remain in the **charge-pending** state. The **bq2004** continues to trickle charge (if enabled) the battery until the fast charge conditions are met.

Discharge-Before-Charge

The bq2004 supports discharge-before-charge on the battery, providing conditioning as well as capacity calibration. Once activated, the DIS pin goes active high until V_{CELL} falls below V_{EDV} , at which time fast charge qualification begins.

If $\overline{\text{DCMD}}$ is directly connected to Vss, automatic discharge-before-charge is enabled with the application of power to the bq2004, by battery replacement, or by a low-to-high transition on the $\overline{\text{INH}}$ pin. A negative-going pulse on $\overline{\text{DCMD}}$ causes the bq2004 to initiate a discharge-before-charge action on the battery regardless of charging activity. The $\overline{\text{DCMD}}$ pin is internally pulled up to $\overline{\text{Vcc}}$; therefore, not connecting this pin results in disabiling the discharge-before-charge function. See Figure 4.

TM₁ and TM₂ Pins

The **TM₁** and **TM₂** pins are three-level input pine used to select the various charge, top-off, and trickle rates, maximum safety times, and -ΔV/PVD holdoff period. Table 3 describes the various states selected by the TM₁ and TM₂ pins.

Fast Charge

Once temperature and voltage **prequalifications** are met and any **requested** discharging of the battery is completed, fast charging **begins** and continues until termination by one or more of the five **possible** conditions:

6/14

Sept. 1996 C

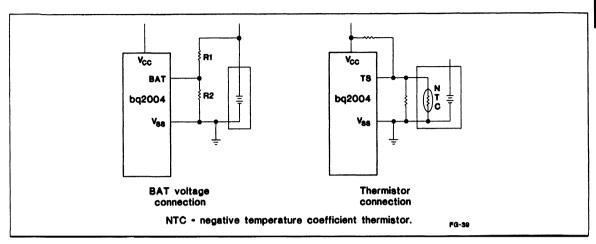


Figure 3. Voltage and Temperature Limit Measurement

- Delta temperature/delta time (ΔT/Δt)
- Negative delta voltage (-∆V) or peak voltage detect (PVD)
- Maximum temperature
- Maximum charge time
- Maximum battery voltage

Voltage Termination Hold-off

At the start of fast charging, there is a hold-off time during which the -AV and PVD terminations are disabled (see Table 3). Once past the initial fast charge hold-off time, -AV or PVD termination is re-enabled. AT/At, maximum cell voltage (MCV), and maximum temperature (TCO) terminations are not affected by the hold-off period.

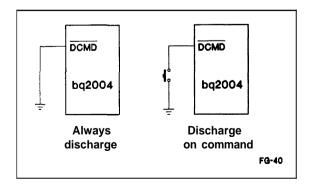


Figure 4. Discharge-Before-Charge Sopt. 1996 C

VSEL	Termination	
Low	PVD	
Float	-ΔV	
High	Disabled	

-∆V or Peak Voltage Detect Termination

The **bq2004** has two modes for voltage termination, depending on the state of the VSEL pin. VSEL high **enables peak** voltage detection; VSEL floating enables -AV detection; and VSEL low **disables** -AV and PVD terminations. -AV and PVD may be enabled or disabled at any time during the charge cycle. The **bq2004** makes a termination decision every 34 **seconds**. For -AV, if V_{BAT} is lower than any previously **measured** value by 12mV typical, the fast charge **phase** of the charge action is terminated. This equates to a -AV termination of -6mV per cell typical.

The $-\Delta V$ test is valid only for:

For peak voltage detect, the fast charge phase of the charge action is terminated when **VCELL** is lower than the previously **measured** values by 0 to -3mV per cell (-6mV at the BAT pin).

ΔT/Δt Fast Charge Termination

The **bq2004** makes a termination **decision** based **on** delta **temperature/delta** time **(\Delta T/\Delta t)** every 34 seconds. If **VTEMP** is 16mV (typical) **less** than the voltage **measured** 68 **seconds** previously, the **fast** charge phase of the charge is terminated.

The $\Delta T/\Delta t$ test is valid only for:

0.2 • Vcc ≤ **VTEMP** ≤ 0.4 • VCC

Maximum Voltage, Time, and Temperature Safety Terminations

The **bq2004** also terminates fast charge for maximum temperature (TCO), maximum time, and maximum voltage (MCV). MCV and **TCO** reference levels provide the **maximum** limits for battery voltage and temperature during faet charging. If either of **these limits** is **exceeded**, then fast charging or optional top-off charge is terminated. MCV is treated **as** a fault, so LED₁ and **LED₂** are switched low with **this** condition.

Maximum time selection is programmed using the TM_1 and TM_2 pins (see Table 3). Time **settings** are available for corresponding charge **rates** ranging from ${}^{C}4$ to ${}^{C}4$.

Temperature Monitoring

Temperature is represented **as** a voltage input on the bq2004 at the TS pin. Generally **this** voltage is developed from an NTC (negative temperature **coefficient**) thermistor referenced to the negative battery **terminal**. The **bq2004**

recognizes an internal voltage level of $V_{LTF} \approx 0.4 \cdot V_{CC}$ as the low-temperature fault (LTF) level.

Note: If Vreyn VITE, charging is inhibited (if a cycle has not yet stated) or terminated (if a cycle is in progress) except for the peak voltage detection (VSEL = high) mode.

In this mode, LTF is not used to qualify charge or terminate charge.

Similarly, the external reference voltage level presented at the TCO pin represents the high-temperature cut-off point at which fast charging is terminated. VTCO should always be less than VLTY to ensure proper device operation.

All temperature **prequalifications** and ΔT/Δt termination may be disabled by connecting TCO to Vss and fixing the TS pin level to 0.2 • Vcc with respect to SNS. ΔΤ/Δt termination sensitivity is user-adjustable, depending on the values of the external mistor-divider network.

Top-Off Charge

An optional top-off charge phase is selected to follow fast charge termination for charge rates from %2 to 4C. This option is selected through the TM1/TM2 programming pins (see Table 3). The charge control cycle is modified so that the MOD pin is activated for 260µs of every 2080µs. This results in a rate 1/3th that of fast charging. Top-off charge proceeds for a time equal to the fast charge safety time. Maximum time, temperature (TCO), and voltage (MCV) terminations are the only termination methods enabled during top-off. If the fast-charge phase of a charge terminates due to TCO, top-off charge pends until the temperature falls below HTF.

Table 3. Fast Charge Safety Timemold-Offpop-Off Table

Corresponding Fast Charge			Fast Charge Safety Time (minutes) PVD,-∆V Hold-Off Time (seconds)		Top-Off	Pulse- Trickle	Pulse- Trickle	
Rate	TM1	TM2	Typical	Typical	Rate	Rate	Period (Hz)	
C/4	Low	Low	360	137	Disabled	Disabled	Disabled	
c _{/2}	Float	Low	180	820	Disabled	^C /32	240	
1C	High	Low	90	410	Disabled	C/32	120	
2C	Low	Float	45	200	Disabled	^C /32	60	
4C	Float	Float	23	100	Disabled	^C /32	30	
C/2	High	Float	180	820	C/16	^C /64	120	
1C	Low	High	90	410	C/8	C/64	60	
2C	Float	High	45	200	C/4	^C /64	30	
4C	High	High	23	100	C/2	C/64	15	

Note:

 $T_A = 25$ °C, $V_{CC} = 5.0$ V.

8/14

Sept. 1996 C

Pulse-Trickle Charge

Pulse-trickle **charge is used** to compensate for self discharge of the battery while idle in the charger, and to bring a depleted battery to a valid charge voltage prior to fast charge. The battery pulse-trickles at the end of fast charge and top-off, and prior to charge (see Table 1).

In the pulse-trickle state, MOD is active for $260\mu s$ of a period specified by the state of TM_1 and TM_2 pins. The resulting trickle rate is C_{64} when top-off is enabled and C_{32} when top-off is disabled. Pulse-trickle and top-off can be disabled by tying TM_1 and TM_2 to VSa

Charge Inhibit

Fast charge, top-off, and pulse trickle may be inhibited by wing the $\overline{\text{INH}}$ input pin. When low, the bq2004 suspends all charge activity, drives all outputs to high impedance, and assumes a low-power operational state. When $\overline{\text{INH}}$ returns high, a fast-charge cycle is qualified and begins as soon as conditions allow.

Charge Current Control

The **bq2004** controls the charge current **through** the MOD output pin. The current control is designed to support implementation of a **constant-current** regulator. **See Figure** 5. Nominal regulated current is:

$I_{REG} = 0.225 V / R_{SNS}$

When **used** in **this configuration**, the charge current is monitored at the SNS input by the voltage drop across a resistor, Rsns. Rsns may be chosen to provide a variety of charging currents.

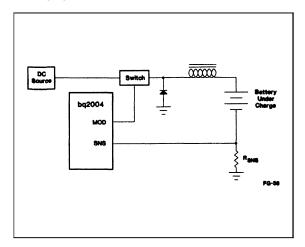


Figure 5. Constant-Current Switching Regulation

The MOD pin is switched high or low depending on the voltage input to the SNS pin. If the voltage at the SNS pin is less than VSNSLO (0.2V typical), the MOD output is switched high to gate charge current. When the SNS voltage is greater than VSNSHI (0.25V typical), the MOD output b switched low—+hutting off current from the supply.

The MOD pin can also be used to gate an external charging current source. When an external current source is used, a sense resistor is not required, and the SNS pin h connected to Vss. See Figure 6.

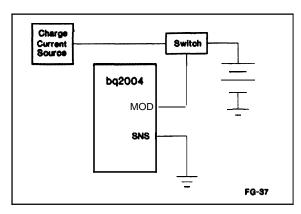


Figure 6. External Current Regulation

Sept. 1996 C 9/14

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V_{CC}	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3	+7.0	V	
		-20	+70	°C	Commercial
T_{OPR}	Operating ambient temperature	-40	+85	°C	Industrial "N"
TSTG	Storage temperature	-55	+125	°C	
TSOLDER	Soldering temperature		+260	°C	10 sec max.
TBIAS	Temperature under bias	-40	+85	°C	

Note:

Permanent device damage may occur if Absolute **Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. Exposure to conditions beyond the operational **limits** for extended periods of time may affect device reliability.

DC Thresholds (TA = TOPR; VCC ±10%)

Svmbol	Parameter	Ratina	Tolerance	Unit	Notes
V _{SNSHI}	High threshold at SNS resullg in MOD = Low	0.05 • Vcc	i0.025	v	
VSNSLO	Low threshold at SNS resulting in MOD = High	0.04 ° Vcc	±0.010	v	
V _{LTF}	Low-temperature fault	0.4 • Vcc	±0.030	v	V_{TEMP} ≥ VLTF inhibit4 terminates charge ¹
V _{HTF}	High-temperature fault	(1/4 • VLTF) + (3/4 • VTCO)	±0.030	v	VTEMP ≤ VHTF inhibits charge
V _{EDV}	End-of-discharge voltage	0.4 • Vcc	±0.030	V	~ C E L ≤ VEDV inhibits fast charge
V _{MCV}	Maximum cell voltage	0.8 • Vcc			V _{CELL} > V _{MCV} inhibit4 terminates charge

Note:

VCELL = VRAT - VSNS. VTEMP = VTS - VSNS.

1. VSEL = high disables low-temperature fault charge qualification.

10/14

Recommended DC Operating Conditions (TA - TOPR)

Symbol	Condition	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	V	
VCELL	BAT voltage potential	0		Vcc	V	V _{BAT} - V _{SNS}
VBAT	Battery input	0		Vcc	V	
V _{TEMP}	TS voltage potential	0		Vcc	V	VTS - VSNS
V _{TS}	Thermistor input	0		Vœ	V	
V _{TCO}	Temperature cutoff	0.2 • V cc	•	0.4 • Vcc	V	Valid ΔT/Δt range
V _{IH}	Logic input high	2.0			V	DCMD, INH
VIH	Logic input high	Vcc ⋅ 0.3			V	TM1, TM2, DSEL, VSEL
37	Logic input low			0.8	V	DCMD, INH
V _{IL}	Logic input low			0.3	v	TM ₁ , TM ₂ , DSEL, VSEL
V _{OH}	Logic output high	Vcc • 0.8			v	DIS, MOD, LED ₁ , LED ₂ , I _{OH} ≤ -10mA
V _{OL}	Logic output low			0.8	v	DIS, MOD, LED;, LED ₂ , IoL ≤ 10mA
Icc	Supply current		1	3	mA	Outputs unloaded
I _{SB}	Standby current			1	μA	INH = V _{IL}
Іон	DIS, LED ₁ , LED ₂ , MOD source	-10			mA	@V _{OH} = V _{CC} · 0.8V
I_{OL}	DIS, LED ₁ , LED ₂ , MOD sink	10			mA	$@V_{OL} = V_{SS} + 0.8V$
IL	Input leakage			±1	μA	$\overline{\text{INH}}$, BAT, V = V _{SS} to V _{CC}
10	Input leakage	50		400	μA	$\overline{\rm DCMD}$, V = V _{SS} to V _{CC}
I _{IL}	Logic input low source			70	μА	TM ₁ , TM ₂ , DSEL, VSEL, V = Vss to Vss + 0.3V
I _{IH}	Logic input high source	-70			μA	TM ₁ , TM ₂ , DSEL, VSEL, V = Vcc - 0.3V to Vcc
I _{IZ}	Tri-state	-2		2	μA	TM1, TM2, DSEL, and VSEL should be left disconnected (floating) for Z logic input state

Note:

All voltages relative to Vss.

Sept. 1996 C

11/14

Impedance

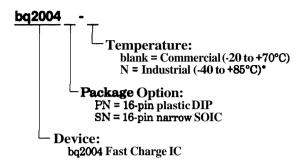
Symbol	Parameter	Minimum	Typical	Maximum	Unit
RBAT	Battery input impedance	50			MΩ
RTS	TS input impedance	50			MΩ
RTCO	TCO input impedance	50	•	•	MΩ
R _{SNS}	SNS input impedance	50			MΩ

Timing (TA = 0 to +70℃; VCC ±10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tpw	Pulse width for DCMD and INH pulse command	1			μв	
dfcv	Fast charge safety time variation	0.84	1.0	1.16	-	V _{CC} = 4.75V to 5.25V; T _A = 0 to 60°C; see Table 3.
t _{REG}	MOD output regulation frequency	-		300	kHz	Typical regulation capability; Vcc = 5.0V
t _{MCV}	V _{CELL} ≥ V _{MCV} valid period	1		2	sec	If VCELL > VMCV for tMCV during charge or top-off, then a transition of VCELL < VMCV is recognized as battery replaced. Otherwise, VCELL < VMCV is ignored.

Note: Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

12/14 Sept. 1996 C


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	10	Standby current ISB	Was 5 μA max; is 1 μA max
2	9	VSNSLO Rating	Was: V _{SNSHI} · (0.01 * V _{CC}) Is: 0.04 * V _{CC}
2	7	Correction in Peak Voltage Detect Termination section	Was: VCELL Is: VBAT
2	3	Added block diagram	Diagram insertion
2	7	Added VSEL/termination table	Table insertion
2	8	Added values to Table 3	Top-Off rate values

Change 1 = Apr. 1994 B 'Final" changes from Dec. 1993 A "Preliminary." Change 2 = Sept. 1996 C from Apr. 1994 B. Note:

13/14 Sept. 1996 C

Ordering Information

• Contact factory for availability.

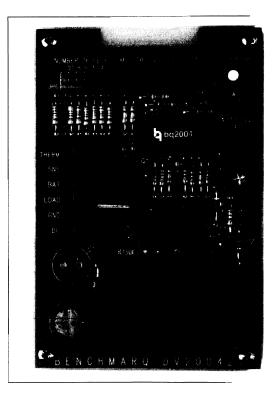
14/14

Product Brief DV2004L1

Fast Charge Development System

Control of PNP Power Transistor

Features


- bq2004 fast charge control evaluation and development
- Charge current sourced from an on-board frequency-modulated linear regulator (up to 3.0 A)
- Fast charge of 4 to 10 NiCd or NiMH cells and one user-defined selection
- Fast charge termination by delta temperature/delta time (\(\Delta \T/\Delta t \)), negative delta voltage (-\Delta V) or peak voltage detect, maximum temperature, maximum time, and maximum voltage
- -ΔV/peak voltage detect, hold-off, top-off, maximum time, and number of cells are jumper-configurable
- Programmable charge status display
- Discharge-before-charge control with push-button switch or auto discharge-before-charge with jumper
- Inhibit fast charge by logic-level input

General Description

The DV2004L1 Development System provides a development environment for the bq2004 Fast Charge IC. The DV2004L1 incorporates a bq2004 and a frequency-modulated linear regulator to provide fast charge control for 4 to 10 NiCd or NiMH cells.

The fast charge is terminated by any of the following: $\Delta T/\Delta t$, $-\Delta V$ or peak voltage detect, maximum temperature, maximum time, maximum voltage, and inhibit command. Jumper settings select the voltage termination mode, the hold-off, top-off, and maximum time limits, and automatic discharge-before-charge.

The user provides a power supply and batteries. The user configures the DV2004L1 for the number of cells, voltage, charge termination mode, and maximum charge time (with or without top-off), and commands discharge-before-charge with push-button switch S1.



Please review the bq2004 data sheet before using the DV2004L1 board.

A full data sheet for this product is available on our web site (http://www.benchmarq.com),or you may contact the factory for one.

Oct 1994 Rev. A Board

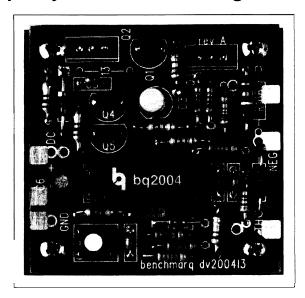
DV2004L1 Board Schematic

Rev. A Board Oct. 1994

Fast Charge Development System

Control of Frequency-ModulatedLinear Regulator

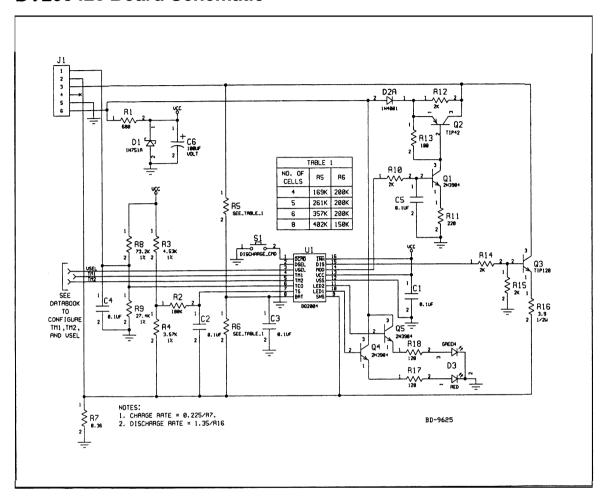
Features


- bq2004 fast charge control evaluation and development
- Charge current controlled with frequencymodulated linear design
- Fast charge of 2 to 12 NiCd and/or NiMH cells
- Fast charge termination by -ΔV, PVD, ΔT/Δt, maximum temperature, time, and voltage
- Discharge-before-charge option

General Description

The bq2004L3 Development System provides a cost-effective component-reduced development environment for the bq2004 Fast Charge IC. The DV2004L3 incorporates a frequency-modulated linear regulator for fast charge control of NiCd and/or NiMH cells.

The bq2004 MOD output drives a transistor that switches the bipolar transistor Q2. The switching frequency of the MOD output depands on the voltage of the SNS pin. The bq2004 switches MOD to maintain a nominal 0.225V across resistor R7. The charge current can easily be adjusted by modifying the value of R7.


Fast charge is terminated by any of the following: $-\Delta V$ or peak voltage detect (PVD), $\Delta T/\Delta t$, maximum time, and maximum voltage. Jumper settings select the -AV enabled state, select the hold-off, top-off, and maximum time limits.

The user provides a power supply and batteries.

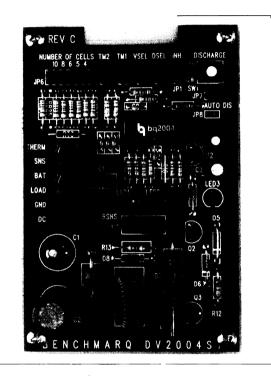
A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

DV2004L3 Board Schematic

Fast Charge Development System

Control of On-Board p-FET Switch-Mode Regulator

Features

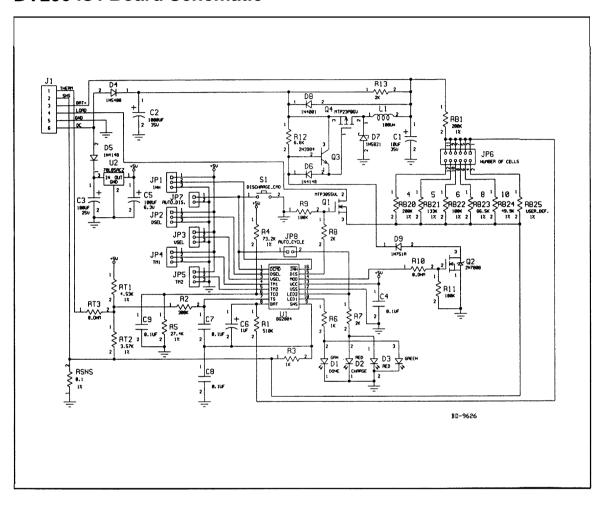

- bq2004 fast charge control evaluation and development
- Charge current sourced from an on-board switch-mode regulator (up to 3.0 A)
 - Fast charge of 4 to 10 NiCd or NiMH cells and one user-defined selection
- Fast charge termination by delta temperature/delta time (ΔΤ/Δt), negative delta voltage (-ΔV) or peak voltage detect, maximum temperature, maximum time, and maximum voltage
- -ΔV/peak voltage detect, hold-off, top-off, maximum time, and number of cells are jumper-configurable
- Programmable charge status display
- Discharge-before-charge control with push-button switch or auto discharge-before-charge with jumper
- Inhibit fast charge by logic-level input

General Description

The DV2004S1 Development System provides a development environment for the harmonic Than DV2004S1 incorporates a bq2004 and a buck-type switch-mode regulator to provide fast charge control for 4 to 10 NiCd or NiMH cells.

The fast charge is terminated by any of the following: $\Delta T/\Delta t$, $-\Delta V$ or peak voltage detect, maximum temperature, maximum time, maximum voltage, and inhibit command. Jumper settings select the voltage termination mode, the hold-off, top-off, and maximum time limits, and automatic discharge-before-charge.

The user provides a power supply and batteries. The user configures the DV2004S1 for the number of cells, voltage, charge termination mode, and maximum charge time (with or without top-off), and commands discharge-before-charge with push-button switch S1.



Please review the bq2004 data sheet before using the DV2004S1 board.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

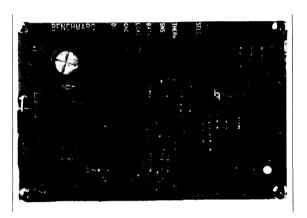
Jun. 1995 Rev. C Board

DV2004S1 Board Schematic

Rev. C Board Jun. 1995

Nickel/Li-lon Development System

Control of On-Board p-FET Switch-Mode Regulator


Features

- bq2004 fast charge control evaluation and development for NiMH, NiCd, and Li-Ion chemistries
- ➤ Charge current sourced from an on-board switch-mode regulator (up to 2.0 A)
- ➤ Fast charge of 3, 6, or 9 NiCd or NiMH cells and 1, 2, or 3 Li-Ion cells
- Fast charge termination by delta temperature/delta time (ΔΤ/Δt), negative delta voltage (-ΔV) or peak voltage detect, maximum temperature, maximum time, and maximum voltage for nickel-based and constant-current to constant-voltage for Li-Ion
- -ΔV/peak voltage detect, hold-off, top-off, maximum time, and number of cells are jumper-configurable
- Programmable charge status display
- Discharge-before-charge control with push-button switch or auto discharge-before-charge with jumper
- Inhibit fast charge by logic-level input

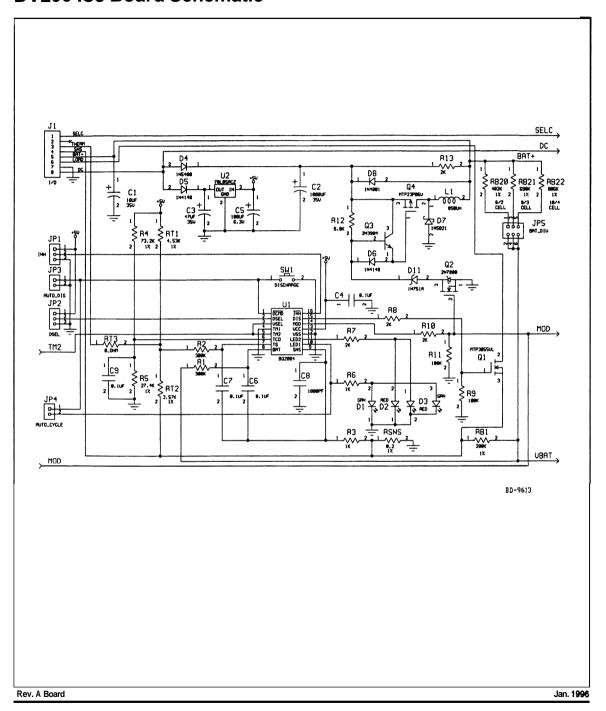
General Description

The DV2004S3 Development System provides a dual-chemistry development environment for the bq2004 Fast Charge IC. The DV2004S3 incorporates a bq2004 and a buck-type switch-mode regulator to provide fast charge control for 3, 6, or 9 NiCd or NiMH cells and 1, 2, or 3 Li-Ion cells.

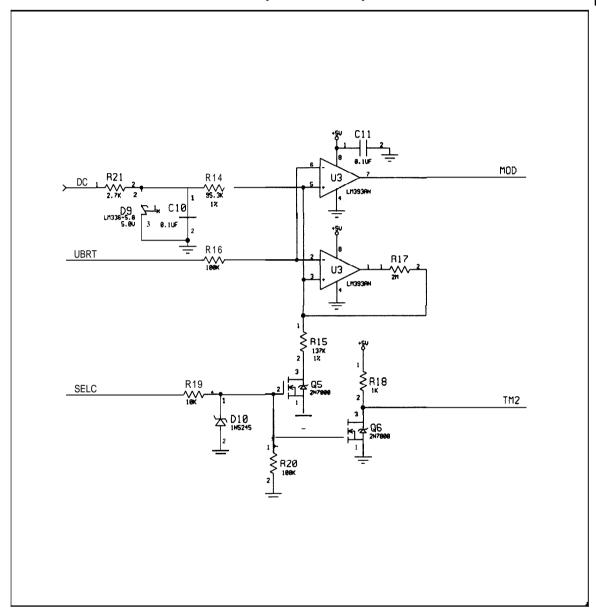
The fast charge is terminated by any of the following: $\Delta T/\Delta t$, -AV or peak voltage detect, maximum temperature, maximum time, maximum voltage, and inhibit command. Jumper settings select the voltage termination mode, the hold-off, top-off, and maximum time limits, and automatic discharge-before-charge.

Fast charge for Li-Ion transitions from a constant-current to constant-voltage regulation. Voltage is regulated to within 1%. Charge complete is indicated at the maximum charge time.

The user provides a power supply and batteries. The user configures the DV2004S3 for the number of cells and charge termination mode, and commands discharge-before-charge with push-button switch S1.


Please review the bq2004 data sheet and application note entitled "Using NiMH and Li-Ion Batteries in Portable Applications," before using the DV2004S3 board.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.


an. 1996 Rev A Board

DV2004S3 Board Schematic

DV2004S3 Board Schematic (Continued)

Jan. 1996 Rev. A Board

Notes

Rev. A Board Jan. 1996

bq2004E

Fast Charge IC

Features

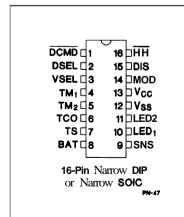
- Supports fast charge and conditioning of nickel cadmium, nickel-metal hydride, and lithium-ion batteries
- Supports logic-level-controlled low-power mode (< 1µA standby current)
- Optional peak voltage detect (PVD) fast-charge termination
- Flexible current regulation:
 - Frequency-modulated switching current regulator
 - Gating control for use with external regulator
- 150-mil SOIC is ideal for integration into portable systems
- Pre-charge qualification for temperature and voltage faults
- Programmable LED outputs display battery and charge status
- Fast charge termination by A temperature/∆ time, -AV or peak voltage, and maximum temperature, time, and voltage

General Description

The bq2004E Fast Charge IC provides comprehensive fast charge control functions together with high speed switching power control circuitry for nickel and lithium-ion-based rechargeable chemistries.

Flexible control of constant-current or constant-voltage charging mpply allows the bq2004E to be the basis of a cost-effective system-integrated charger for batteries. High-efficiency switched constant-current or conetant-voltage regulation is accomplished using the bq2004E ae a frequency-modulated controller. The bq2004E may alternatively be used with a transistor to gate an external charging current or in a cost-effective frequency-modulated linear regulator.

Switch-activated or automatic discharge-before-charge allows bq2004E-based chargers to support battery conditioning and capacity determination.


Fast charge may begin on application of $V\infty$ to the bq2004E, replacement of the battery, or use of the INH pin. For safety, fast charge is inhibited urtil the battery temperature and voltage are within configured limits.

Temperature, voltage, and time are monitored throughout fast charge. Fast charge is terminated by any of the following:

- Delta temperature/delta time (△T/△t)
- Negative delta voltage (-△V) or peak voltage detect
- Maximum temperature
- Maximum time
- Maximum voltage

Following fast charge, the **bq2004E** proceeds with an optional pulsed top-off and a pulsed trickle charge. Figure 1 shows a block diagram of the **bq2004E** Fast Charge IC.

Pin Connections

Pin Names

DCMD	Discharge command	SNS	Sense resistor input
DSEL	Display select	LED ₁	Charge status output 1
VSU	Voltage termination select	LED ₂	Charge status output 2
TM_1	Tiermode select 1	Vss	System ground
TM ₂	Timer mode select 2	Vcc	5.0V ±10% power
TCO	Temperature cutoff	MOD	Charge current control
TS	Temperature sense	DIS	Discharge control output
BAT	Battery voltage	INH	Charge inhibit input

Sept. 1996 B

Pin Descriptions

DCMD Discharge-before-charge control input

DCMD controls the discharge-before-charge function of the bq2004E. A negative-going pulse on DCMD initiates a discharge to EDV (0.4 • Vcc) followed by a charge if conditions allow. By tying DCMD to ground, automatic discharge-before-charge is enabled by the application of power, by battery replacement, or by a low-to-high tramition on the INH pin. DCMD is pulled up internally.

DSEL Display select input

This three-level input controls the **LED12** charge status indication. **See** Table 2 **for** details.

VSEL Voltage termination select input

This three-level input controls the **voltage**-termination technique **used** by the **bq2004E**.

TM₁, Timer mode inputs (TM_{1,2})
TM₂

TM₁ and **TM₂** are **three-level inputs** that control the settings for the fast charge safety timer and "top-off"/trickle charge control. See Table 3 for details.

TCO Temperature **cut-off** threshold input

Minimum allowable battery temperaturesensor voltage. If the potential between TS and SNS is less than the voltage at the TCO input, then any fast charging or top-off charging is terminated.

TS **Temperature sense** input

Input for battery temperature monitoring negative temperature coefficient (NTC) thermistor. TS > Vcc - 0.5V disables temperature sensing.

SNS Charging current sense input

SNS controls the switching of MOD based on an external sense resistor network. This provides the reference potentials for both the TS and BAT pins. If SNS is connected to Vss, then MOD switches high at the beginning of charge, and low at the end of charge. See Figure 2 and Table 1 for details.

BAT Battery voltage input

BAT is the battery voltage sense input. This potential is limited to between 0.4 • Vcc and 0.8 • Vcc and is generally developed by a high impedance resistor-divider network connected between the positive and the negative terminals of the battery.

LED₁, Charge status outputs

LED₂

Push-pull outputa indicating charging status.

See Figure 2 and Table 2 for details.

Vss Ground

Vcc Vcc supply input

5.0V, ±10% power input,

MOD Charge current control output

MOD is a push-pull output that is **used** to control the **charging** current to the battery. MOD **switches** high to enable charging current to flow and low to inhibit charging current flow. **See Figure** 2 and Table 1 for details.

DIS Discharge control output

Push-pull output used to control an external transistor to discharge the battery before charging. DIS is active high.

INH Charge inhibit input

When low, the **bq2004E** suspends all charge actions, drives all outputa to high impedance, and assumes a low-power operational state. When **transitioning from** low to high, a charge cycle is initiated. See page 8 for details.

Functional Description

Figure 2 **illustrates** charge control and display status during a **bq2004E** charge cycle. Table 1 outlines the various **bq2004E** operational states and their **associated** conditions, which are described in detail in the following sections.

Charge Action Control

The **bq2004E** initiates a charge by the application of power on **Vcc**, by a **battery replacement**, or by a low-to-high tramition on the INH pin. Control of the <u>charge</u> action is then determined by the **inputs from** DCMD, VSEL, TS, BAT, and TM_{1,2}.

Sept. 1996 B

Following charge initiation, the **bq2004E** checks for acceptable battery temperature (between LTF—low-temperature fault and HTF—high-temperature fault) and battery voltage (between EDV—end-of-discharge voltage and MCV—maximum cell voltage). Fast charging begins when the voltage and temperature conditions are within these limits. Once the fast charging process begins, the **bq2004E** tests for the full-charge conditions: $\Delta T/\Delta t$ and/or $\Delta T/\Delta t$ and/or $\Delta T/\Delta t$ and/or $\Delta T/\Delta t$ and voltage safety terminations.

Charge Status Indication

Table 1 outlines the various charge action states and the associated MOD and DIS output states. Table 2 describes the charge status indicated by the **LED**₁ and **LED**₂ outputs, which may be connected directly to an **LED** indicator. In all cases, if the battery voltage at the BAT pin exceeds the maximum cell voltage (0.8 • Vcc), the **LED**₁ and **LED**₂ outputs are held low.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum and minimum allowable values. The battery voltage sense input, BAT, for a battery pack should be divided to between **0.8** • **Vcc** and **0.4** • **Vcc** for **proper** operation. A **resistor-divider** ratio of:

$$\frac{R1}{R2} = \frac{N}{2} - 1$$

is recommended to maintain the battery voltage within the valid range, where **N** is the number of cells, R1 is the resistor connected to the positive battery terminal, and R2 is the resistor connected to the respective SNS pin. See Figure 3.

Note: The resistor-divider network impedance should be above $200K\Omega$ to protect the **bq2004E**.

The thermistor used for temperature measurement should have a negative temperature coefficient. The temperature **sense** voltage input at TS is developed using a resistor-thermietor network between **Vcc** and **SNS**. See Figure 3.

Battery Removal Detection

Battery removal is **sensed** by **VCELL** (**VBAT** · **VSNS**) rising above **VMCV** (**0.8** · **VCC**). An **external resistor**, REXT, between the battery **positive** lead and the charging **supply** input pulls **VCELL** above **VMCV** to detect battery removal.

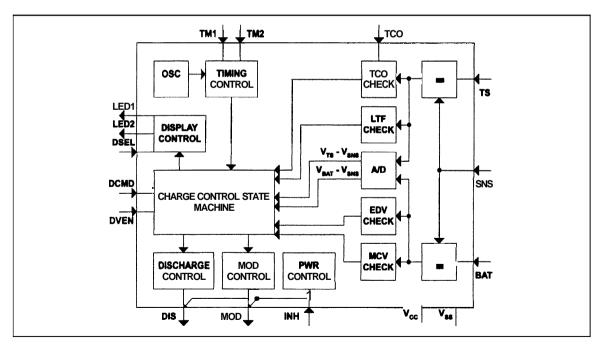


Figure 1. Block Diagram

Sept. 1996 B 3/14

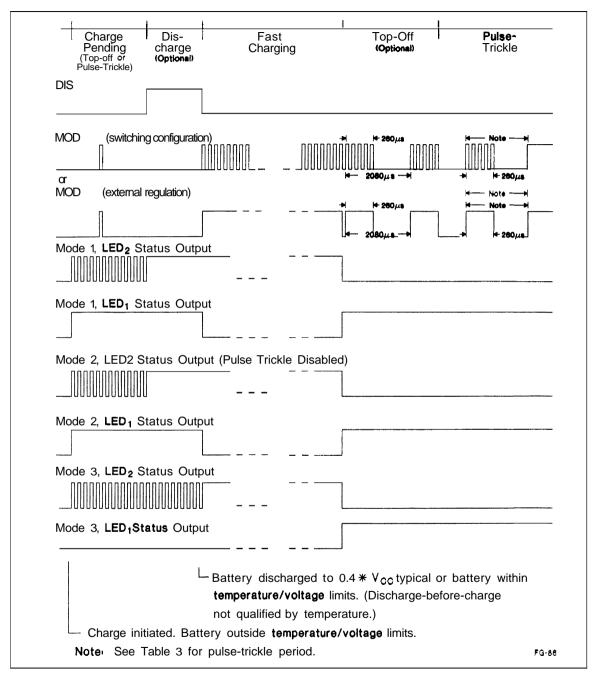


Figure 2. Example Charging Action Events

4/14 Sept. 1996 B

Initiating a Charge Action

A battery charge action is initiated with a battery insertion, an application of Voc to the bq2004E, a a low-to-high transition on the INH pin. Battery insertion is recognized when the voltage at the BAT pin falls from above the internal VMCV reference level to below that level. When Voc is applied to the bq2004E or INH transitions from low to high, a charge action begins after a brief reset period.

Temperature and Voltage Prequalification

A charge action **is** prequalified by the battery temperature and voltage. Before fast charging can begin, the battery temperature and voltage must fall within predetermined acceptable limits.

VCELL is compared to an internal low-voltage reference, VBDV (0.4 • VCC), which is the minimum acceptable battery voltage for fast charging. The VTEMP (VTS - VSNS) voltage is compared to an internal hot-temperature fault

Table 1. bq2004E Operational Summary

Charge Action State	Conditions	MOD Output	DIS Output
Battery absent	VCELL ≥ VMCV	Trickle charge activated per V _{SNS} for period specified in Table 3*	Low
Charge initiation	Vcc applied, Vcril, drops from ≥ Vmcv to < Vmcv (battery insertion), or INH transitions low to high with battery inserted	-	-
Discharge-before-charge (optional)	DCMD high-to-low pulse or tied to Vss on charge initiation; VEDV < VCELL < V MCV	Low	High
Pending	Charge initiation occurred and VTEMP ≥ VLTF or VTEMP ≤ VHTF or VCELL < Vmv	Activated per V _{SNS} for 260µs of every 2080 for top-off period; then trickle (see trickle state)	Low
Fast charging	Charge initiation occurred and VHTF < VTEMP < VLTF and VEDV < VCELL < VMCV	Low if Vsns > 250mV, nominal; high if Vsns < 200mV, nominal	Low
Charge complete	-AV ≥ 6mV/cell or PVD ≥ 0 to 3mV/cell or AVTEME/ΔT > 14mV/minute or VTEMP < VTCO or VTEMP > VLTF or maximum time or maximum voltage		-
Top-off(optional; see Table 3)	Charge complete and top-off time not exceeded and VTEMP > VTCO and VCELL < VMCV	Activated per V _{SNS} (see fast state) for 260μs of every 2080μs	Low
Trickle (Optional; see Table 3)	Charge complete and top-off disabled or top-off complete	Trickle charge activated per V _{SNS} for period specified in Table 3 •	Low
Charge inhibit	INH low	Z	Z

Definitions: $V_{CELL} = V_{BAT} \cdot V_{SNS}$; $V_{MCV} = 0.8 \cdot V_{CC}$; $V_{EDV} = 0.4 \cdot V_{CC}$;

 $V_{TEMP} = V_{TS} - V_{SNS}$; $V_{LTF} = 0.4 \cdot V_{CC}$; $V_{HTF} = ((\frac{1}{3} \cdot V_{LTF}) + (\frac{2}{3} \cdot V_{TCO}))$.

*DSEL = Z also disables trickle.

Sept. 1996 B

Table 2. bq2004E LED Output Summary

Mode 1	Charge Action State	LED ₁	LED ₂
	Battery absent	Low	Low
	Fast charge pending or a discharge-before-chargein progress	High	High
DSEL = Vss	Fast charging	Low	High
	Fast charge complete, top-off, and/or trickle	High	Low
Mode 2	Charge Action State (See note)	LED ₁	LED ₂
	Battery absent	Low	Low
DSEL =	Fast charge pending or discharge-before-charge in progress	High	High
Floating	Fast charging	Low	High
	Fast charge complete, top-off, and/or trickle	High	Low
Mode3	Charge Action State	LED ₁	LED ₂
	Battery absent	Low	Low
DSEL = Vcc	Fast charge pending or discharge-before-chargein progress	Low	1/8 second high 1/8 second low
	Fast charging	Low	High
	Fast charge complete, top-off, and/or trickle	High	Low

Note: Pulse trickle is inhibited in Mode 2.

reference, Vhttf ((1/3 • VLTF) + (2/3 • VTCO)) and optionally to an internal low-temperature fault reference, VLTF (0.4 • VCC). These limits establish the acceptable battery and temperature sense voltage window for fast charge initiation. If the battery fails either of these two prequalifications for charge, the bq2004E enters a charge-pending mode, waiting for the battery voltage and temperature to become acceptable.

In the case of a battery that is too warm or too cold, the charge action starts when the battery temperature becomes acceptable. In the case of deeply discharged batteries (voltage too low), the **bq2004E waits** until the battery voltage is at an acceptable level before starting fast charge. In the case of a faulty battery, **VBAT** may never reach an acceptable voltage level, causing the **bq2004E** to remain in the charge-pending state.

During the charge-pending mode, the **bq2004E** continues to **pulse** at $\frac{1}{8}$ of the fast charge rate until the fast charge conditions are met or the top-off time-out period is exceeded. The **bq2004E** then trickle charges until the fast charge conditions are met.

Discharge-Before-Charge

The **bq2004E** supports discharge-before-charge on the battery, providing conditioning as well as capacity calibration. **Once** activated, the DIS pin goes active high until **VCELL** falls below **VEDV**, at which time fast charge **qualification begins**.

If DCMD is directly connected to Vss, automatic discharge-before-charge is enabled with the application of power to the bq2004E or by battery replacement. A negative-going pulse on DCMD causes the bq2004E to initiate a discharge-before-charge action on the battery regardless of charging activity. The DCMD pin is internally pulled up to Vcc; therefore, not connecting this pin results in disabling the discharge-before-chargefunction. See Figure 4.

TM₁ and TM₂ Pins

The TM_1 and TM_2 pins are three-level input pins used to select the various charge, top-off, and trickle rates, maximum safety times, and **-\Delta V/PVD** holdoff period. Table 3 describes the various states selected by the TM_1 and TM_2 pins.

6/14 Sept. 1996 B

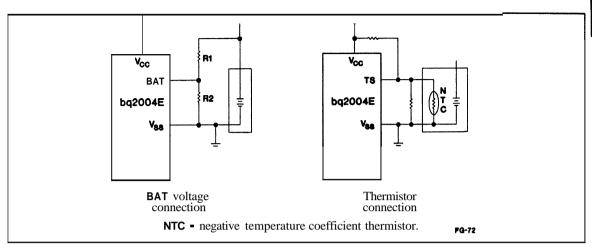


Figure 3. Voltage and Temperature Limit Measurement

Fast Charge

Once temperature and voltage **prequalifications** are met and any requested **discharging** of the **battery** is completed, fast charging **begins** and continues until termination by one or more of the five possible **termination** conditions:

- Delta temperature/delta time (ΔT/Δt)
- Negative delta voltage (·ΔV) or peak voltage detect (PVD)
- Maximum temperature
- Maximum charge time
- Maximum battery voltage

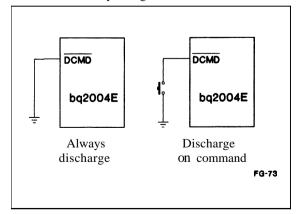


Figure 4. Discharge-Before-Charge

Voltage Termination Hold-off

At the start of fast charging, there is a hold-off time during which the -AV, PVD, and AT/At training are disabled (see Table 3). During hold-off, MOD is active for 1/3th of the charge rate. Once past the initial fast charge hold-off time, -AV, PVD, and AT/At terminations are re-enabled and MOD is active for fast charging per Table 1. Maximum cell voltage (MCV), and maximum tamperature (TCO) terminations are not affected by the hold-off period. The hold-off time is not included in the Fast Charge Safety Time.

VSEL	Termination
Low	PVD
Float	-ΔV
High	Disabled

-∆V or Peak Voltage Detect Termination

The **bq2004E** has two modes for voltage **termination**, depending **on** the state of the VSEL pin. VSEL high enables peak voltage detection; VSEL floating **enables** AV **detection**; and VSEL low **disables** AV and PVD terminations. AV and PVD may be enabled or disabled at any time during the charge cycle. The **bq2004E** makes a **termination** decision every 17 **seconds**. For **AV**, if V—ie lower than any **previously** measured value by **12mV** typical, **the** fast charge phase of the charge action is **ter**minated. This equates to a **AV** termination of **-6mV** per cell typical. The **AV** test **is** valid only for:

7/14

0.4 • Vcc ≤ Vcrij. ≤ 0.8 • Vcc

For peak voltage detect, the fast charge **phase** of the charge action **is** terminated when **VCELL is** lower than any previously measured value by **0** to **-3mV** per **cell** (-6mV at the BAT pin).

ΔT/Δt Fast Charge Termination

The bq2004E makes a termination decision based on delta temperature/delta time ($\Delta T/\Delta t$) every 34 seconds. If VTEMP is 16mV (typical) less than the voltage measured 68 seconds previously, the fast charge phase of the charge is terminated. The $\Delta T/\Delta t$ test is valid only for:

 $0.2 \cdot V_{CC} \le V_{TEMP} \le 0.4 \cdot V_{CC}$

Maximum Voltage, Time, and Temperature Terminations

The bq2004E also terminates fast charge for maximum temperature (TCO), maximum time, and maximum voltage (MCV). MCV and TCO reference levels provide the maximum limits for battery voltage and temperature during fast charging. If either of these limits is exceeded, then fast charging or optional top-off charge is terminated. MCV is treated as a fault, so LED1 and LED2 are switched low with this condition.

Masimum time selection is programmed using the TM₁ and TM₂ pins (see Table 3). Time settings are available for corresponding charge rates ranging from ^C/₄ to ⁴C.

Temperature Monitoring

Temperature is represented as a voltage input on the bq2004E at the TS pin. Generally this voltage is developed from an NTC (negative temperature coefficient) thermistor referenced to the negative battery terminal. The bq2004E recognizes an internal voltage level of $V_{LTF} = 0.4 \cdot V_{CC}$ as the low-temperature fault (LTF) level.

Note: If VTEMP ≥ VLTP, charging is inhibited (if a cycle has not yet started) or terminated (if a cycle is in progress).

Similarly, the external reference voltage level presented at the **TCO** pin **represents** the high-temperature cut-off point at which **fast** charging is terminated. VTCO should always be **less than VI** or **ensure** proper device operation.

All temperature prequalifications and $\Delta T/\Delta t$ termination may be disabled by connecting TCO to Vss and tying the TS pin to Vcc. $\Delta T/\Delta t$ termination sensitivity is user-adjustable, depending on the values of the external resistor-divider network.

Top-Off Charge

An optional **top-off** charge phase is selected to follow fast charge termination for charge rates from %2 to 4C. **This** option is selected through the **TM1/TM2** programming **pins** (see Table 3). **The charge** control cycle is **modified** so that the **MOD** pin is **activated** for **260µs** of every 2080µs. This **results** in a rate 1/8th that of fast **charging**. **Top-off** charge **proceeds** for a time equal to 4/17 of the fast charge safety time (0.235 • safety time).

Table 3. Fast Charge Safety Time/Hold-Off/Top-Off Table

Foot Charma				Fast Charge Safety Time (minutes)	PVD, -ΔV, and ΔT/Δt Hoid-Off Time (seconds)	T 0#	Pulse-	Pulse-
Fast Charge Rate	Chemistry	TM1	TM2	Typical	Typical	Top-Off Rate	Trickle Rate*	Trickle Period (Hz)
C/4	Li-Ion	Low	Low	325	137	Disabled	Disabled	Disabled
C/2	NiCd	Float	Low	154	546	Disabled	C/512	15
1C	NiCd	High	Low	77	273	Disabled	C/512	7.5
2C	NiCd	Low	Float	39	137	Disabled	C/512	3.75
4C	NiCd	Float	Float	19	68	Disabled	C/512	1.88
C/2	NiMH	High	Float	154	546	C/16	C/512	15
1C	NiMH	Low	High	77	273	C/8	C/512	7.5
2C	NiMH	Float	High	39	137	C/4	C/512	3.75
4C	NiMH	High	High	19	68	C/2	C/512	1.88

Note:

 $T_A = 25$ °C, $V_{CC} = 5.0$ V.

*DSEL = Z disables pulse trickle

8/14 Sept. 1996 B

Maximum time, temperature (TCO), and voltage (MCV) terminations are the only termination **methods** enabled during top-off. If the fast-charge phase of a charge terminates due to TCO, top-off charge pends until the temperature falls below high temperature fault (HTF).

Pulse-Trickle Charge

Pulse-trickle charge is **used** to compensate for **self-dis**charge of the battery while idle in the **charger**. The battery pulse-trickles at the end of fast charge and **top-off** (see Table 1).

In the pulse-trickle state, MOD is active for **260µs** of a period specified by the state of **TM1** and **TM2** pine. The resulting trickle rate is **C512**. **Pulse-trickle** and top-off can be disabled by tying **TM1** and **TM2** to **Vss. Pulse** trickle can also be **disabled** when DSEL = Z.

For pre-charge qualification, MOD is active for 260µs of every 2080µs, resulting in a rate ½th that of the fast charge rate. MOD continues to pulse at a ½s the rate for the top-off time-out period and then pulse trickles until the fast charge conditions are met. This is useful for bringing up the voltage on a battery after long storage periods.

Charge Inhibit

Fast charge, top-off, and pulse trickle may be inhibited by using the INH input pin. When low, the bq2004E suspends all charge activity, drives all outputs to high impedance, and assumes a low-power operational state. When INH returns high, a fast-charge cycle is qualified and begins as soon as conditions allow.

Charge Current Control

The **bq2004E** controls the charge current through the MOD output pin. The current control is designed to support implementation of a constant-current regulator. See Figure 6. Nominal regulated current is:

$I_{REG} = 0.225 V / R_{SNS}$

When used in this configuration, the charge current is monitored at the SNS input by the voltage drop across a resistor, Rsns. Rsns may be chosen to provide a variety of charging currents.

The MOD pin is switched high or low depending on the voltage input to the SNS pin. If the voltage at the SNS pin is less than V_{SNSIO} (0.2V typical), the MOD output is switched high to gate charge current. When the SNS voltage is greater than V_{SNSII} (0.25V typical), the MOD output is switched low—shutting off current from the supply.

The MOD pin can also be used to regulate constant voltage. For Li-Ion charge control, the **bq2004E** provides current-limited voltage regulation and *charge* termination based on time and temperature. See Figure 6.

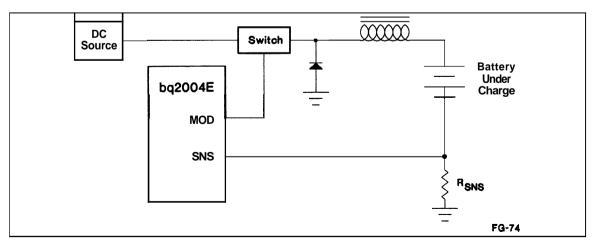


Figure 5. Constant-Current Switching Regulation

Sept. 1996 B 9/14

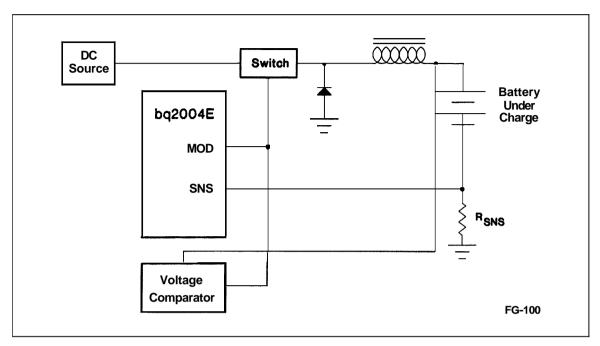


Figure 6. Constant-Voltage Regulation

10/14 Sept. 1996 B

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding V cc relative to Vss	-0.3	+7.0	V	
		-20	+70	္	Commercial
Topr	Operating ambient temperature	-40	+85	°C	Industrial "N"
TsTG	Storage temperature	-55	+125	°C	
TSOLDER	Soldering temperature		+260	ပ္	10 sec max.
TBIAS	Temperature under bias	-40	+85	္	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are exceeded.** Functional operation **should** be limited to the Recommended DC **operating Conditions** detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended **periods of** time may **affect** device reliability.

DC Thresholds (TA = TOPR; VCC ±10%)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
V _{SNSHI}	High threshold at SNS resulting in MOD = Low	0.05 • Vcc	±0.025	V	
Vsnslo	Low threehold at SNS resulting in MOD = High	0.04 • Vcc	±0.010	v	
VLTF	Low-temperature fault	0.4 • Vcc	M.030	V	VTEMP ≥ VLTF inhibits/ terminates charge
V _{HTF}	High-temperature fault	(1/3 • VLTF) + (2/3 • VTCO)	M.030	V	VTEMP ≤ VHTF inhibits
V _{EDV}	End-of-discharge voltage	0.4 • Vcc	±0.030	v	VCELL < VEDV inhibits fast charge
V _{MCV}	Maximum cell voltage	0.8 • Vcc	±0.030	v	VCELL > VMCv inhibits/ terminates charge

Note: $V_{CELL} = V_{BAT} - V_{SNS}$. $V_{TEMP} = V_{TS} - V_{SNS}$.

Sept. 1996 B

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
v_{cc}	Supply voltage	4.5	5.0	5.5	V	
VCELL	BAT voltage potential	0		Vcc	V	VBAT - VSNS
VBAT	Battery input	0	-	Vcc	V	
VTEMP	TS voltage potential	0	•	Vcc	V	V _{TS} - V _{SNS}
		0	-	Vcc - 1.5	V	Valid temperature sensing
V_{TS}	Thermistor input	V cc • 0.5		Vcc		Disable temperature sensing
V _{TCO}	Temperature cutoff	0.2 * Vcc	•	0.4 • Vcc	V	Valid ∆T/∆t range
V _{IH}	Logic input high	2.0			V	DCMD, INH
V IM	Logic input high	Vcc - 0.3			V	TM1, TM2, DSEL, VSEL
$V_{\rm IL}$	Logic input low			0.8	V	DCMD, INH
A IT	Logic input low			0.3	V	TM ₁ , TM ₂ , DSEL, VSEL
Vow	Logic output high	Vcc • 0.8	-	-	v	DIS, MOD, LED ₁ , LED ₂ , I _{OH} ≤ -10mA
Vol	Logic output low			0.8	v	DIS, MOD, LED ₁ , LED ₂ , IoL ≤ 10mA
Icc	Supply current		1	3	mA	Outputs unloaded
I _{SB}	Standby current			1	μA	ĪNH = V _{IL}
Іон	DIS, LED ₁ , LED ₂ , MOD source	-10			mA	$@V_{OH} = V_{CC} \cdot 0.8V$
IoL	DIS, LED ₁ , LED ₂ , MOD sink	10			mA	@V _{OL} = V _{SS} + 0.8V
$I_{ m L}$	Input leakage			±1	μA	$\overline{\text{INH}}$, BAT, V = V _{SS} to V _{CC}
11.	Input leakage	50		400	μA	DCMD, V = Vss to Vcc
In	Logic input low source			70	μA	TM ₁ , TM ₂ , DSEL, VSEL, V = Vss to Vss + 0.3V
I _{IH}	Logic input high source	-70			μA	TM ₁ , TM ₂ , DSEL, VSEL, V = V _{CC} - 0.3V to V _{CC}
I_{IZ}	Tri-state	-2	•	2	μA	TM1, TM2, DSEL, and VSEL should be left disconnected (floating) for Z logic input state

Note:

All voltages relative to Vss.

12/14

Sept. 1996 B

Impedance

Symbol	Parameter	Minimum	Typical	Maximum	Unit
RBAT	Battery input impedance	50			MΩ
RTS	TS input impedance	50			MΩ
RTCO	TCO input impedance	50			MΩ
Rsns	SNS input impedance	50			MΩ

Timing (TA = 0 to +70°C; VCC ±10%)

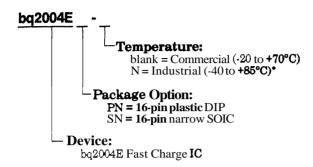
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Note8
tpw	Pulse width for DCMD and TNH pulse command	1			με	
dfcv	Fast charge safety time variation	0.84	1.0	1.16		Vcc = 4.75V to 5.25V; T _A = 0 to 60°C; see Table 3.
treg	MOD output regulation frequency			300	kHz	Typical regulation capability; Vcc = 5.0V
tmcv	VCELL 2 VMCV valid period	1		2	sec	If VCELL > VMCV for tMCV during charge or top-off, then a transition of VCELL < VMCV is recognized as battery replaced. Otherwise, VCELL < VMCV is ignored.

Note:

Typical is at TA = 25°C, $V_{CC} = 5.0V$.

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	3	Added block diagram	Diagram insertion
1	7	Added VSEL/termination table	Table insertion
1	8	Added values to Table 3	Top-Off rate values
1	11	Changed value for VsnsLo rating	Was: Vsnshi • (0.01 • Vcc) IB: 0.04 • Vcc


Note:

Change 1 = Sept. 1996 B changes from Apr. 1995.

Sept. 1996 B

13/14

Ordering Information

• Contact factory for availability.

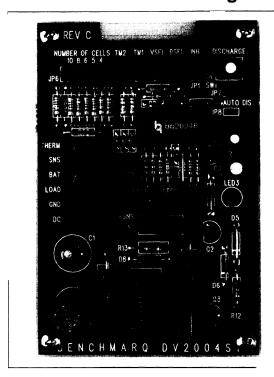
14/14 Sept. 1996 B

Product Brief DV2004ES1

Fast Charge Development System

Control of On-Board p-FET Switch-Mode Regulator

Features

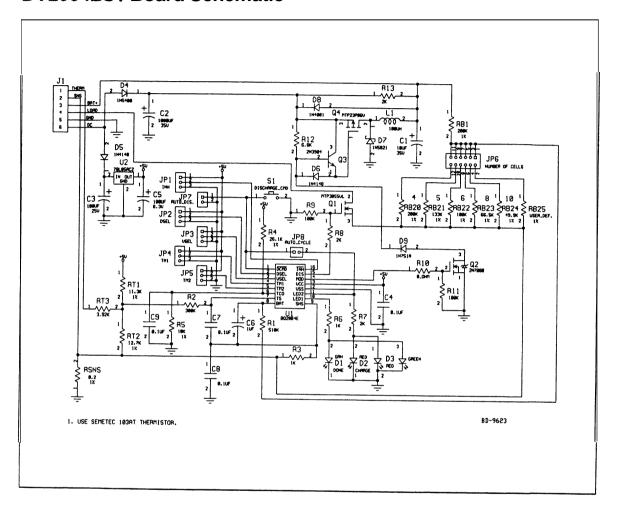

- ➤ bq2004E fast charge control evaluation and development
- Charge current sourced from an on-board switch-mode regulator (up to 3.0 A)
- ➤ Fast charge of 4 to 10 NiCd or NiMH cells and one user-defined selection
- Fast charge termination by delta temperatureidelta time (ΔT/Δt), negative delta voltage (-ΔV) or peak voltage detect, maximum temperature, maximum time, and maximum voltage
- -ΔV/peak voltage detect, hold-off, top-off, maximum time, and number of cells are jumper-configurable
- Programmable charge status display
- Discharge-before-chargecontrol with push-button switch or auto discharge-before-charge with jumper
- Inhibit fast charge by logic-level input

General Description

The DV2004ES1 Development System provides a development environment for the bq2004E Fast Charge IC. The DV2004ES1 incorporates a bq2004E and a buck-type switch-mode regulator to provide fast charge control for 4 to 10 NiCd or NiMH cells.

The fast charge is terminated by any of the following: $\Delta T/\Delta t$, $-\Delta V$ or peak voltage detect, maximum temperature, maximum time, maximum voltage, and inhibit command. Jumper settings select the voltage termination mode, the hold-off, top-off, and maximum time limits, and automatic discharge-before-charge.

The user provides a power supply and batteries. The user configures the DV2004ES1 for the number of cells, volt-


age, charge termination mode, and maximum charge time (with or without top-off), and commands dischargebefore-charge with push-button switch S1.

Please review the bq2004E data sheet before using the DV2004ES1 board.

A full data sheet for this product is available on our web site (http://www.benchmarq.com),or you may contact the factory for one.

Jun. 1995 Rev. C Board

DV2004ES1 Board Schematic

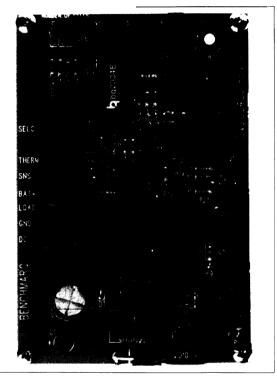
Rev. C Board Jun. 1995

Product Brief DV2004ES3

Nickel/Li-Ion Development System 1

Control of On-Board p-FET Switch-Mode Regulator

Features

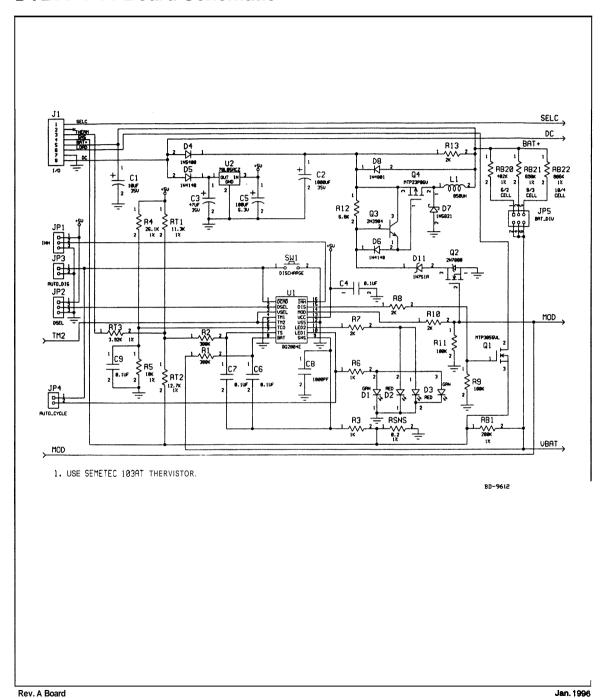

- bq2004E fast charge control evaluation and development for NiMH. NiCd and Li-Ion chemistries
- Charge current sourced from an on-board switch-mode regulator (up to 2.0 A)
- Fast charge of 3, 6, or 9 NiCd or NiMH cells and 1, 2, or 3 Li-Ion cells
- Fast charge termination by delta temperature/delta time $(\Delta T/\Delta t)$, negative delta voltage $(-\Delta V)$ or peak voltage detect, maximum temperature, maximum time, and maximum voltage for nickel-based and constant-current to constant-voltage for Li-Ion
- -ΔV/peak voltage detect, hold-off, top-off, maximum time, and number of cells are jumper-configurable
- Programmable charge status display
- Discharge-before-charge control with push-button switch or auto discharge-before-charge with jumper
- Inhibit fast charge by logic-level input

General Description

The DV2004ES3 Development System provides a dualchemistry development environment for the bq2004E Fast Charge IC. The DV2004ES3 incorporates a bq2004E and a buck-type switch-mode regulator to provide fast charge control for 3, 6, or 9 NiCd or NiMH cells and 1, 2, or 3 Li-Ion cells.

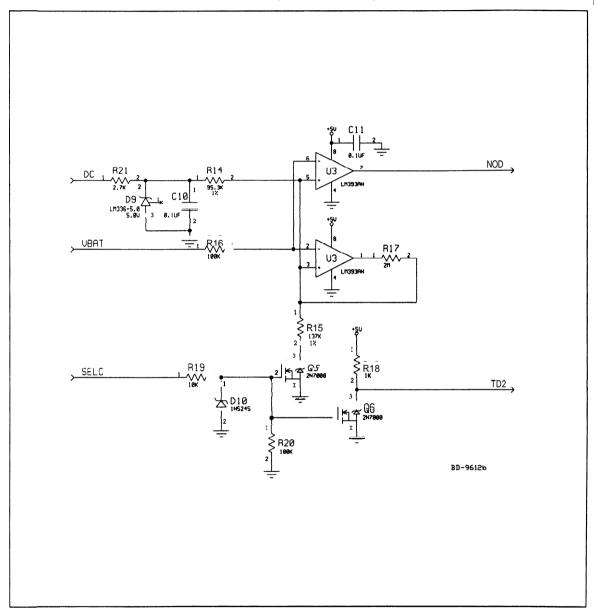
The fast charge is terminated by any of the following: $\Delta T/\Delta t$, -AV or peak voltage detect, maximum temperature, maximum time, maximum voltage, and inhibit command. Jumper settings select the voltage termination mode, the hold-off, top-off, and maximum time limits, and automatic discharge-before-charge.

Fast charge for Li-Ion transitions from a constant-current to constant-voltage regulation. Voltage is regulated to within 1%. Charge complete is indicated at the maximum charge time.


The user provides a power supply and batteries. The user configures the DV2004ES3 for the number of cells and charge termination mode, and commands discharge-before-charge with push-button switch S1.

Please review the bq2004E data sheet and application note: "Using NiMH and Li-Ion Batteries in Portable Applications", before using the DV2004ES3 board.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.


Rev. A Board Jan 1996

DV2004ES3 Board Schematic

1-128

DV2004ES3 Board Schematic (Continued)

Jan. 1996

Rev. A Board Jan. 1996

bq2005 Dual-Battery Fast Charge IC

Features

- Fast charge control and conditioning for one or two NiMH or NiCd batteries
- ➤ Flexible current regulation:
 - Integrated switching charge current controller
 - Gating control for use with external regulation
- Discharge-before-charge for battery conditioning
- Fast *charge* termination by: $\Delta T/\Delta t$, $-\Delta V$, maximum time, maximum temperature, and maximum voltage
- ➤ Selectable pulsed "top-off" and trickle charge
- ➤ Direct **LED** control outputa display battery and charge status
- 20-pin 300-mil PDIP or SOIC packages

General Description

The CMOS bo2005 Dual Battery Fast Charge IC provides comprehensive fast charge control functions with highspeed switching power control circuitry for one or two independent batterypack systems.

The **bq2005** is the baeie of a cost-effective solution for sequentially charging two battery packs using flexible control of constant-current or current-limited charging supply. The bo2005 can be used as a frequency. modulated controller operating up to 300KHz far switched regulation of the charging current. The bq2005 may alternatively be used with a linear regulator or transistor to gate an external supply.

Switch-activated or automatic diecharge-before-chargefor one battery allows bq2005-based chargers to support battery conditioning, elimi-

nating the voltage-depression effect found in **some** rechargeable battery chemistries.

Fast charge begins with the application of the charging supply or by replacement of the battery. For safety, charge is inhibited until the battery temperature and voltage are within configured limits. Temperature, voltage, and time are monitored throughout fast charge.

Charge is terminated by any of the following:

- Delta temperature/delta time $(\Delta T/\Delta t)$
- Negative delta voltage $(\cdot \Delta V)$
- Maximum temperature
- Maximum time
- Masimumvoltage

Pin Connections

DCMD_A 1 20 FCCB DVEN 2 19 CHB TM1 □3 18 MODB TM2 4 17 MODA тсо ₫5 16 1 Vcc TSA□6 15 VSS TSB□7 14 FCC BATA 8 13 DCH A BATB 9 12 DISA SNSA 10 11 SNSB PO-Pin DIP or \$010

Pin Names

DCMDA	Discharge command input, battery A	DISA	Discharge control output, battery A
DVEN	-ΔV enable	CH _A ,	Charge status output, battery A/B
TM_1	Tiermode select 1		T delicer 14 de
TM ₂	Timer mode select 2	FCCA, FCCB	Fast charge complete output , battery A/B
TCO	Temperature cut-off	V_{SS}	System ground
TS _A , TS _B	Temperature sense input, battery A/B	Vcc	5.0 V ±10 % power
	·	MOD_A ,	Charge current control
BAT _A , BAT _B	Battery voltage input, battery A/B	MODB	output, battery A/B
		SNS _A , SNS _B	Charging current sense input, battery A/B

Sept. 1996 D 1/12

Pin De	Pin Descriptions		Battery voltage inputs, battery A/B (BATA,B)
DCMDA	Discharge-before-charge control input, battery A DCMDA controls the discharge-before-charge function of the bq2005. A negative-going pulse on DCMDA initiates a discharge to EDV (0.475 • V∞) followed by a charge if conditions allow. By tying DCMDA to ground, automatic discharge-befom-charge is enable either by the application of power or	DISA	BATA and BATB are the divided input voltages for battery A and battery B. This potential is limited to 0.96 • Vcc and 0.475 • Vcc and is generally developed by a high impedance resistor-divider network connected between the positive and the negative terminals of the battery. Discharge control output
DVEN	by battery replacedΔV enable input		Push-pull output used to control an external transistor to discharge battery A before charging. DISA is active high.
	This input controls the -AV charge termination test. If DVEN is high, the -AV termination	$\frac{\overline{CH}}{CH}_{B}$	Charge status outputs, battery A/B (CHA,B)
	method is enabled. If DVEN is low, -AV is disabled. DVEN may change state at any time.		Open-drain output indicating charging status. See Figure 1 and Table 2 for details.
TM 1, TM2			Fast charge complete outputs, battery A/B (FCCA,B)
	the settings for fast charge safety timer and "top-off"/trickle charge control. See Table 3 for details.		Open-drain output indicating fast charge complete. See Figure 1 and Table 2 for details.
TCO	Temperature cut-off threshold input	MODA, MODB	Charge current control outputs, battery A/B (MODAB)
	Maximum allowable battery temperature - sensor voltage. If the potential between TSA and SNSA or TSB and SNSB is less than the voltage at the TCO input, then any fast charging or top off charging is terminated for the respective battery.		MODA,B is a push-pull output that is used to control the charging current to the battery. MODA,B switches high to enable charging current to flow and low to inhibit charging current flow. See Figure 1 and Table 1 for details
TSA, TSB	Temperature sense inputs, battery A/B (TSA,B) 1	vcc	details. Voc supply input
	Input for external battery temperature monitoring thermistor.		5.0V, ±10% power input.
SNSA, SNSB	Charging current sense inputs, battery A/B (SNS_{A,B})	Vss	Ground
	SNSA,B controls the switching of MODA,B based on an external sense resistor network. This provides the reference potentials for both the TSA,B and BATA,B pins. If SNSA,B is connected to Vss, then MODA,B switches high at the beginning of charge, and low at the end of charge. See Figure 1 and Table 1 for details.		

¹ Notation used in **text** for generic pin reference.

Sept. 1996 D

Functional Description

Figure 1 illustrates charge control and display status during a bq2005 charge cycle. Table 1 outlines the various bq2005 operational states and their associated conditions, which are described in detail in the following sections.

Charge Action Control

The bq2005 initiates a charge by either the application of power on Vcc or by a battery replacement. A charge action is controlled by the inputs from DCMDA, DVEN, TSAB, BATAB, and TM1.2.

The bq2005 is a sequential charger, initiating a charge action on either battery A or B. If both battery A and battery B are present when Vcc is applied to the bq2005, the charge action begins with battery B if conditions are acceptable. If A is present and B absent, the charge cycle begins on A and fast charge will complete before beginning on B. The bq2005 controls the initiation of a charge action and checks for acceptable battery temperature (between LTF—low-temperature fault and HTF—high-temperature fault) and voltage (between EDV—end-of-discharge voltage and MCV—maximum cell voltage) prior to fast charging. The fast charging process begins, and the bq2005 tests for the full-charge conditions: AT/At and/or AV, with temperature, time, and voltage safety terminations.

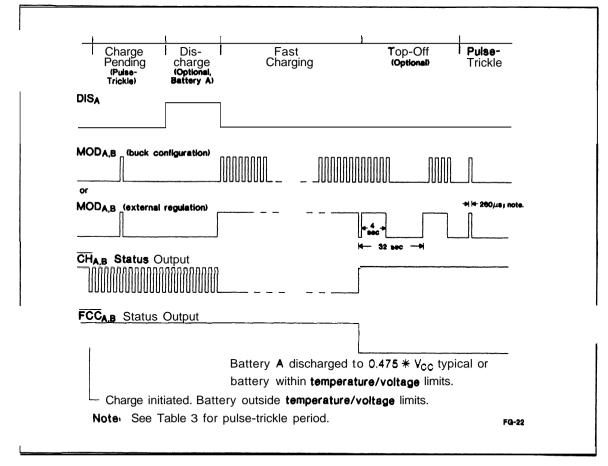


Figure 1. Example Charging Action Events

Sept. 1996 D

3/12

Charge Status Indication

FCCA,B outputs, which may be connected to an LED indicator through a current-limiting resistor. In all cases, if the battery voltage at the BATA and/or BATB pins exceeds the maximum cell voltage (0.95 . Vcc), the CHAB and FCCAB outputs are held high

Table 1. bq2005 Operational Summary

Charge Action State	Conditions	MOD _{A,B} Output	DiS _A Output
Battery absent	VCELL 2 VMCV	Trickle charge activated per V sns for period specified in Table 3. Output is inactive if other battery is fast charging or topping off .	Low
Charge initiation	V _{CC} applied or VCELL drops from 2 V _{MCV} to < V _{MCV} (battery insertion)	-	-
Discharge-before-charge (optional, battery A)	DCMD _A high-to-low pulse or tied to Vss when Vcc is applied; VEDV < VCELL < VMCV	MOD _A low	High
Pending	Charge initiation occurred and VTEMP ≥ VLTFOR VTEMP ≤ VHTF or VCELL < VEDV, or other battery fast charging	Trickle charge activated per Vsns for period specified in Table 3. Output is inactive if other battery is fast charging or topping off.	Low
Fast charging	Charge initiation occurred and VHTF < VTEMP < VLTF and VEDV ≤ VCELL < VMCV	Low if V _{SNS} > 250mV, nominal; high if V _{SNS} < 200mV, nominal	Low
Charge complete	-AV ≥ 13mV typical or ΔVTEMP/ΔT > 14mV/minute or VTEMP < VTCO or VTEMP > VLTF or maximum time or maximum voltage	-	-
Top-off (optional; see Table 3)	Charge complete and top-off time not exceeded and VTEMP > VTCO and VCELL < VMCV	Activated per Vsns (see fast charging state) for 4 of every 32 sec. Output is inactive if other battery is fast charging or topping off.	Low
Trickle	Charge complete and top-off disabled or top-off complete	Trickle charge activated per Vsns for period specified in Table 3. Output is inactive if other battery is fast charging or topping off.	Low

Notes:

 $\label{eq:Vcell} \begin{aligned} &\mathbf{V_{CELL}} = \mathbf{V_{BAT}} \cdot \mathbf{V_{SNS}}, \mathbf{V_{MCV}} = 0.95 \bullet \mathbf{V_{CC}}, \mathbf{V_{EDV}} = \mathbf{0.475} \bullet \mathbf{V_{CC}}, \\ &\mathbf{V_{TEMP}} = \mathbf{V_{TS}} \cdot \mathbf{V_{SNS}}, \mathbf{V_{LTF}} = 0.4 \bullet \mathbf{V_{CC}}, \mathbf{V_{HTF}} = (1/4 \bullet \mathbf{V_{LTF}}) + (3/4 \bullet \mathbf{V_{TCO}})) \end{aligned}$

4/12

5/12

Table 2. **bq2005** LED Output Summary

Charge Action State	Note	CHA, CHB	FCC _A , FCC _B
Battery absent	Battery not inserted	High	High
Charge initiated and pending or battery A discharge-beforecharge	Fast charge conditions are not valid, or other battery is fast charging	½ sec high, ⅓ sec low	High
Fast charging		Low	High
Charge complete, top-off, and/or trickle		High	Low

Note:

CHA and FCCA are related outputs, but are independent of the states of CHB and FCCB, which are also related outputs.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum and minimum allowable valuea. The battery voltage sense input, BATA,B, for a battery pack must be divided to between 0.95 • Vcc and 0.475 • Vcc for proper operation. A resistor-dividerratio of:

$$\frac{R1}{R2} = \frac{N}{2.375} - 1$$

is recommended to maintain the battery voltage within the valid range, where R1 is the **resistor** connected to **the** positive battery terminal, and R2 is the **resistor** connected to the respective **SNS_{AB}** pins. See Figure 2.

Note: The resistor-divider network impedance should be above 200K Ω to protect the bq2005 if V_{CC} is removed with batteries inserted.

The bq2005 requires that the thermistors used for temperature **measurements** have a negative temperature **coefficient**. The temperature **sense** voltage **inputs** at TSA,B are developed **using** a **resistor-thermistor** network between Vcc and SNSA,B. See Figure 2.

Battery Removal Detection

An **external** resistor, **Rext**, between the battery **positive** lead and the **charging supply** input is necessary to allow the **bq2005** to detect battery **insertion**.

Figure 2. Voltage and Temperature Limit Measurement

Sept. 1996 D

Initiating a Charge Action

A battery charge action is initiated with either battery insertion or application of Vcc to the bq2005. Battery insertion is recognized when the voltage at either of the BATA,B pins falls from above the internal Vmcv reference level to below that level. When Vcc is applied to the bq2005, a charge action begins after a brief power-on reset period.

Temperature and Voltage Prequalification

A charge action is **prequalified** by the battery temperature and voltage. Before **fast** charging **can** begin, the **battery** temperature and voltage **must** fall within predetermined acceptable limits.

 V_{CELL} is compared to an internal low-voltage reference, V_{EDV} , which is the minimum acceptable battery voltage for fast charging. V_{TEMP} voltage is compared to an internal low-temperature fault reference, V_{LTF} , and the internal hot-temperature fault reference, V_{HTF} . These limits establish the acceptable battery and temperature sense voltage window for fast charge initiation. If the battery fails either of these two prequalifications for charge, the bq2005 enters a charge-pending mode, waiting for the battery voltage and temperature to become acceptable.

In the case of a battery that is too warm or too cold, the charge action starts when the battery temperature becomes acceptable. In the case of deeply discharged batteries (voltage too low), the bq2005 waits until the battery voltage is at an acceptable level before starting fast charge. In the case of a faulty battery, VBAT may never reach an acceptable voltage level, causing the bq2005 to remain in the charge-pending state. The bq2005 continues to trickle charge (if enabled) the battery until the fast charge condition becomes acceptable.

Discharge-Before-Charge

The bq2005 supports discharge-before-charge on battery A, providing battery conditioning as well as capacity calibration. Once activated, the DISA pin goes active high until VCELL falls below VEDV, at which time the battery starts fast charge.

If DCMDA is directly connected to Vss, automatic discharge-before-charge is enabled with either the application of power to <a href="https://docs.ncbi.nlm.nih.gov/bullet-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-before-charge-function. See Figure 3.

Fast charging, top-off, and trickle charge of battery B are not **affected** during the discharge of battery A.

Fast Charge: TM1 and TM2 Pins

When fast charge begins on either of the batteries, the other battery remains in a pending state until the first battery terminates fast charge. At this time, fast charging begins on the second battery. When fast charge of the second battery terminates, optional top-off sequentially proceeds if enabled (program pine TM₁ and TM₂). A pulse-trickle begins on both batteries at the end of top-off or fast charge. Fast charge and optional top-off of battery B always take precedence over battery A when both batteries are present.

The TM₁ and TM₂ pine are three-level input pine used to **select** the **various** charge and top-off rates, maximum **safety** times, and -AV hold-off **period.** Table 3 describes the varioue **states** selected by the TM₁ and TM₂ pine.

Once temperature and voltage **prequalifications are** met and any *requested* discharging of the battery is completed, fast *charging* begins and continues until **termination** by one or more of the five **possible** termination conditions:

- Delta temperature/delta time (AT/&)
- Negative delta voltage $(-\Delta V)$
- Maximum temperature
- Maximum charge time
- Maximum battery voltage

Voltage Termination Hold-off

At the start of **fast** charging, there is a hold-off time during which the •**ΔV** termination is disabled (see Table 3). Once **past** the initial fast charge hold-off time, -**AV** termination is re-enabled. **AT/&**, maximum cell voltage (MCV), and maximum temperature (TCO) terminations are not affected by the hold-off period.

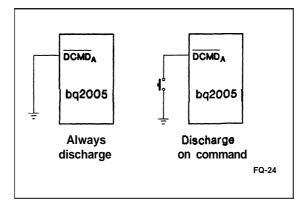


Figure 3. Discharge-Before-Charge

6/12 Sept. 1996 D

-AV Termination

The 6q2005 makes a termination decision based on negative delta voltage every 32 seconds. If VCBLL is lower than any previously measured value by 13mV typical, the fast charge phase of the charge action is terminated. This equates to a -AV termination of -6mV per cell typical. The -AV test is valid only for:

0.475 • Vcc ≤ Vcru, ≤ 0.95 • Vcc

-AV detection may be enabled or disabled at any time **using** the **DVEN** pin.

ΔT/Δt Fast Charge Termination

The bq2005 makes a termination decision **based** on delta **temperature/delta** time ($\Delta T/\Delta t$) every 32 seconds. If VTEMP is 16mV (typical) **less** than the voltage measured 64 seconds previously, the **fast** charge phase of the **charge** is terminated.

The **\(\Delta\T/\Deltat\)** test is valid only for:

 $0.2 \cdot \text{V}_{CC} \leq \text{V}_{TRMP} \leq 0.4 \cdot \text{V}_{CC}$

Maximum Voltage, Maximum Time, and Maximum Temperature Safety Terminations

The bq2005 also terminates fast charge for maximum temperature (TCO), maximum time, and maximum voltage (MCV). MCV and TCO reference levels provide the maximum limits for battery voltage and temperature during fast charging. If either of these limits is exceeded, both fast charging and optional top-off charge are terminated. MCV is treated as a fault, so FCCAB and CHAB become inactive with this condition

Maximum time selection **is** programmed using the TM₁ and **TM₂ pins** (see Table 3). Time settings are available for **corresponding** charge r at ... ranging from C/4 to 4C.

Temperature Monitoring

Temperature is represented as a voltage input on the bq2005 at the TSA and TSB pins. Generally this voltage is developed from an NTC (negative temperature coefficient) thermistor referenced to the negative battery terminal. The bq2005 recognizes an internal voltage level of VLTF = 0.4 • Vcc as the low-temperature fault (LTF) level. If VTEMP \geq VLTF, charging is inhibited or terminated.

Table 3. Fast Charge Safety Time/Hold-Off/Top-Off Table

Corresponding Fast Charge Rate	TM ₁	TM ₂	Fast Charge Safety (minutes)	-∆V Hold-Off Time (seconds)	Top-Off Rate	Pulse- Trickle Rate	Pulse- Trickie Period (Hz)
C/4	Low	Law	360	137	Disabled	Dieabled	Disabled
C/2	Float	Law	180	820	Disabled	C/32	240
1C	High	Low	90	410	Disabled	C/32	120
2C	Low	Float	45	200	Disabled	c _{/32}	60 .
4C	Float	Float	23	100	Disabled	C/32	30
C/2	High	Float	180	820	C/16	C/64	120
1C	Low	High	90	410	C/8	^C /64	60
2C	Float	High	45	200	C/4	C/64	30
4C	High	High	23	100	C/2	C/64	15

Note:

 $T_A = 25$ °C, $V_{CC} = 5.0$ V.

Similarly, the **external** reference voltage level **presented** at the **TCO** pin **represents** the high-temperature cut-off point at which fast charging is terminated. **VTCO** should always be less than **VLTF** to **ensure** proper **device** operation

All temperature **prequalifications** and $\Delta T/\Delta t$ termination may be **disabled** by **connecting TCO** to **Vss** and **fixing** the **TSAB** pin level to 0.2 • **Vcc.** $\Delta T/\Delta t$ termination sensitivity is user-adjuetable, depending on the values of the external resistor-divider network.

Top-Off Charge

An optional top-off charge **phase** is selected to follow fast charge termination for charge **rates** from %2 to 4°C. This option is **selected** through the **TM1/TM2** programming pins (**see** Table 3).

If selected, the bq2006 "tops off the battery at the pulsed rate. The charge control cycle is modified so that MODA, are are activated for only 4 of every 37 seconds. This results in a rate 15th that of fast charging. Top-off charge proceeds for a time equal to the fast charge safety time. Temperature (TCO) and voltage (MCV) terminations are the only termination methods enabled during "top-off." Any fast charge initiation immediately terminates a top-off charge in progress.

Pulse-Trickle Charge

Pulse-trickle charge is used to compensate for self discharge of the battery while idle in the charger, and to bring a depleted battery to a valid charge voltage prior to fast charge. Both batteries pule-trickle at the end of fast charge and top-off, and prior to charge (see Table 1).

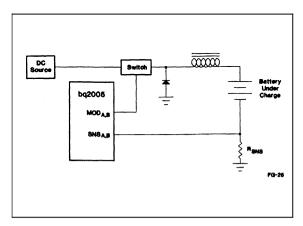


Figure 4. Constant-Current Switching Regulation

In the pulse-trickle state, MOD_A and MOD_B are separately active for 260µs of a period specified by the state of TM₁ and TM₂ pine. The resulting trickle rate is C/84 when top-off is enabled and C/82 when top-off is disabled. Pulse-trickle and top-off can be dieabled by tying TM₁ and TM₂ to V_{SS}. Fast charge or top-off of either battery suspends pulse-trickle.

Charge Current Control

The **bq2005** controls charge current through the **MODA,B** output pins. The current control is **designed** to support implementation of a **constant-current switching** regulator. See Figure 4. Nominal regulated current is:

$I_{REG} = 0.225 \text{V} / R_{SNS}$

When used in **this configuration**, the charge current is monitored at the **SNSA**, input by the voltage drop across a resistor, **RSNS**. **RSNS** may be chosen to provide a variety of charging **currents** and may differ between slots **A** and **B**.

The MODA,B pine are switched high or low depending on the voltage input to the SNSA,B pine. If the voltage at the SNSA,B pine is lees than VSNSLO (0.2V typical), the MOD outputs are switched high to gate charge current through the inductor to the Dattery. When the SNS voltage is greater than VSNSHI (0.25V typical), the MOD outputs are switched low-shutting off current from the supply.

The MODAB pins can also be used to gate an external charging current source. When an external current source is used, a sense resistor is not required, and the SNSAB pins are connected to Vss. See Figure 5.

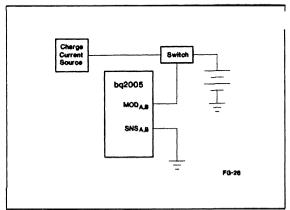


Figure 5. External Current Regulation

8/12 Sept. 1996 D

Absolute **Maximum** Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding Voc relative to Vss	-0.3	+7.0	>	
		-20	t70	°C	Commercial
Topr	Operating ambient temperature	-40	+85	°C	Industrial "N"
TstG	Storage temperature	-55	+125	°C	
TSOLDER	Soldering temperature		+260	"C	10 sec max.
TBIAS	Temperature under bias	-40	+85	"C	

Note:

Permanent device damage may **occur** if **Absolute Maximum** Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating **Conditions** detailed in this data sheet. **Exposure** to conditions beyond the operational **limits** for extended periods of time may affect **device** reliability.

DC Thresholds (TA = TOPR; VCC ±10%)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
V _{SNSHI}	High threshold at SNSA,B resulting in MODA,B = Low	0.05 • V _{CC}	d.025	V	
Vsnslo	Low threshold at SNSA,B resulting in MODA,B = High	0.04 • V _{CC}	±0.010	٧	
VLTF	Low-temperature fault	0.4 • Vcc	±0.030	v	VTEMP 2 VLTF inhibits/ terminates charge
V _{HTF}	High-temperatwe fault	(1/4 • VLTF) + (3/4 • VTCO)	±0.030	v	V _{TEMP} ≤ V _{HTF} inhibits charge
V _{EDV}	End-of-discharge voltage	0.475 • V _{CC}	±0.030	V	V _{CELL} < V _{EDV} inhibits fast charge
V _{MCV}	Maximum œll voltage	0.95 • Vcc	±0.030	v	VCELL > VMCV inhibits/ terminates charge

Note:

VCELL = VBAT - VSNS.

 $V_{TEMP} = V_{TS} - V_{SNS}$

Sept. 1996 D

Recommended DC Operating Conditions (TA = 0 to +70℃)

Symbol	Parameter	inimum	Typical	Maximum	Unit	Notes
V_{CC}	Supply voltage	4.5	5.0	5.5	V	
VCELL	BAT voltage potential	0	-	Vcc	V	VBAT - VSNS
VBAT	Battery input	0		Vcc	V	
VTEMP	TS voltage potential	0	-	Vcc	V	V _{TS} - V _{SNS}
VTS	Thermistor input	0	-	Vcc	V	
V _T CO	Temperature cutoff	0.2 • V _{CC}	-	0.4 • Vcc	V	
**	Logic input high	2.0	- .	-	V	DCMD _A , DVEN
V _{IH}	Logic input high	V _{CC} - 0.3	-	-	V	TM ₁ , TM ₂
**	Logic input low	•		0.8	v	DCMD _A , DVEN
$\mathbf{v}_{ ext{iL}}$	Logic input low	-	-	0.3	v	TM ₁ , TM ₂
VoH	Logic output high	V _{CC} - 0.5		•	v	DISA, MODA,B, IOH ≤ -5mA
Vol	Logic output low	-	-	0.5	v	DISA, $\overline{FCC}_{A,B}$, $\overline{CH}_{A,B}$, MOD _{A,B} , $I_{OL} \le 5mA$
Icc	Supply current	-	1.0	3.0	mA	Outputs unloaded
Іон	DISA, MODA,B source	-5.0		-	mA	@V _{OH} = V _{CC} - 0.5V
IoL	DISA, FCCA,B, MODA,B, CHA,B sink	5.0	-	-	mA	$@V_{OL} = V_{SS} + 0.5V$
		-		±1	μA	DVEN, V = V _{SS} to V _{CC}
IL	Input leakage	•	-	-400	μА	$\overline{\mathrm{DCMD}}_{\mathrm{A}}$, V = V _{SS}
I _{IL}	Logic input low source	•	-	70.0	μА	TM ₁ , TM ₂ , V = Vss to Vss + 0.3V
I _{IH}	Logic input high source	-70.0	-	-	μА	TM ₁ , TM ₂ , V = V _{CC} - 0.3V to V _{CC}
I_{IZ}	TM ₁ , TM ₂ tri-state open detection	-2.0	-	2.0	μА	TM ₁ , TM ₂ should be left disconnected (floating) for Z logic input state
IBAT	Input current to BATA,B when battery is removed	-	-	-20	μA	V _{CC} = 5.0V; T _A = 25°C; input should be limited to this current when input exceeds V _{CC} .
V _{THERM}	ΔΤ/Δt detection threshold from TS _{A,B}		16 ± 4		mV	V _{CC} = 5.0V, T _A = 25°C
-ΔV	Negative delta voltage detection		13 ± 4		mV	V _{CC} = 5.0V, T _A = 25°C

Note: All voltag

All voltages relative to V_{SS} .

10/12 Sept. 1996 D

Impedance

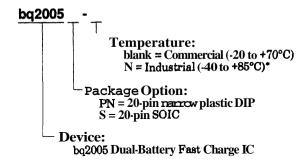
Symbol	Parameter	Minimum	Typical	Maximum	Unit
RBATA,B	Battery A/B input impedance	50			MP
Rtsa,b	TSA,B input impedance	50			MΩ
RTCO	TCO input impedance	60			MΩ
Rsnsa,b	SNSA,B input impedance	50			MΩ

Timing (TA = 0 to +70℃; VCC ±10%)

Symbol	Parameter	Ynimum	Typical	Maximum	Unit	Motor
tpw	Pulse width for DCMDA pulse command	1			μв	Pulse start for charge or discharge- before-charge
drcv	Fast charge safety time variation	0.84	1.0	1.16	-	Vcc = 4.5V to 5.5V; see Table 3.
treg	MOD output regulation frequency			300	kHz	Typical regulationcapability; Vcc = 5.0V
tmcv	V _{CELL} ≥ V _{MCV} valid period	-		1	sec	If VCELL ≥ VMCV for tMCV, then a transition of VCELL < VMCV is recognized as battery replaced. Otherwise, VCELL < VMCV is ignored.

Note: Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

Data Sheet Revision History


Change No.	Page No.	Description	Nature of Change
1	10	Input leakage (I _L)	Was $\pm 400\mu A$; \overline{DCMD}_A , $V = V_{SS}$ to V_{CC} ; is $-400\mu A$; \overline{DCMD}_A , $V = V_{SS}$.
2	10	Input current to BATA,B when battery is removed (IBAT)	Was -1.0mA maximum; is -20μA maximum.
3	9	Vsnslo Rating	Was V _{SNSHI} - (0.01 * V _{CC}); is 0.04 * V _{CC}

Note:

Change 1 = July 1993 B "Preliminary" changes from May 1993 A draft data sheet. Change 2 = Nov. 1993 C "Final" changes from July 1993 B "Preliminary."

Change 3 = Sept. 1996 D from Nov. 1993 C.

Ordering Information

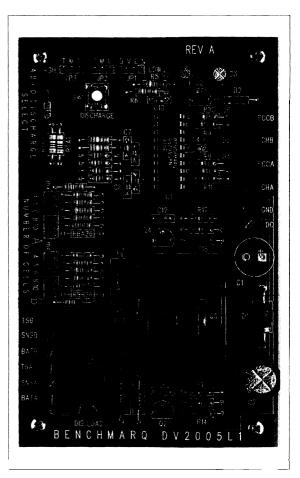
[•] Contact factory for availability.

Sept. 1996 D

Fast Charge Development System

Control of PNP Power Transistor

Features

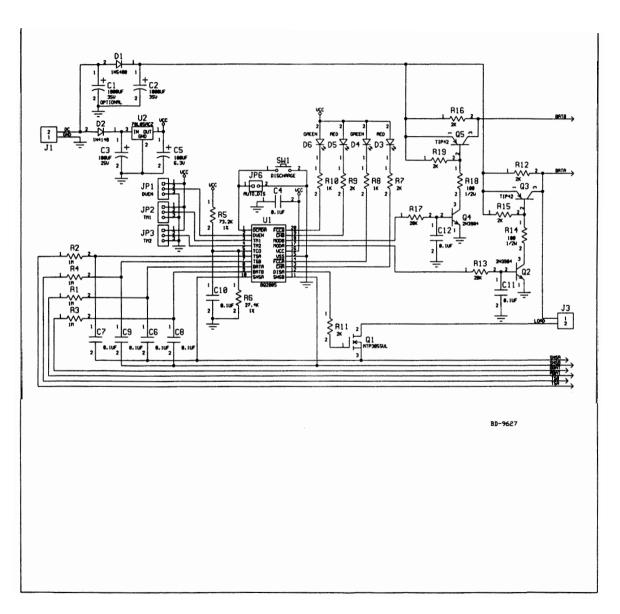

- bq2005 fast charge control evaluation and development
- Charge current sourced from two on-board frequency-modulated linear regulators (up to 3.0 A)
- Fast charge control and conditioning for one or two NiMH and/or NiCd batteries containing 4 to 10 NiCd or NiMH cells; user-configurable for applications that use other numbers of cells
- Sequential charging of two battery packs
- Fast charge termination by delta temperature/delta time $(\Delta T/\Delta t)$, negative delta voltage $(-\Delta V)$, maximum temperature, maximum time, and maximum voltage
- -ΔV enable, hold-off,top-off,trickle rate, maximum charge time, and number of cells are jumper-configurable
- Charging status displayed on LEDs (two for each
- Discharge-before-charge control with push-button switch for battery A
- Selectable pulsed "top-off' charge and trickle charge

General Description

The DV2005L1 Linear Development System provides a development environment for the bg2005 Dual-Battery Fast Charge IC. The DV2005L1 incorporates a bq2005 and two frequency-modulated linear regulators to provide fast charge control for 4 to 10 NiCd or NiMH cells.

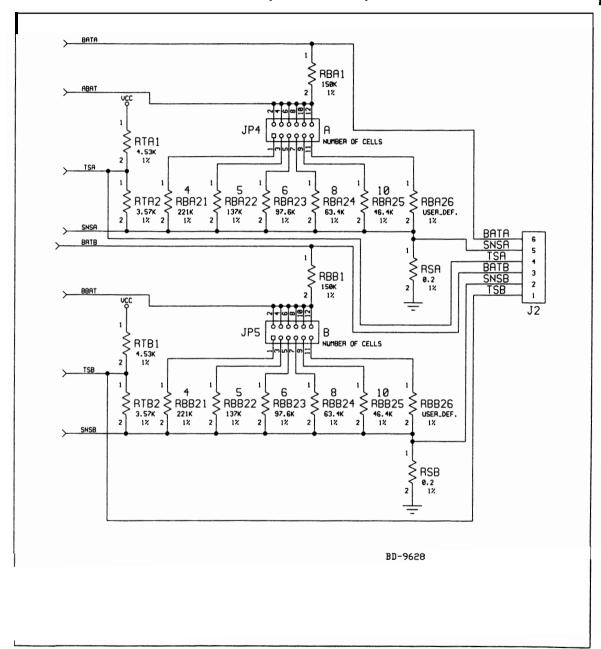
Review the bq2005 data sheet and the application note, "Using the bq2005 to Control Fast Charge," before using the DV2005L1 board.

The fast charge is terminated by any of the following: $\Delta T/\Delta t$, ΔV , maximum temperature, maximum time, and maximum voltage. Jumper settings select the -AV enabled state, select the hold-off, top-off, trickle, and maximum time limits.



The user provides a power supply and batteries. The user configures the DV2005L1 for the number of cells, -AV charge termination enabled or disabled, and maximum charge time (with or without top-off), and commands discharge-before-charge with push-button switch SW1.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact our factory for one.


Oct. 1994

DV2005L1 Board Schematic

Rev. A Board Oct. 1994

DV2005L1 Board Schematic (Continued)

Oct. 1994

Notes

Rev. A Board Oct. 1994

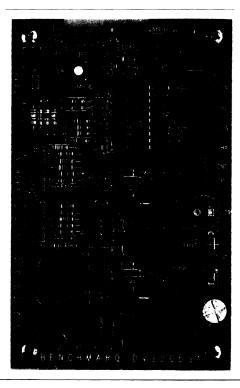
Fast Charge Development System

Control of On-Board p-FET Switch-Mode Regulator

Features

- bq2005 fast charge control evaluation and development
- ➤ Charge current sourced from two on-board switch-mode regulators (up to 3.0 A)
- Fast charge control and conditioning for one or two NiMH and/or NiCd batteries containing 4 to 10 NiCd or NiMH cells; user-configurable for applications that use other numbers of cells

Sequential charging of two battery packs

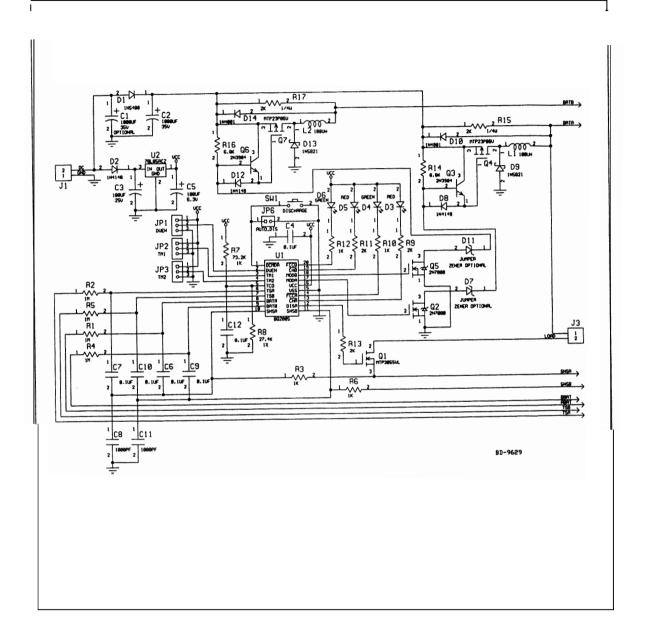

- Fast charge termination by delta temperaturddelta time (ΔT/Δt), negative delta voltage (-ΔV), maximum temperature, maximum time, and maximum voltage
- AV enable, hold-off, top-off, trickle rate, maximum charge time, and number of cells are jumper-configurable
- Charging status displayed on LEDs (two for each battery)
- Discharge-before-charge control with push-button switch for battery A
- Integrated switching charge current controller to 300KHz
- Selectable pulsed "top-off' charge and trickle charge

General Description

The DV2005S1 Switching Development System provides a development environment for the bq2005 Dual-Battery Fast Charge IC. The DV2005S1 incorporates a bq2005 and two buck-type switch-mode regulators to provide fast charge control for 4 to 10 NiCd or NiMH cells.

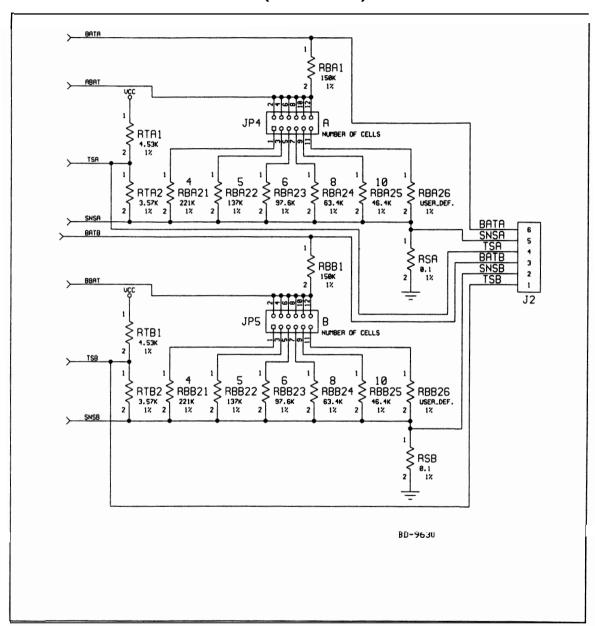
Review the bq2005 data sheet and the application note, "Using the bq2005 to Control Fast Charge," before using the DV2005S1 board.

The fast charge is terminated by any of the following: $\Delta T/\Delta t$, $-\Delta V$, maximum temperature, maximum time, and maximum voltage. Jumper settings select the $-\Delta V$ enabled state, select the hold-off, top-off, trickle, and maximum time limits.



The user provides a power supply and batteries. The user configures the DV2005S1 for the number of cells, - $\!\Delta V$ charge termination enabled or disabled, and maximum charge time (with or without top-off),and commands discharge-before-charge with push-button switch SW1.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.


Oct. 1994 Rev. B Board

DV2005S1 Board Schematic

Rev. B Board

DV2005\$1 Board Schematic (Continued)

Oct. 1994 Rev. B Board

Notes

Rev. B Board Oct. 1994

Nickel/Li-Ion Development System

Control of On-Board p-FET Switch-Mode Regulator


Features

- bq2005 fast charge control evaluation and development for NiMH, NiCd, and Li-Ion
- Charge current (up to 2.0A) sourced from an on-board switch mode regulator to 300kHz
- Sequential fast charge control for one or two batteries packs containing 3, 6, or 9 NiCd or NiMH cells or 1 to 3 Li-Ion cells
- Fast charge termination by ΔT/Δt, -ΔV, maximum time, temperature, and voltage, and minimum current (for voltage regulated Li-Ion charging)
- Charging status displayed on 2 LEDs per battery pack
- Jumper configurable for number of cells, maximum charge time, hold-off period, top-off rate, and pulse trickle rate and frequency.
- Discharge-before-charge control with push-button switch or auto discharge-before-charge with jumper
- Inhibit fast charge with on board jumper or logic-level input

General Description

The DV2005S3 Development System provides a dual-chemistry development environment for the bq2005 Dual-Battery Fast Charge IC. The DV2005S3 incorporates a bq2005 and a buck-type switch-mode regulator to provide fast charge control for two battery packs containing 3, 6, or 9 NiCd or NiMH cells or 1 to 3 Li-Ion cells.

Fast charge for Nickel chemistry batteries is terminated by any of the following: $\Delta T/\Delta t$, $-\Delta V$, maximum charge time, maximum temperature, and maximum voltage. Li-Ion fast charging is accomplished by a current limited phase followed by a voltage regulated (within 1%) phase, and terminated by a minimum current criterion backed up by maximum voltage and maximum time.

Fast charge can be inhibited by an on-board jumper or an external logic level input.

The user supplies a power supply and batteries. Please review the bq2005 data sheet before using the DV2005S3 board. The user configures the DV2005S3 for number of cells, maximum time, hold-off period, top-off rate, pulse trickle rate and frequency, and manual (push button switch) or auto discharge-before-charge.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

R12

10K

TSA)

TSB)

BAT3

SNS3

0.01UF

DV2005S3 Board Schematic D3 1N4148 R1 DC_IN 2K 1/2W Q3 _z::x789a 12 000 + C7 **₹** R6 Q11 23/3904 **≥** R21 R7 1800F Q4 75C DC_RTN D6 10K R8 135819 L1 100E 06^m 2N3904 R9 D1 **本** D2 C5 100F 35V 0.1JF 立 184148 C10 C14 100UF 2 25V GRN: D5 GRN D4 0.01UF R3 BAT2-Q2 2N3904 Q1 2N3904 1N4148 R16 R15 | ₹ R17 ₹ R14 R10 R22 Q5 C13 R11 Q7 ^m 2N3904 0.1JF C11 0.107 C15 100UF 25V

C3 1000PF

R18

R4

R5

^

9.1UF 2

0.1UF

0.1UF

C12 100C2F R13

J1

· 2

2 DOFICIA 3 DVSX 3 TM1 4 TM2 5 TCO 13 CEA 11 FOCA 19 CEB 20 FOCS 15 FO

₹ R20

₹ R23 27.4K

C16

73.2K

MODA 17 DISA 12 SNSA 10 BATA 6

U1

TS3 BAT3 SNS3 KOD3

Using the bq2005

to Control Fast Charge

Introduction

This application note describes the use and functions of the bq2005 controlling a current source to fast charge NiCd or NiMH batteries. The bo2005 may also serve as the modulator $_{\rm for}$ a switching-mode constant-current regulator to provide an efficient charge current source. Examples illustrate the ease with which the bq2005 is incorporated into applications.

The **bq2005** is targeted for applications requiring state-of-the-art dual-battery fast-charging at minimal cost. It provides sophisticated full-charge detection techniques such as $\Delta T / \Delta t$ (delta **temperature/delta** time) and -AV (negative delta voltage) that enable the user to take advantage of advanced battery technologies such as nickel metal-hydride (NiMH) and high-capacity fast-charge nickel cadmium (NiCd). Systems using the **bq2005** can be easily upgraded from NiCd batteries to NiMH batteries without system redesign.

Background

A significant advantage of the bq2005 over other fast-charge solutions is the use of $\Delta T/\Delta t$ and/or -AV as the primary decisions for fast-charge termination. $\Delta T/\Delta t$ detection is one of the most sensitive and reliable methods for fast-charge termination when charging NiMH and NiCd batteries. Near full charge, the temperature rise begins to accelerate. The $\Delta T/\Delta t$ decision typically precedes the peak voltage, allowing for minimal overcharge stress. The $\Delta T/\Delta t$ method also tolerates varying rates of charge, which may be desirable when charging during system operation.

Compared to the AT method, which uses two **sensors** to monitor battery temperature and ambient temperature, the $\Delta T/\Delta t$ method **uses** a single **thermistor** to monitor the rate of temperature increase. This approach is more sound in cases when the initial battery temperature may be significantly different from the ambient temperature. This $\Delta T/\Delta t$ termination decision can easily be disabled.

An input from a battery voltage divider enables the **bq2005** to detect ΔV , which is a very reliable charge terminator for NiCd batteries and **most** NiMH batteries, depending on the application. ΔV detection in the **bq2005** may be temporarily disabled during periods when the charge **current** fluctuates greatly or during the **begin**ning of a fast charge to eliminate **false** peaks. ΔV **termination** is logic-level **selectable** without affecting other termination choices.

To help ensure safety for the battery and system, fast charging may also be terminated at a high-temperature cutoff threshold (TCO), a safety time period, or a maximum cell voltage threshold (MCV). To avoid possible premature fast-charge termination when charging batteries after long periods of storage, the bq2005 disables -AV detection during a short hold-off period at the start of fast charge. This hold-off period is configured as described in the bq2005 data sheet.

The **bq2005** may be configured to have two or three charge stages. In a two-stage configuration, the fast-charge stage controlled by the **bq2005** is preceded and followed by a pulse-trickle charge at a rate controlled by the programming pins of the **bq2005**. In a three-stage configuration, the fast charge is followed by a **top-off** charge stage at 1/8 the fast **charge** rate. This allows the battery to be quickly and safely brought to a full charge state. Following top-off, a trickle charge at a **pulsed** rate equivalent to **C64** is supplied to the battery to compensate for **self-discharge**

Basic Charge-Control Operation

Three detailed applications follow this section. One **provides** direct control of a linear regulator, and the other two provide switch-modecurrent **rgulation**.

Gating Current

Figure 1 shows an example of external source gating. With SNS tied to Vss, the bq2005 enables charge current to the battery by asserting MOD at the start of charge and maintaining this state until charge is terminated. In this example, R1, Q2, R4, R5, R6, and Q1 form the switching circuit. MOD drives Q2 into conduction—saturating Q1,

The current-handling capability of this c h i t depends on the **components** selected to perform the switching and current-regulation functions. Table 1 shows some **suggested** component combinations for **corresponding** currents.

The voltage-boost circuit shown in Figure 1 is **necessary** to keep the **voltage** on either BAT_A or BAT_B above MCV while the other battery is charging (assumes only one battery is inserted). This implementation is limited to **15V DC**. **Please contact Benchmarq's** Applications **Group** for assistance with other input voltage configurations, or for alternative methods.

July 1994

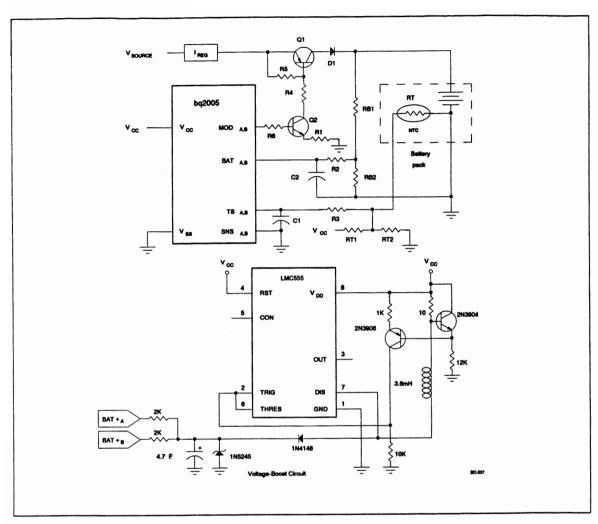


Figure 1. Gated External Source (Bipolar Switch Option)

Table 1. Suggested Component Combinations

lin	Q1	a 2	R1	R4	R5	R6
0.5A	MPS750	2N3904	150Ω ⅓W	-	1ΚΩ	ı
1A	MPS750	2N3904	68Ω ½W	100Ω ⅓W	1ΚΩ	-
2A	TTP42	2N3904	43Ω ½W	51Q ½W	200Ω	1
3A	TTP42	2N3904	27Q 1W	27R 1W	200Ω	ı
5A	IRFR9010	2N3904	100Ω ⅓W	-	1ΚΩ	33KΩ
8A	IRF9Z22	2N3904	100Ω ¼W	_	1ΚΩ	33KΩ

2/18 July 1994

Charge Initiation

Charge may be initiated by applying power to the IC or by battery insertion. Charge initiation by application of power to the IC works as follows: When Vcc is applied, the bq2005 is held in reset for approximately one and one-half seconds. At the end of the reset period, a charge cycle initiates as soon as conditions allow. If both batteries are present, fast-charging battery B takes precedence over charging battery A. If battery A is inserted while fast charge is pending on battery B, the bq2005 trickle charges both batteries, and then fast charges battery B after conditions allow. If battery A, the bq2005 trickle charges both batteries, and then fast charges battery B when conditions allow.

Charge initiation on battery replacement relies on the **BAT_{A,B}** pin voltage being greater than MCV in the absence of a battery, and falling below MCV when the battery is connected. To ensure **this** condition, pull-up **resistors from BAT_{A, B}+** (positive pack terminals) to the charging voltage source (V_{DC} in step-down regulators, the **boosted** charging voltage in step-up regulators) are sized to elevate the empty battery location voltage on the **BAT_{A, B}** pins such that MCV is exceeded.

When the battery is replaced, the voltage on **BATA,B** should fall below MCV, at which time a charge cycle **initiates** as soon as conditions allow.

Table 2, Charge Action Truth Table, describes the **bq2005** charge actions under a variety of battery and charge states.

Discharge-Before-Charge

It may occasionally be desirable to **discharge** the battery to a known voltage level prior to charge. The reason for this may either be **to** remedy a **voltage-depression** effect found in **some** NiCd **batteries** or to determine the battery's **charge** capacity.

Figure 2 illustrates the implementation of this function for battery A. If DCMD_A is directly connected to Vss, automatic discharge-before-charge is enabled with battery replaced on application of power to the bq2005. A negative strobe signal on DCMD_A also initiates discharge-before-charge. This function takes precedence over a charge action and commences immediately when conditions warrant, forcing DIS_A to a high state until the voltage sensed on BAT_A falls below V_{EDV} (0.475 • Vcc). Charging begins as soon as conditions allow.

Care should be taken not to overheat the battery during this process; excessive temperature is not a condition that terminates discharge.

Note: Because V_{SNS} may be above V_{SS} in bq2005 switching regulation applications, the internal battery voltage

Table 2. Charge Action Truth Table

Vcc	BATA	BATB	Charge Action
0→5V	V	V	Fast charge B, pend A
0→5V	V	N	Fast charge A
0→5V	N	V	Fast charge B
5V	1	F	Fast charge B, pend A
5V	1	L	Trickle A and B, fast charge B and pend A when conditions allow
5V	L	1	Trickle A and B, fast charge B and pend A when conditions allow
5 V	F	1	Fast charge A, pend B
5V	D	L	Trickle A, trickle B
5V	L	D	Trickle A, trickle B
5V	D	V	Fast charge B, pend top-off A
5V	V	D	Fast charge A, pend top-off B
5V	D	D	Top off B, trickle A, then top off A, trickle B
5 V	D	t	Abort top-off A
5V	t	D	Abort top-off B
5V	Т	L	Trickle A, trickle B
5V	L	T	Trickle A, trickle B
5V	Т	V	Fast charge B, pend trickle A
5V	V	T	Fast charge A, pend trickle B
5 V	Т	Т	Trickle A, trickle B
V =	Batter	v inserte	ed and valid charge conditions:

 $V = & \text{Battery inserted and valid charge conditions:} \\ & 0.475 \bullet V_{CC} \le V_{CELL} \le 0.95 \bullet V_{CC} \\ & 0.4 \bullet V_{CC} \ge V_{TS} \ge V_{HTF} \end{aligned}$

L = Battery inserted and outside **temperature** limit or below **VEDV**.

N = Battery removed: $VCEU > 0.96 \cdot Vcc$ F = Fast charge

D = Top-off

T = Trickle

1 = Battery insertion: VDIV transitioning from ≥ 0.95 • Vcc to VCEIL ≤ 0.95 • Vcc

monitoring uses VBAT - VSNS, or VCELL. This battery voltage monitoring VCELL maintains a representative comparison voltage independent of any current through RSNS.

July 1994 3/18

Using the bq2005 to Control Fast Charge

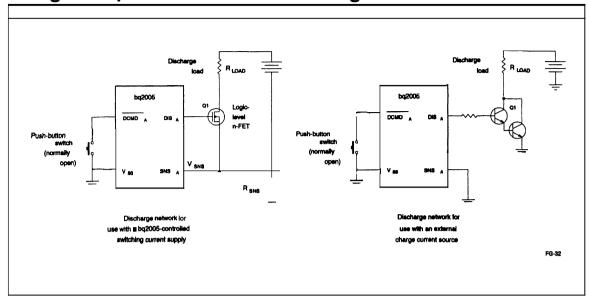


Figure 2. Battery Conditioning Network

The discharge-before-charge function is ignored or terminated when $V_{BAT} - V_{SNS} > V_{MCV}$ (battery removed). If the discharge-before-charge function is not desired, \overline{DCMD}_A should be tied to Vcc or left floating. \overline{DCMD}_A is internally pulled up to Vcc.

Configuring the BATA, B Inputs

The bq2005 uses the battery voltage sense input on the $BAT_{A,B}$ pins to control discharge-before-charge, **qualify** charge initiation, terminate charge at an absolute limit, and facilitate negative delta voltage $(-\Delta V)$ detection.

 V_{BAT} may be derived from a simple passive network across the battery. As shown in Figure 1, resistors RB1 and RB2 are chosen to divide the battery voltage down to the optimal detection range, which is between V_{MCV} and V_{EDV} (0.475 • V_{CC}).

For **NiCd** and **NiMH** batteries, the battery terminal voltage is divided down to this potential per the following equation:

$$\frac{RB1}{RB2} = \frac{N}{2.375} - 1$$

where N = number of cells, **RB1** is the resistor connected to the positive battery terminal, and **RB2** is the resistor connected to the negative **SNSAB** pins.

Although virtually any value may be chosen for **RB1** and **RB2** due to the high input impedance of the **BATA,B** pin, the values selected must not be so low as to appreciably drain the battery nor so large as to degrade the circuit's 4/18

noise performance. Constraining the source resistance as seen from $BAT_{A,B}$ between $20K\Omega$ and $1M\Omega$ is acceptable over the bq2005 operating range. Total impedance between the battery terminal and Vss should typically be about $300K\Omega$ to $1M\Omega$. See Table 3.

Table 3. Suggested RB1 and RB2 Values for NiCd and NiMH Cells

Number of Cells	RB1	RB2	
3	137 ΚΩ	523 ΚΩ	
4	357 KR	523 KR	
5	309 ΚΩ	280 KR	
6	301 KR	196 ΚΩ	
7	316 ΚΩ	162 ΚΩ	
8	649 ΚΩ	274 ΚΩ	
9	383 ΚΩ	137 ΚΩ	
10	442 ΚΩ	137 ΚΩ	
12	412 ΚΩ	102 ΚΩ	
14	499ΚΩ	102 ΚΩ	
16	649 ΚΩ	113 ΚΩ	

July 1994

MCV

Battery over-voltage protection is accomplished by comparing VCELL to the internal MCV reference. If VCELL becomes greater than VMCV, then charging, top-off, and trickle charge terminate, and CHA,B and FCCA,B outputs are high impedance.

A typical MCV value equates to 2.0V per cell. To detect the presence of a battery, the DC supply voltage must be greater than 2.0 = N, where N is the number of battery cells. Battery packs with fewer than three cells require an external amplifier to use the bq2005 (see Figure 3).

Temperature Sensing and the TCO Pin

The bq2005 uses the temperature sense input on the TSA,B pins to qualify charge initiation and termination. A negative temperature coefficient (RNTC) thermistor referenced to SNS and placed in close proximity to the battery may be used as a temperature forvoltape transducer as shown in Figure 4. This example shows a simple linearization network constituted by RT1 and RT2 in conjunction with the thermistor, RT. If this temperature sensor is to be used for charge control, it should be in direct contact with the cells.

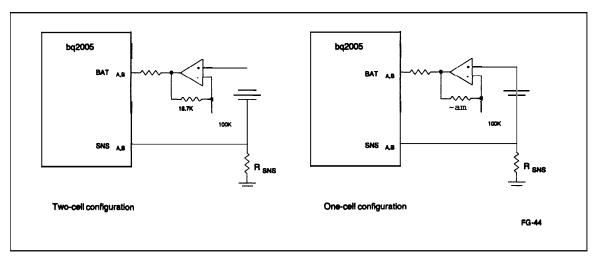


Figure 3. Battery Cell Voltage Amplifier for <3 Cells

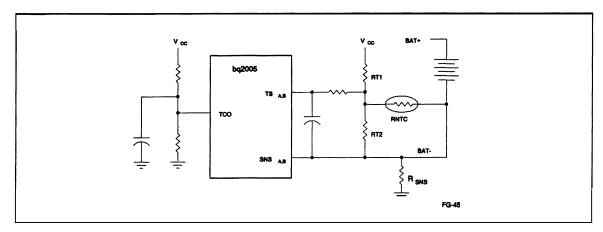


Figure 4. Temperature Sense Inputs

5/18

Using the bq2005 to Control Fast Charge

Temperature-decision thresholds are **defined** as LTF (low-temperature fault), HTF (hot-temperature fault), and **TCO** (temperature **cutoff**). Charge action initiation is inhibited if the **temperature** is not within the LTF-to-HTF range. In this case, CHAB is alternating high and low at a **4Hz** rate, and charging does not initiate until the battery temperatures enter this range.

Once initiated, charging terminates if the temperature is either less than LTF or greater than TCO. The bq2005 interprets the reference points VLTF, VHTF, and VTCO as Vss-referenced voltages, with VLTF fixed at % Vcc and VTCO equal to the voltage presented on the TCO pin. See Figure 5. Note that since the voltage on pin TSA,B decreases as temperature increases, vTCO should always be less than % VCC. VHTF is set internally 34 of the way from VLTF to VTCO. The resistive dividers shown in Figure 4 may be used to generate the desired VTCO.

ΔΤ/Δt detection adds an additional constraint on the selection of temperature sense components. Detection occurs when the voltage TS_{A,B} - SNS_{A,B} declines at a rate between 0.0024 V_{CC} and 0.0040 V_{CC} per 68 seconds, with a nominal 5V V_{CC} producing a nominal detection rate of 14mV/min (16mV/68sec). For example, assuming a 1°C/min desired average ΔΤ/Δt detection rate (TAT), and minimum and maximum charge temperatures of 0° and 40°C, respectively, V_{TCO} equals:

$$V_{TCO} = (2 \cdot V_{CO}/5) - (0.0028 \cdot V_{CC} \cdot (T_{TCO} - T_{LTF}))$$

= 2 - (0.014 \cdot (40 - 0))
= 1.44V

Table 4 shows the temperature control values that apply for the application example assuming the **Philips** thermistor. Appendix A explains the derivation of such component values.

New ΔT/Δt samples are processed every 34 seconds. To minimize the risk of premature termination, the design

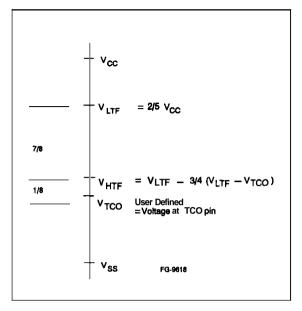


Figure 5. Temperature Reference Points

should be configured assuming a minimum charge cutoff rate of 0.0024 • Vcc, or 10.6mV per minute (at 25°C; Vcc = 5V). This is the lowest signal that may be recognized as meeting the decision threshold. Repeating samples cause a decision quickly as the voltage ramps between this minimum threshold and the nominal 14mV per minute. The system is self-compensating in that the thermistor provides increasingly overstated negative voltage change with increasing temperature, making the measurement more sensitive at higher temperatures. The last three columns of Table 4 are an example of this relationship.

l able 4	ı. Examp	ole value	s, rempe	erature S	ense Netw	ork

LTF (°C)	HTF (℃)	TCO (°C)	V _{TCO} (V)	RT1 (KΩ)	RT2 (K Ω)	T _{∆T} (°C/min)	Minimum-to-Nominal ΔT/Δt Rate (℃/min)		
10	44.4	50	1.303	5110	4120	1.00	0.75–1.00	0.63-0.83	0.56-0.74

Notes:

- 1. $V_{SR} = OV$.
- 2. Temperature **control** and qualification may be disabled by tying pin TCO to **Vss** and fixing the voltage on pin **TSA.B** to 0.2 **Vcc.**

6/18 July 1994

Vcc Supply

The **V**_{CC} supply provides both power and voltage reference to the **bq2005**. This **reference** directly affects the internal time-base voltage **measurements**.

The time-base is trimmed during manufacturing to within 5 percent of the typical value with V_{CC} = SV. The oscillator varies directly with V_{CC} . If, for example, a 5% regulator supplies V_{CC} , the time-base could be in error by as much as 10%,

For applications requiring even more cost-cutting measures, using a Zener diode-resistor combination as the bq2005 power supply sacrifices very little accuracy and performance. To minimize +5V loading, LEDs are camode-driven as shown in Figure 6.

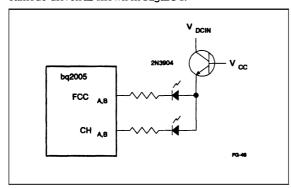


Figure 6. Cascode-Driven LEDs

The DC supply voltage, VDC, must satisfy two requirements:

- To support the bq2005 Vcc supply, Vpc must be adequate to provide for 5V regulation after the losses in the regulator and across D1 (Vpc 2 7.7V using the 78L05).
- To support the proper charge operation and the rated current, V_{DC} must be greater than the number of cells • 2V + V_{LOSS} in the charging path.

Battery Removal Detection

An external 2K resistor in Figure 1 (lower left) is sized to pull **BATA**, **B** above **MCV** with the removal of the battery. The resistance of R7 should be selected to pull the battery sense pin above **MCV** and yet keep input current on **BATA**. **B** less than **20**µ**A**.

Top-Off Charge

The top-off charge option allows for filling up the last fraction of capacity after the fast-charge phase has **termi**nated. Top-off is needed for NiMH batteries, which accept

charge poorly at charge states above 85%. Top-off occurs at a 1/8 pulsed rate to prevent excess beat generation, and terminates after a period equal to the safety time-out. Top off terminates if TCO or MCV is exceeded or if charge or discharge is initiated on the other battery. Top-off has a lower priority than charge; it pends until both batteries have been charged and then charges the batteries in sequence—first battery B and then battery A.

Top-off is not recommended in applications where a battery charge is re-Sited with extremely high frequency (many times per day); for example, when the unit is returned to the charge cradle after each short period of use. Top-off is also not necessary for NiCd batteries.

Negative Delta Voltage Fast-Charge Detection

AV full-charge detection may operate in parallel with \(\Delta T \setminus AT \) detection. If temperature control is disabled by design, then AV should be enabled (DVEN tied to Vcc). If AV is enabled, a constant-current charging source is required. Otherwise a drop in current may cause a false AV determination. DVEN may change state at any time.

Mode Selection Pins TM₁ and TM₂

These two pins are used to select the safety time-out (five selections, 23 to 360 minutes) and optional top-off charge (four selections, 23 to 180 minutes, equal to the safety time selection).

The safety time-out should be selected to be longer than any reasonably expected charge time. The nominal charge time (Ah capacity/charge rate) should be increased to allow for both charge inefficiency and the fact that many batteries hold more than the rated charge. A safety time-out 1.3–1.5 times the nominal time is normally adequate (i.e., 90 minutes for a 1C charge). The safety time-out may be far in excess of the nominal charge time if temperature termination is enabled.

Note: If the charge rate varies (such **as** fast charging during **system** operation using $\Delta T/\Delta t$ termination), then the safety time-out selection should allow for the slowest **charges** that may ∞ cur. The 180- or 360-minute selection may be appropriate.

In addition to selecting the safety timer period and top-off enabled/disabled, TM₁ and TM₂ select the appropriate pulse trickle period. \$\mathcal{G}_{32}\$ is recommended for NiCd cells, while \$\mathcal{G}_{64}\$ is recommended for NiMH batteries. Top-off and pulsed trickle can be disabled by tying TM₁ and TM₂ low, selecting a sir-hour charge time-out. TM₁ and TM₂ may be changed at any time during a charge cycle to select different conditions; however, changing them during charge may result in an indeterminate time-out period. TM₁ and TM₂ are held constant throughout the entire charge cycle.

July 1994 7/18

System-Controlled Charge Inhibition

System control of battery **charging is** best accomplished by **driving** the temperature and voltage **sense pins** high, terminating or inhibiting **charge**. Driving $\overline{\text{INH}}$ voltage to V_{SS} **results** in a transition at the **BATAB** sense pin, terminating any fast charge, top-off, or trickle in process. When $\overline{\text{INH}}$ transitions to $\overline{\text{Vcc}}$, charging is reinitiated if a battery is present and within temperature and voltage **limits**. See Figure 7.

Polarity Reversal Protection

If the DC input has any risk of being accidentally connected with power (+) and ground (-) reversed, then the system input should include either a protection diode to protect against circuit damage or a diode bridge to provide both protection and operation. This also increases minimum input voltage for charger operation by 1V to 2V. For maximum efficiency, a polyswitch may be used in combination with a suitably sized Schottky diode reversed across the electronics.

Layout Guidelines

PCB layout to minimize the impact of **system** noise on the **bq2005 is** important when the **bq2005 is used** as a switching modulator, with a separate nearby switching regulator, or close to any other si cant noise source.

- Avoid mixing signal and power grounds by using a single-point ground technique incorporating both a small signal ground path and a power ground path.
- The charging path components and associated traces should be kept isolated from the bq2005 and its supporting components.
- 3. 0.1μF and 10μF decoupling capacitors should be placed close together and very close to the Vcc pin.

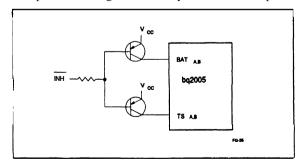


Figure 7. Inhibit Battery Charging Circuit

- 0.1μF capacitors and resistors forming R-C filters connected to pine BATA,B, TSA,B, and TCO should be as close as possible to their associated pins.
- Because the bq2005 uses Vcc for its reference, additional loading on Vcc is not recommended.
- Diode D1 (1N4148) is recommended for rectification and filtering.
- If the DCMD_A input is electronically controlled, care should be taken to prevent noise-induced false transitions.
- **8.** For **bq2005-modulated** switching applications:
 - A 1000pF capacitor/1KΩ resistor R-C filter should be as close as possible to the SNSA,B pins.
 - The 0.1μF capacitors for BAT_{A,B} and TS_{A,B} should be routed directly to SNS_{A,B} and not to ground.

Application Example 1: Linear Regulator

In the frequency-modulated example of Figure 8, the bq2005 is used to implement a linear regulator/charge controller that can charge 4, 5, 6, 8, or 10 NiCd or NiMH cells (selected by JP4 and JP5) by controlling the base drive to a series pass PNP transistor. The current must be limited to stay within the power dissipation of the transistor in free air or connected to an appropriately sized heat sink. Table 5 contains the parts list for the board.

Charge is initiated on battery replacement or power-up. Jumper JP1 controls AV detection: selecting Vcc enables -AV and GND disables it. Switch SW1 controls discharge of battery A. HTF = 48°C, TCO = 48°C, and LTF = 10°C for the component values listed in Table 6 for RTB1, RBT2, R5, and R6 with a Philips thermistor (Part No. 2322-640-63103) with Δ T/ Δ t termination set for 1°C/minute at 30°C.

Safety time-out is selected by **programming TM1** and TM2 with jumpers JP2 and JP3, respectively. To customize the design for a **specific** application, ensure that the power components are rated for the **stresses** they **must** handle. Charge current is a function of **RSA,B** and **an internal bq2005** threshold:

I_{CHARGE}
$$\approx \frac{0.225 \text{V}}{\text{RS}_{A,B}}$$

The source power supply must provide **sufficient** voltage differential to the battery to account for losses in polarity protection diodes or resistive drops.

The selection of component values for R13, R17, C11, and C12 in this example affects the switching frequency of

July 1994

MOD and the delay to full current sense at the sense pins of the bq2005. Although the effects on fast charge and top-off are minimal because the delay is small wmpared to the total time, the effect on pulse-trickle charge is significant. Transistors Q2 and Q4 may not turn on in

some cases, which may be advantageous if no trickle charge is desired.

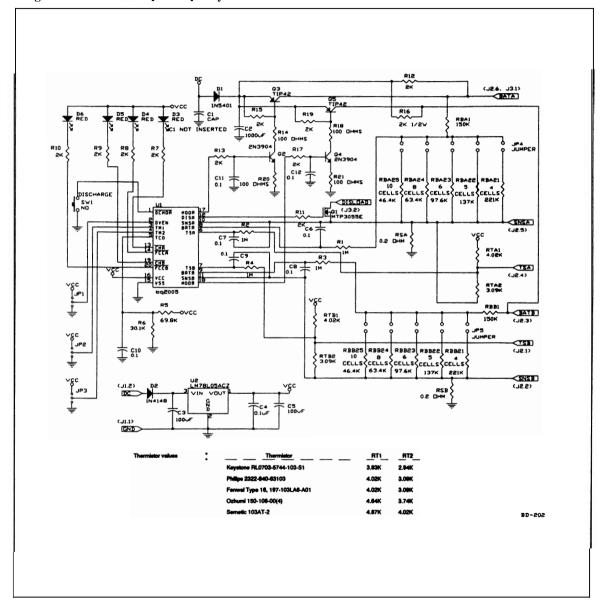


Figure 8. Linear Regulator/Charge Controller

July 1994 9/18

Using the bq2005 to Control Fast Charge

Table 5. Linear Regulator/Charge Controller Board Parts List

Component Name	Quantity	Component Description	
C1, C2	1	1000μF 25V aluminum (C1 is optional — not stuffed)	
C3	1	100μF 25V aluminum	
C5	1	100μF 6.3V aluminum	
C4, C6, C7, C8, C9, C10, C11, C12	8	0.1μ F ceramic	
D1	1	1N5400	
D2	1	1N4148	
D3, D4, D5, D6	4	HMLP-D150 HP LED	
J1, J3	2	2-position terminal block	
J2	1	6-position terminal block	
JP1, JP2, JP3	3	3-pin single-row header	
JP4, JP5	2	12-pin dual-row header	
JP6	1	2-pin single-row header	
Q1	1	MTP3055EL FET	
Q2, Q4	2	2N3904	
Q3, Q5	2	TIP42	
R1, R2, R3, R4	4	1MΩ 5% ¼W	
R5	1	69.8KΩ 1% ¹ ⁄ ₄ W	
R6	1	30.1KΩ 1 % ¹ / ₄ W	
R7, R8, R9, R10, R11, R12, R13, R15, R16, R17, R19	11	2KΩ 5% ¼W	
R14, R18, R20, R21	2	100Ω 5% ¼W	
RBA1, RBB1	2	150KΩ 1% ¹ ⁄ ₄ W	
RBA21, RBB21	2	221KΩ 1% ¹ / ₄ W	
RBA22, RBB22	2	137KΩ 1% ¹ ⁄ ₄ W	
RBA23, RBB23	2	97.6KΩ 1% ¹ ⁄ ₄ W	
RBA24, RBB24	2	63.4KΩ 1% ¹ / ₄ W	
RBA25, RBB25	2	46.4KΩ 1% ¹ / ₄ W	
RSA, RSB	2	0.2Ω 1% 3W wirewound Dale LVR3	
RTA1, RTB1	2	4.53KΩ 1% ¹ ⁄ ₄ W	
RTA2, RTB2	2	3.57KΩ 1% ¹ / ₄ W	
S1	1	SPST momentary switch, Panasonic P8008S	
U1	1	bq2005	
U2	1	LM78L05ACZ	
Heatsink	1	Thermalloy 6298B	
Mounting kit	2	TO-220	
Socket	1	20-pin solder tail ICO-203-58-T	
PCB	1	DV2005L1	
Screws	4	6-32 thread x ¹ / ₄ inch	
Legs	4	Stand-off ½inch 6-32 thread	

10/18 July 1994

Application Example 2: Single-Magnetics **Low-Cost Dual-Switching Charger**

Figure 9 illustrates a low-coat dual-sequential switching charger using a small, low Q inductor to speed up the bipolar transistor commutation. Table 6 **contains** the **parts list** for the board. Bipolar **transistors** Q2 and Q5 are used to multiplex the energy stored in **L1** by the charger's charge cycles.

Transistor Q3 is used to switch energy into L1 from the power source. Low-Q inductor L2 helps to turn Q3 off to limit its power dissipation. Thii circuit has the advantage of using bipolar transistors with saturation voltages far below the IR drops of comparably sized p-channel MOSFETs. This also results in significant cost savings. Designers must use care in selecting Q3 for suitability as a switching transistor. The Zetex Super-E line is ideal for applications up to 3A.

Layout guidelines are **described** on page 8. Possible layout **concerns** include:

- Diode D2 is installed to catch inductor energy in the event of battery removal during charge.
- Battery voltage differentials are applied to the baseemitter junctions of transistors Q5 and Q2 in the reverse direction. (Although the bq2005 will not charge a shorted battery, the design should ensure that Q5 and Q2 are protected if the battery could be shorted during charge.)

Q3 must be a high-speed switching transistor with suitably high VCE rating for the application. The ZTX789A has a breakdown rating of 25V and a continuous current rating of 3A. This transistor's high gain enables it to saturate to a very low VCE (< 0.25V) at 2A. The 'on-time' power dissipation makes up moat of the component power loss, but the switching loss must be added to give a complete picture of the transistor's required power dissipation.

A good switching transistor is gauged by its transition frequency (F_T) rating. A transistor with an F_T rating of >50MHz is a superior switching transistor for a switchmode application, whereas a transistor with an F_T of 10MHz may be usable. In this example, the ZTX789A has an F_T of 100MHz. Manufacturers sometimes cite turnoff time as a sum of storage and fall time; some cite these values independently. The turnoff time is important for frequency selection, but the fall time is critical to determine power dissipation.

The **influence** of fall time on power dissipation can be estimated using the following formula:

$$P_{SW} = F \times T_F \times V_{IN} \times \frac{I_P}{6}$$

where:

Psw = Power loss when switching

F = Switching frequency

 $T_F = Fall time$

V_{IN} = Maximum input voltage

IP = Peak switching current

Component power diesipation is the sum of **Psw** and PoN, which is estimated from the following formula:

$$P_{ON} = \frac{V_{BAT}}{V_{IN}} \times V_{CESAT} \times I_{AV}$$

where:

Pon = Power diesipation when the **transistor**

is on

 V_{BAT} = Battery voltage

V_{IN} = Input voltage

VCESAT = Maximum transistor saturation voltage

IAV = Average battery charge current

The Zetex E-line package can dissipate the heat **resulting** from this design in **free** air.

Other switching transistors that may be useful in applications up to **3A** are the **MJE210** and the **D45H** series **transistors**. **Q2** and **Q5** are selected for high HFE and low **VCESAT**.

July 1994 11/18

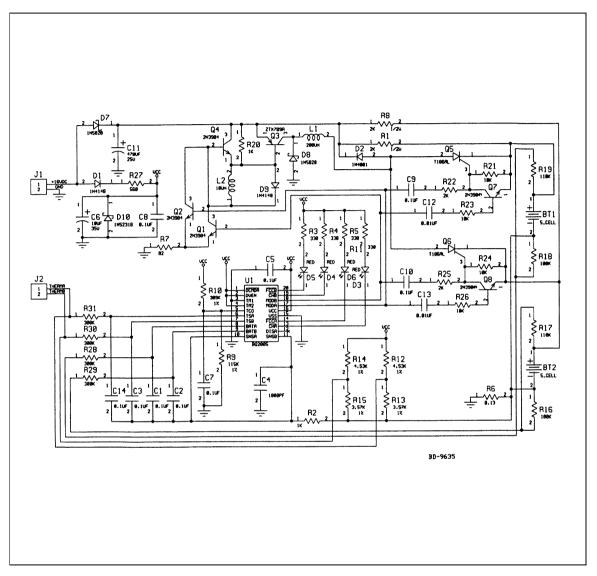


Figure 9. Single-MagneticsLow-Cost Dual-Switching Charger

12/18 July 1994

Table 6. Single-Magnetics Low-Cost Dual-Switching Parts List

Component Name	Quantity	Component Description
C1, C6	2	1000pF 50V ceramic
C2, C3, C4, C5, C7, C10, C11, C12, C13	9	0.1μF 50V ceramic
C14, C15	2	0.01µF 50V ceramic
C8	1	10µF 35V aluminum
С9	1	470μ F 35V aluminum
D1 , D9	2	1N4148
D2	1	1N4001
D3, D4, D5, D6	4	HMLP-D150 red HP LED
D7, D8	2	1N5820 Schottky
D10	1	1N5231B Zener
L1	1	200µH toroid inductor
L2	1	10μΗJ.W.Miller 78F100J
Q1, Q2, Q4, Q7, Q8	5	2N3904
Q3	1	ZTX789A, Zetex high gain, med. power
Q5, Q6	2	T106A1, Teccor 4A SCR
R1, R10, R28, R31	4	2KΩ 5% ¼W carbon film
R2, R3, R26	3	1KΩ 5% ¼W carbon film
R4, R5, R6, R13	4	3308 5% 1/4W carbon film
R7, R8	2	0.1352 5% 1W metal oxide
R9	1	8285% ¼W carbon film
R11	1	115KΩ 1% 1/4W metal film
R12	1	309Ω 1% ½W metal film
R14, R16	2	4.53KΩ 1% 1/4W metal film
R15, R17	2	3.57KΩ 1% ¼W metal film
R18, R20	2	100KΩ 5% ¼W carbon film
R19, R21	2	110KΩ 5% ¼W carbon film
R22, R23, R24, R25	4	1MKΩ 5% ¼W carbon film
R27, R29, R30, R32	4	10KΩ 5% ¹ /4W carbon film
R33	1	560Ω 5% ½W carbon film
U1	1	bq2005

July 1994

Application Example 3: P-Channel MOSFET Buck-Topology Switch-Mode Charger

In this example, the **bq2005** is used to implement a switching **regulator/charge** controller that can charge 4 to 10 **NiCd** or **NiMH** cells with current regulated up to **3A**.

Figure 10 is a standard configuration for a **p-FET** switch-mode charger. MOD drives a small signal DMOS FET, Q2/Q5. When MOD is high, Q2/Q5 is on, turning on Q4/Q7 via the path through D8/D12 and D11/D7.

L1/L2 inductor current ramps up linearly while MOD is high. L1/L2 current is in series with the battery and RSA or RSB. The inductor current ramps up linearly urtil Vsns reaches 0.250V, at which time MOD goes low and Q4/Q7 turns off. A flux reversal occurs in L1/L2, causing D9/D13 to conduct. Charge is now being transferred from L1/L2 into the battery. The L1/L2 current ramps down linearly until Vsns reaches 0.20V. At this point the cycle repeats with MOD going high.

For input voltages that are higher than the rated Q4/Q7 safe operating gate voltage, Zener diode D7/D11 can be placed in series with the drain lead of Q2/Q5. The Zener voltage should be sized to allow full Q4/Q7 enhancement while Q2/Q5 is conducting. See Table 7.

Capacitor C2 is used to provide a low-impedance for the 62/65 source lead. Without C2 in place, **Q2/Q5** can be connected to an overly inductive voltage supply. **D1** is a blocking diode that keeps the battery from discharging via U2 during removal of the DC power **source** input.

Charge is initiated on battery replaced or Vcc valid. -AV detection can be enabled (**DVEN** high), and discharge

Table 7. Lookup Table for D7/D11 Selection

+VDC Input (Voits)	Motorola Part No.	Nominal Zener Voltage
Below 15	Shorted	0
15-18	1N749	4.3
18-21	1N755	7.5
21–24	1N758	10
24–27	1N964A	13
27-30	1N966A	16
30-32	1N967A	18
32–35	1N968A	20

control is through DCMD (SW1 low). MCV = 1.8V; LTF = 10°C; TCO = 50°C; ΔT/Δt at 30°C = 0.82°C/min. (i.e., typical = 1.10°C/min.). Timer-mode selection (see data sheet) and resistor R15/R17 are determined by the designer. RSA/RSB is selected such that ICHG • RSA/RSB = 0.225V.

The values of **RB1** and RB2 to complete **this** schematic may be **selected** from Table 3.

Note: Temperature control and qualification may be disabled by tying the TCO pin to **Vss** and **fixing** the voltage on the **TS_{A,B}** pins to 0.1 * Vcc.

Table 8 lists suggested components for different-rate chargers. Table 9 lists other components shown in **Figure** 10.

Table 8. Suggested Components—P-Channel MOSFET Charger

Suggested Max. Charging Current	Q4/Q7	D9/ D13	D10/ D14	L1/L2
1A	IRF9Z14	1N4001	1N5818	30 turns, #26 AWG, wound on Magnetics, Inc., P/N 77040 core; nominal inductance 59µH; GFS Mfg., Inc., P/N 92-2156-1
2A	IRF9Z24	1N5821	1N5821	37 turns, #22 AWG, wound on Magnetics, Inc.,
3A	IRF9Z34	1N5821	1N5821	P/N 77120 core; nominal inductance 98µH ; GFS Mfg., Inc., P/N 92-2157-1
Source	International Rectifier	Motorola	Motorola	GFS Mfg., Inc. Dover, NH (603) 742-4375

14/18 July 1994

Table 9. Other Components—P-Channel MOSFET Charger

Component Name	Component Description
C1, C2	1000μF 5V electrolytic
C3	100μ F 25V electrolytic
C4, C6, C7, C9, C10, C12	0.1µF ceramic
C5	100μF 6,3V electrolytic
C8, C11	1000pF ceramic
D1	1N5400
D2, D8, D12	1N4148
D3, D4, D5, D6	HLMP 4700 red LED
D7/D11	Optional Zener; see Table 9
D9/D13	1N5821
D10/D14	1N4001
Q1	TIP120 or MTP3055EL
Q2, Q5	2N7000
Q3, Q6	2N3904
Q4/Q7	MTP23P06
R1, R2, R4, R5	1MΩ 5% ¹ / ₄ W or ¹ / ₈ W
R3, R6	1KΩ 5% ¼W
R7, R8	User-defined 1% ¹ / ₄ W or ¹ / ₈ W
R9, R10, R11, R12, R13	2KΩ 5% ¼W or ⅓W
R14/R16	6.8KΩ 5% ¼W or ⅓W
RSA, RSB	0.113 1% 3W
RBA1, RBB1	150KΩ 1% ¼W or ⅓W
RBA2, RBB2	User-defined 1% 1/4W or 1/8W
RTA1, RTB1	User-defined 1% 1/4W or 1/8W
RTA2, RTB2, R15, R17	User-defined 1% ¼W or 1/8W
L1/L2	See Table 10
U1	bq2005
U2	LM78L05ACZ

July 1994 15/18

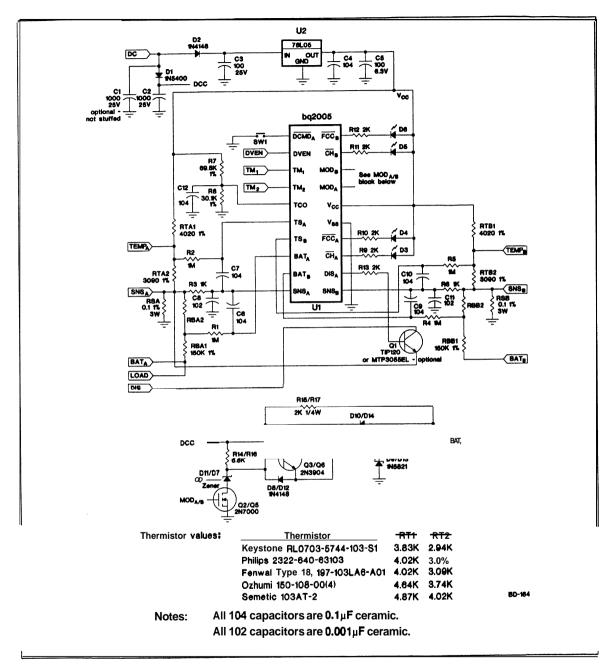


Figure 10. P-Channel MOSFET Switching-Mode Charger

16/18 July 1994

Appendix A Determining TemperatureControl Component Values

The bq2005 uses a negative temperature coefficient (NTC) thermistor to determine temperature. The AT/At sensitivity can be adjusted using different resistor values (RT1 and RT2 in Figure 1 and the application example) and a different high-tempera — cutoff voltage. Table A-1 lists various thermistor manufacturers, with the appropriate part numbers.

Follow these steps to determine temperature-control component values (see Figure 6):

- 1a. The low-temperature fault (LTF) limit for charging must be established. LTF for charging is determined by the battery specification and the charge rate used. A typical value for the low-temperature limit is 10°C.
- b. VLTF is set within the bg2005 at 0.4 * Vcc.
- 2a. The high-temperature cutoff (TCO) for charging must be established. TCO for charging is determined by the battery specification, the charge rate, and the heat dissipation of the system. Typical values range from 40°C to 50°C, although values outside this range may be applicable.
- b. The average ΔT/Δt sensitivity from LTF to TCO (TΔT, expressed as °C/minute) for termination must be established. As mentioned in this application note, the bq2005 provides a typical ΔT/Δt charge termination of 14 mV per minute. The TAT value is

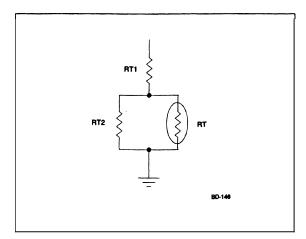


Figure A-1. Resistor Network

determined by the battery specification, the charge rate, and the heat **dissipation** of the system. Typical nominal values for TAT range from **0.75°C/min** to **1.5°C/min**.

Relative to the average value TAT, the **minimum-to-**maximum range of $\Delta T/\Delta t$ at a specific temperature depends on two **parameters**:

- The measurement resolution of the bq2005, which contributes a ± 26% error.
- The non-linearity of the thermistor between LTF and TCO. As the temperature nears LTF, the expected ΔT/Δt is less than TAT (less sensitive), and as the temperature nears TCO, the expected ΔT/Δt is more than TΔT (more sensitive).

The $\Delta T/\Delta t$ range should be considered in determining the nominal Tat. Naminal Tat should be selected so that its minimum value represents an acceptable (non-premature) termination threshold. Thus a first bq2005 sample does not cause a premature termination. Multiple sampling ensures that the termination occurs well before the Tat max.

c. The high-temperature cutoff voltage, **Vrco**, must be established. This V_{TCO} limit is determined by the TAT and may be calculated by:

$$V_{TCO} = (2 \cdot V_{CC}/5) \cdot [(0.0028 \cdot V_{CC} \cdot (TCO \cdot LTF)) / T_{\Delta T}]$$

VTCO is provided at the TCO pin by a resistor-divider network as shown in Figures 8 and 9: VTCO = VCC • R1/(R1 + R2).

- 4. Select the **thermistor** to be used. If it **is** not from Table A-1, the **thermistor** sensitivity at **25°C** ehould be at least -4% and the AR steps between **30°C** and **50°C** should be comparable to or greater than **those** in Table **A-1** to obtain the appropriate accuracy. Lower values affect the linearity of the ΔΤ/Δt.
- 5. Determine the thermistor resistance at LTF and TCO (RLTF and RTCO, respectively). This may be done using the thermistor temperature versus resistance conversion table provided with the thermistor specification. These tables are usually in 5°C increments.
- **6.** The values for **RT1** and **RT2** may be calculated by:

$$\begin{split} T &1 = R_{LTF} \bullet (1 - (2/V_{CC}))/(2/V_{CC}) \\ T2 &= R_{TCO} \bullet (1 - (V_{TCO}/(V_{CC} - V_{SNS})))/(V_{TCO}/(V_{CC} - V_{SNS})) \\ RT2 &= ((T2 \bullet R_{LTF}) - (T1 \bullet R_{TCO}))/(T1 - T2) \\ RT1 &= (RT2 \bullet T1)/(R_{LTF} + RT2) \end{split}$$

July 1994

Table A-1. 10K NTC Thermistor Types and Resistance Values

		Nominal Resistan	ce (Ω) at Temperature		
Temperature (℃)	Keystone Carbon Co. RL0703-5744-103-S1 (Tel: 814/781-1591)	Philips Components 232264083103 (Tel: 407/743-2112)	Fenwal Electronics Type 18; 197-103LA6-A01 (Tel: 508/478-6000)	Thermometrics C100Y103J (Tel: 908/287-2870)	
-30	188172	173900	177000	•	
-25	138043	128500	-	•	
-20	102263	95890	97070	•	
-15	76461	72230	•	•	
-10	57672	54890	55330	•	
-5	43864	42070	-	•	
0	33630	32510	32650	29588	
5	25988	25310	-	23515	
10	20243	19860	19900	18813	
15	15889	15690	-	15148	
20	12562	12490	12490	12271	
25	10000	10000	10000	10000	
30	8013	8060	8057	8195	
35	6461	6536	•	6752	
40	5241	5331	5327	5593	
45	4276	4373	-	4656	
50	3507	3606	3603	3894	
55	2894	2989	-	3273	
60	2400	2490	2488	2762	
65	2001	2085	-	2342	
70	1677	1753	1752	1993.7	
75	1412	1481	-	1704.0	
80	1194	1256	1258	1462.0	
85	1014	1070	•	1259.1	
90	865.2	915.5	917.7	1088.3	
95	741.0	786.1	-	943.9	
100	636.9	677.5	680.0	821.4	

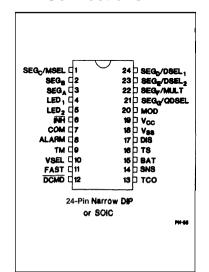
18/18 July 1994

bq2007 Fast Charge IC

Features

- Fast charging and conditioning of NiCd and NiMH batteries.
 - **Precise** charging independent of battery pack number of cells
 - Discharge-before-chargeon demand
 - Pulse trickle charge conditioning
 - Battery undervoltage and overvoltage protection
- Built-in 10-step voltage-based charge status monitoring
 - Charge status display options include seven-segment monotonic bargraph and fully decoded BCD digit
 - Display interface options for direct drive of LCD or LED segments
 - Charger state status indicators for pending, discharge, charge, completion, and fault

- Audible alarm for charge completion and fault conditions
- Charge control flexibility
 - Fast or Standard speed charging
 - Top-off mode for NiMH
 - Charge rates from to 2C (30 minutes to 8 hours)
- Charge termination by:
 - Negative delta voltage $(-\Delta V)$
 - Peak voltage detect (PVD)
 - Maximum voltage
 - Maximum time
 - Maximumtemperature
- High-efficiency switch-mode
 - Ideal for small heat-sensitive enclosures
- 24-pin, 300-mil SOIC or DIP


General Description

The **bq2007** is a highly integrated monolithic CMOS IC designed to provide intelligent battery charging and charge status monitoring for standalone charge systems.

The bo2007 provides a wide variety of charge status display formats. The bg2007 internal charge statue moniter supports up to a seven-segment bargraph or a single BCD digit dieplay. The bargraph display indicates up to seven monotonic steps, whereas the BCD digit counts in ten steps of 10% increments. The ba2007 output drivers can direct-drive either an LCD or LED display.

Charge action begins either by application of the charging supply or by replacement of the battery pack. For safety, charging is inhibited until battery temperature and voltage are within configured limits.

Pin Connections

Sept. 1996 B

Pin Names

SEGc/ MSEL	Display output segment C/ driver mode select	SNS	Sense resistor input
SEGR		BAT	Battery voltage
	Display output segment B	TS	Temperature sense
SEGA	Display output segment A	DIS	Discharge control
LED ₁	Charge status output 1	V	C
LED ₂	Charge status output 2	Vss	System ground
ĪNH	Charge inhibit input	Vcc	5.0V ±10% power
COM	Common LED/LCD output	MOD	Modulation control
ALARM	Audio alarm output	SEGg/ QDSEL	Display output segment G/ charge status display select
TM	Timer mode select	SEG _F /	Display output segment F/
VSEL	Voltage termination select	MULT	multi-cell pack select
FAST	Fast charge rate select	SEG _E / DSEL ₂	Display output segment E/ display select 2
DCMD	Discharge command	SEGD/	Display output segment D/
TCO	Temperature cutoff	DSEL ₁	display select 1

1/14

The acceptable battery temperature range is set by an internal low-temperature threshold and an external high-temperature cutoff threshold. The **absolute** temperature is monitored as a voltage on the TS pin with the external thermistor network **shown** in Figure 2.

The **bq2007** provides for undervoltage battery protection from high-current charging if the battery voltage is **less** than the normal end-of-discharge value. In the case of a deeply discharged battery, the **bq2007** enters the **charge**-pending state and attempts trickle-current conditioning of the battery until the voltage increases. Should the battery voltage fail to increase above the discharge value during the undervoltage time-out period, a fault condition is indicated.

Discharge-before-charge may be **selected** to **automatically** discharge the battery pack on battery insertion or with a push-button switch. Discharge-before-charge on demand provides conditioning services that are **useful** to correct or prevent the **NiCd** voltage **depression**, or "**memory**" effect, and **also** provide a **zero** capacity reference for accurate capacity monitoring.

After prequalification and any required discharge-before-charge operations, charge action begins until one of the full-chargetermination conditions is detected. The bq2007 terminates charging by any of the following methods:

- Negative delta voltage $(\cdot \Delta V)$
- Peak voltage detect (PVD)
- Maximum absolute temperature
- Maximum battery voltage
- Maximum charge time-out

The **bq2007** may be programmed for negative delta voltage (ΔV) or peak voltage detect (PVD) charge termination algorithms. The VSEL input pin selects ΔV or PVD termination to match the charge rate and battery characteristics.

To provide maximum safety for battery and system, charging terminates based on maximum temperature cutoff (TCO), maximum cutoff voltage (MCV), and maximum time-out (MTO). The TCO threshold is the maximum battery temperature limit for charging. TCO terminates charge action when the temperature sense input voltage on the TS pin drops below the TCO pin voltage threshold. MCV provides battery overvoltage protection by detecting when the battery cell voltage (YCELL = VBAT · VSNS) exceeds the VMCV value and terminates fast charge, standard charge, or top-off charge. The maximum—time-out (MTO) termination occurs when the charger safety timer has completed during the active charge state.

The bq2007 indicates charge state status with an audio alarm output option and two dedicated output pins with programmable display options. The DSEL1-2 inputs can select one of the three display modes for the LED1-2 outputs.

Charger status is indicated for:

- Charge pending
- Charge in progress
- Charge complete
- Fault condition

Pin Descriptions

SEGA-G Display output segments A-G

State-of-charge monitoring outputs. QDSEL input selects the **bargraph** or BCD digit display mode. **See** Table 3.

MSEL Display driver mode select

Soft-programmed input selects LED or LCD driver configuration at initialization. When MSEL is pulled up to Vcc, outputs SEGA-G are LED interface levels: when MSEL is pulled down to Vss, outputs SEGA-G are LCD levels.

DSEL₁, DSEL₂

Display **mode select** 1–2

Soft-programmed inputs control the LED₁=2 charger statue **display modes** at **initialization**. **See** Table 2

MULT Fixed-cell pack select

Soft-programmed input is pulled up to Vcc when charging multi-cell packs and is pulled down to **Vss** for charging **packs** with a fixed number of cells.

QDSEL State-of-charge display select

The QDSEL input controls the SEGA-G state-of-charge display modes. See Table 3.

LED₁₋₂ Charger status outputs 1-2

Charger **status** output drivers for direct drive of **LED** displays. **Display** modes are selected by the DSEL input. See Table 2.

INH Charge inhibit input

When low, the bq2007 suspends all charge actions, drives all outputs to high impedance, and assumes a low-power operational state. When transitioning from low to high, a charge cycle is initiated. See page 10 for details.

2/14 Sept. 1996 B

COM Common LCD/LED output

Common output for LCD/LED display SEGA_G. Output is high-impedance during initialization to allow reading of soft-programmed inputs DSEL₁, DSEL₂, MSEL, MULT, and ODSEL

ALARM Audio output

Audio alarm output.

TM Timer mode select

TM is a three-level input that controls the settings for charge control functions. See Table 5.

VSEL Voltage termination select

Thie input ewitchee the voltage detect sensitivity. See Table 5.

FAST Fast charge rate select

The FAST input switches between **Fast** and **Standard** charge rates. See Table 4.

DCMD Discharge command

The DCMD input controls the dischargebefore-charge function. A negative-going pulse initiates a discharge action. If DCMD is connected to Vss, automatic diecharge-before-charge enabled. See Figure 3.

TCO Temperature cut-off threshold input

Minimum allowable battery temperaturesensor voltage. If the potential between TS and SNS is less than the voltage at the TCO input, then any fast charging or top-off charging is terminated.

SNS Sense resistor input

SNS controls the switching of MOD output based on an external sense resistor. This provides the lower reference potential for the BAT pin and the TS pin.

BAT Battery voltage input

Battery voltage sense input referenced to SNS for the battery pack being charged. This resistor divider network is connected between the positive and the negative terminals of the battery. See Figure 1.

TS Temperature sense input

Input referenced to SNS for battery temperature monitoring negative temperature coefficient (NTC) thermistor.

DIS Discharge control

DIS is a push-pull output that controls an external transistor to discharge the battery before charging.

Vss Ground

Vcc Vcc supply input

MOD Current-switchingcontrol output

Push/pull output that controls the charging current to the battery. MOD switches high to enable current flow and low to inhibit current flow.

Functional Description

Figure 1 illustrates charge control and display status during a bq2007 charge cycle. Table 1 summarizes the bq2007 operational features. The charge action states and control outpute are given for possible input conditions.

Charge Action Control

The bq2007 charge action is controlled by input pine DCMD, VSEL, FAST, and TM. When charge action is initiated, the bq2007 enters the charge-pending state. checks for acceptable battery voltage and temperature, and performs any required discharge-before-charge operations. DCMD controls the diecharge-before-charge function, and VSEL, FAST, and TM select the charger configuration. See Tables 4 and 5.

During charging, the **bq2007** continuously **tests** for charge termination wnditione: negative delta voltage, peak **voltage** detection, maximum time-out, **battery** overvoltage, and high-temperature **cutoff**. When the charge state is terminated, a trickle charge continues to compensate for **self-discharge** and maintain the **fully** charged **condition**.

Charge Status Indication

Table 2 summarizes the **bq2007** charge status display indications. The charge statue **indicators** include the DIS output, which can be used to indicate the discharge **state**, the audio **ALARM** output, which **indicates** charge wmpletion and fault conditions, and the dedicated statue outputa, LED₁ and LED₂.

Sept. 1996 B

3/14

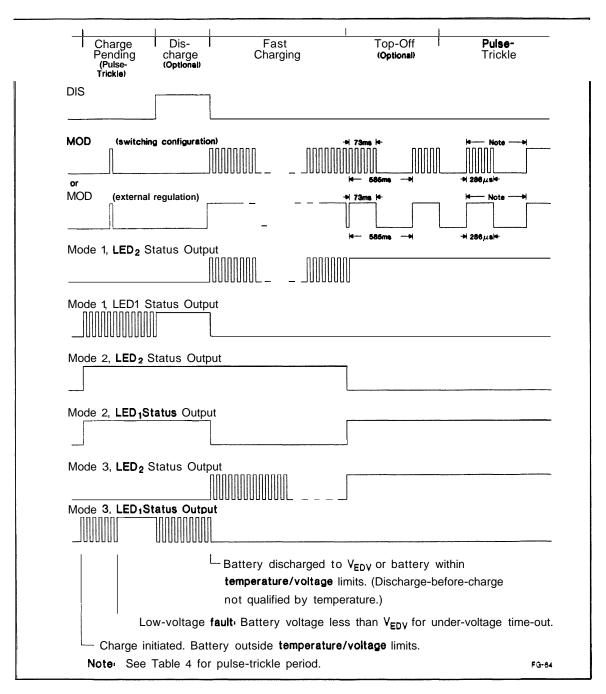


Figure 1. Example Charging Action Events

4/14 Sept. 1996 B

Outputs LED₁₋₂ have three display modes that are selected at initialization by the input pins DSEL₁ and DSEL₂. The DSEL₁ and DSEL₂ input pins, when pulled down to Vss, are intended for implementation of a simple two-LED system. LED₂ indicates the precharge statue (i.e., charge pending and discharge) and LED₁ indicates the charge status (i.e., charging and completion). DSEL₁ pulled up to Vcc and DSEL₂ pulled down to Vss mode is for implementation of a single tri-color LED such that discharge, charging, and completion each have a unique color. DSEL₁ pulled down to Vss and DSEL₂ pulled up to Vcc allows for fault status information to be displayed.

Audio Output Alarm

The **bq2007** audio **alarm** output **generates** an audii tone to indicate a charge completion or fault condi on. The audio **alarm** output **is** a symmetrical duty-cycle AC signal that is compatible with standard piezoelectric **alarm elements**. A valid battery **insertion** is indicated by a single high-tone beep of **1/2-second** typical duration. The charge completion and fault **conditions** are indicated by a 9.5- to **15-second** high-tone **sequence** of **1/2-second** typical duration at a **2-second** typical repetition rate.

Charge Status Monitoring

The **bq2007** charge status monitor may display the battery voltage or charge **safety** timer as a percentage of the full-charged condition. **These options** are selected with the MULT **soft-programmed** input pin.

when MULT is pulled down to Vss, the battery charge statue is displayed as a percentage of the battery voltage, and the single-cell battery voltage at the BAT pin is compared with internal charge voltage reference thresholds. When VBAT is greater than the internal thresholds of V20, V40, V60, or V80, the respective 20%, 40%, 60%, or 80% display outputs are activated. The battery voltage directly indicates 20% charge increments, while the 10% charge increments use a timer that is a function of the charge safety timer.

when MULT is pulled down to Vss and when VBAT exceeds V20 during charging, the 20% charge indication is activated and the timer begins counting for a period equal to 1/64 to 1/52 of the charge safety time-out period. When the timer count is completed, the 30% charge indication is activated. Should VBAT exceed V40 prior to the timer count completion, the charge status monitor

Table 1. bg2007 Operational Summary

Charge Action State	Conditions	MOD Output	DIS Output
Battery absent	Vcc applied and Vcell ≥ VMCV	Trickle charge per Table 4	Low
Charge initiation	Vcc applied or Vcell drop from ≥ Vmcv to < Vmcv		Low
Discharge-before- charge	DCMD high-to-low transition or to Vss on charge initiation and Vepy < Vcell < VMCV	Low	High
Charge pending	Charge initiation occurred and VTEMP ≥ VLITF or VTEMP ≤ VTCO OF VCELL < VEDV	Trickle charge per Table 4	Low
Fast charging	Charge pending complete and FAST = Vcc	Low if V _{SNS} > 250mV; high if V _{SNS} < 200mV	Low
Standard charging	Charge pending complete and FAST = Vss	Low if $V_{SNS} > 250 \text{mV}$;	Low
Charge complete	-∆V termination or ~ TEM < VTCO or PVD ≥ 0 to -3mV/cell or maximum time-out or V c w > VMCV		
Top-off pending	VSEL = Vcc, charge complete and VTEMP ≥ VLTF or VTEMP ≤ VTCO or VCELL < VEDV	Trickle ^{charge} per Table ⁴	Low
Top-off charging	VSEL = V _{CC} and charge complete and time-out not exceeded and V _{TEMP} > V _{TCO} and V _{CELL} < V _{MCV}	Activated per V _{SNS} for 73ms of every 585ms	Low
Trickle charging	Charge complete and top-off disabled or top-off complete or pending	Trickle charge per Table 4	Low
Fault	Charge pending state and charge pending time-out (tpend) complete	Trickle charge per Table 4	Low

Definitions: $V_{CELL} = V_{BAT}$. V_{SNS} ; $V_{MCV} = 0.8 \cdot V_{CC}$; $V_{EDV} = 0.262 \cdot V_{CC}$ or $0.4 \cdot V_{CC}$; $V_{TEMP} = V_{TS} \cdot V_{SNS}$;

 $V_{LTF} = 0.6 \cdot V_{CC}$

Sept. 1996 B

5/14

activates the 30% and 40% indications. This technique is used for all the odd percentage charge indications to assure a monotonic charge status display.

When MULT is pulled up to Vcc, the bq2007 charge status monitor directly displays \(^1/32\) of the charge safety timer as a percentage of full charge. This method is recommended over the voltage-based method when charging fixed-cell packs where the battery terminal voltages can vary greatly between packs. This method offers an accurate charge status indication when the battery is fully discharged. When using the timer-based method, discharge-before-charge is recommended.

During discharge with MULT pulled down to Vss, the charge status monitor indicates the percentage of the battery voltage by comparing VBAT to the internal discharge voltage reference thresholds. In BCD format, the discharge thresholds V80, V60, V40, and V20 correspond to a battery charge state indication of 90%, 70%, 50%, and 30%, respectively. In bargraph format, the same discharge thresholds correspond to a battery charge state indication of 90%, 60%, 40%, and 30%, respectively. Differences in the battery charge state indications are due to the finer granularity of the BCD versus the bargraph format.

During discharge and when MULT is pulled up to Vcc, the state-of-charge monitor BCD format displays the discharge condition, letter "d," whereas the **bargraph** format has no indication.

The charge statue display is blanked during the charge pending **state** and when the battery pack is removed.

Charge Status Display Modes

The bq2007 charge status monitor can be displayed in two modes summarized in Table 3. The display modes are a **seven-segment** monotonic **bargraph** or a seven-segment BCD single-digit format. When QDSEL is pulled down to **Vss**, pine **SEGA-G** drive the decoded **seven** segments of a single BCD digit display, and when QDSEL is **pulled** up to **Vcc**, pine **SEGA-G** drive the seven **seg**menta of a **bargraph** display.

In the **bargraph** display mode, outputs **SEG_{A-G}** allow **options** for a three-segment to seven-segment **bargraph** display. The three-segment charge **status** display **uses** outputs **SEG_B**, **SEG_D**, and **SEG_F** for **30%**, **60%**, and 90% **charge indications**, **respectively**. The four-segment charge status display **uses outputs SEG_A**, **SEG_C**, **SEG_D**, and **SEG_E** for 20%, 40%, 60%, and 80% indications, **respectively**. The seven-segment charge **status** monitor **uses all segments**.

The BCD display mode drives **pins SEGA-G** with the decoded seven-segment single-digitinformation. The **dis**play indicates in 10% **increments from** a BCD zero count at charge initiation to a BCD nine **count** indicating 90% charge capacity. Charge completion is indicated by the letter "F," a fault condition by the letter S,' and the **discharge** condition by the letter "d." See Table 3.

Table 2. bq2007 Charge Status Display Summary

Mode	Charge Action State	LED ₁	LED ₂	DIS	ALARM
	Battery absent	0	0	0	0
DODI I	Charge pending (temp. limit, low voltage)	0	Flashing	0	0
$DSEL_1 = L$ $DSEL_2 = L$	Discharge in progress	0	1	1	0
(Mode 1)	Charging	Flashing	0	0	0
	Charge complete	1	0	0	High tone
	Fault (low-voltage time-out)	0	0	0	High tone
	Battery absent	0	0	0	0
DSEL ₁ = H	Discharge in progress, pending	1	1	1	0
DSEL ₂ = L	Charging	1	0	0	0
(Mode 2)	Charge complete	0	1	0	High tone
	Fault (low-voltage time-out)	0	0	00	High tone
	Battery absent	0	0	0	0
DODY - I	Charge pending (temp. limit, low voltage)	0	Flashing	0	0
$DSEL_1 = L$ $DSEL_2 = H$	Discharge in progress	0	Flashing	1	0
(Mode 3)	Charging	Flashing	0	0	0
	Charge complete	1	0	0	High tone
	Fault (low-voltage time-out)	0	1	0	High tone

Note:

1 = on; 0 = off; L = pulled down to Vss; H = pulled up to V_{CC} .

6/14

Sept. 1996 B

Display Driver Modes

The bq2007 is designed to interface with LCD or LED type displays. The LED signal levels are driven when the MSEL soft-programmed input is pulled to Vcc at initialization. The output pin COM is the common anode connection for LED SEGA-G.

The LCD interface mode is enabled when the MSEL soft-programmed input pin is pulled to Vss at initialization. An internal oscillator generates all the timing signals required for the LCD interface. The output pin COM is the common connection for static direct-driving of the LCD display backplane and is driven with an AC signal at the frame period. When enabled, each of the SEGA-G pins is driven with the correct-phase AC signal to activate the LCD segment. In bargraph or BCD mode, output pins SEGA-G interface to LED or LCD segments.

Battery Voltage and Temperature Measurement

The battery voltage and temperature are monitored within set minimum and maximum limits. When MULT is pulled up to Vcc, battery voltage is sensed at the BAT pin by a resistive Voltage divider that divides the terminal voltage between 0.262. Vcc (VEDV) and 0.8. Vcc (VMCV). The bq2007 charges multi-cell battery packs from a minimum of N cells, to a maximum of 1.5. N cells. The battery voltage divider is set to the minimum cell battery pack (N) by the BAT pin voltage divider ratio equation:

$$\frac{R1}{R2} = \left(\frac{N}{1.32}\right) - 1$$

When MULT is pulled down to Vss, tighter charge voltage limits and voltage-based charge status display are selected. This is recommended for charging packs with a fixed number of cells where the battery voltage

Table 3. bq2007 Charge Status Display Summary

Mode	Display Indication	SEGA	SEGB	SEGc	SEGD	SEGE	SEGF	SEGa
	20% charge	1	0	0	0	0	0	0
	30% charge	1	1	0	0	0	0	0
QDSEL = H	40% charge	1	1	1	0	0	0	0
	60% charge	1	1	1	1	0	0	0
	80% charge	1	1	1	1	1	0	0
	90% charge	1	1	1	1	1	1	0
	Charge complete	1	1	1	1	1	1	1
	0% charge—digit 0	1	1	1	1	1	1	0
	10% charge—digit 1	0	1	1	0	0	0	0
	20% charge—digit 2	1	1	0	1	1	0	1
	30% charge—digit 3	1	1	1	1	0	0	1
	40% charge—digit 4	0	1	1	0	0	1	1
QDSEL = L	50% charge—digit 5	1	0	1	1	0	1	1
	60% charge—digit 6	1	0	1	1	1	1	1
	70% charge—digit 7	1	1	1	0	0	1	0
	80% charge—digit 8	1	1	1	1	1	1	1
	90% charge—digit 9	1	1	1	1	0	1	1
	Charge complete—letter F	1	0	0	0	1	1	1
	Fault condition—letter E	1	0	0	1	1	1	1
	Discharge—letter d	0	1	1	1	1	0	1

Note:

1 = on; 0 = off; L = pulled down to Vss; H = pulled up to $\mathbf{V}_{\mathbf{CC}}$.

Sept. 1996 B

7/14

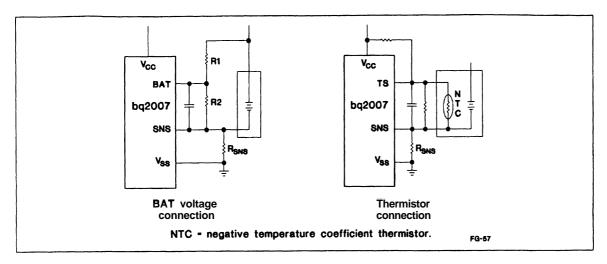


Figure 2. Voltage and Temperature Limit Measurement

divider range is between 0.4 • Vcc (VEDV) and 0.8 • Vcc (VMCV). The bq2007 charges fixed-cell battery packs of N cells. The battery voltage divider is set by the divider ratio equation:

$$\frac{R1}{R2}$$
 - $(\frac{N}{2})$ - 1

Note: The resistor-divider network impedance should be above $200K\Omega$ to protect the bq2007.

battery temperature is monitored for maximum and minimum allowable limits, the bq2007 requires that the thermistor used for temperature measurement have a negative temperature coefficient. See Figure 2.

Temperature and Voltage Prequalifications

For charging to be initiated, the battery temperature must fall within predetermined acceptable limits. The voltage on the TS pin (VTS) is compared to an internal low-temperature fault threshold (VLTF) of (0.5 • VCC) and the high temperature cutoff voltage (VTCO) on the TCO pin. Far charging to be initiated, VTS must be less than VLTF and greater than VTCO. Since VTS decreases as temperature increases, the TCO threshold should be selected to be lower than 0.5 • VCC for proper operation. If the battery temperature is outside these limits, the bq2007 holds the charge-pending state with a pulse trickle current until the temperature is within limits. Temperature prequalification and termination is disabled if VTS is greater than 0.8 • VCC. See Figure 2.

The bq2007 provides undervoltage battery protection by trickle-current conditioning of a battery that is below the low-voltage threshold (VEDV). The battery voltage (VCELL) 8/14

is compared to the low-voltage threshold (**VEDV**) and charge will be inhibited if **VCELL** < VEDV. The condition trickle current and fault time-out are a percentage of the fast charge rate and **maximum** time-out (**MTO**).

Initiating Charge Action and Discharge-Before-Charge

A charge **action** is initiated under control **of**: (1) battery insertion or (2) power applied. Battery insertion is **detected** when the voltage at the BAT pin falls from above **V_{MCV}** to below **V_{MCV}**. Power applied is detected by the rising edge of Vcc when a battery is inserted.

Discharge-before-charge is initiated automatically on application of power or battery insertion when DCMD is connected to **Vss.** Discharge-on-demand is initiated by a negative-going pulse on the **DCMD** pin regardless of

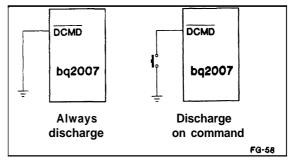


Figure 3. Discharge-Before-Charge

Sept. 1996 B

FAST Input State	TM Input State	Time-out Period (min)	MOD Duty Cycle	Hold-off period (sec)	Trickle Rep Rate -ΔV ^C /32	Trickle Rep Rate PVD ^C /64
V_{SS}	Float	640 (^C / ₈)	25%	2400	219Hz	109Hz
Vss	Vss	320 (^C / ₄)	<i>25</i> %	1200	109Hz	55Hz
Vss	Vcc	160 (^C / ₂)	<i>25</i> %	600	55Hz	27Hz
Vcc	Float	160 (^C / ₂)	100%	600	219Hz	109Hz
V_{CC}	V _{SS}	80 (C)	100%	300	109Hz	55Hz
Vcc	V _{CC}	40 (2C)	100%	150	55Hz	27Hz

Table 4. bq2007 Charge Action Control Summary

charging activity. The **DCMD** pin is internally pulled up to **Vcc**; therefore, not **connecting** this pin **results** in disabling the discharge-before-charge function. See **Figure** 3. When the **discharge** begins, the DIS output goes high to activate an **external transistor** that **connects** a load to the battery. The bq2007 terminates **discharge-before-charge** by detecting when the battery cell voltage is leas than or equal to the end-of-diicharge voltage **(VEDV)**.

Charge State Actions

Once the required discharge is completed and temperature and voltage prequalifications are met, the charge state is initiated. The charge state is configured by the VSEL, FAST, and TM input pine. The FAST input selects between Fast and Standard charge rates. The Standard charge rate is ½ of the Fast charge rate, which is accomplished by disabling the regulator for a period of 286µs of every 1144µs (25% duty cycle). In addition to throttling back the charge current, time-out and hold-off safety time are increased accordingly. See Table 4.

The VSEL input selects the voltage termination method. The termination mode sets the top-offstate and trickle charge current rates. The TM input selects the Fast charge rate, the Standard rate, and the corresponding charge times. Once charging begins at the Fast or Standard rate, it continues until terminated by any of the following conditions:

- Negative delta voltage (-AV)
- Peak voltage detect **(PVD)**
- Maximum temperature cutoff (TCO)
- Maximum time-out (MTO)
- Maximum cutoff voltage (MCV)

Voltage Termination Hold-off

To prevent early termination due to an initial **false peak** battery voltage, the **-AV** and PVD terminations are disabled during a short **"hold-off"** period at the **start** of charge. During the hold-off period when fast charge is **selected** (FAST = 1), the **bq2007** will top **off** charge to prevent excessive overcharging of a fully charged battery. Once past the initial *charge* hold-off time, the termination is enabled. TCO and **MCV terminations** are not affected by **the** hold-off time.

-∆V or PVD Termination

Table 5 summarizes the two modes for full-charge voltage termination detection. When VSEL = Vss, negative delta voltage detection occurs when the voltage seen on the BAT pin falls 12mV (typical) below the meximum sampled value. VSEL = Vcc selects peak voltage detect termination and the top-off charge state. PVD termination occurs when the BAT pin voltage falls 6mV per cell below the maximum sampled value. When charging a battery pack with a fixed number of cells, the -AV and PVD termination thresholds are -6mV and 0 to -3mV per cell, respectively. The valid battery voltage range on VBAT for -AV or PVD termination is from 0.262 • Vcc to 0.8 • Vcc.

Table 5. VSEL Configuration

VSEL	Detection Method	Top-Off	Pulse Trickle Rate
V_{SS}	·ΔV	Disabled	^C /32
$V_{\rm CC}$	PVD	Enabled	^C /64

Sept. 1996 B 9/14

Maximum Temperature, Maximum Voltage, and Maximum Time Safety Terminations

The bq2007 also terminates charge action for maximum temperature cutoff (TCO), maximum cutoff voltage (MCV), and maximum time-out (MTO). Temperature is monitored as a voltage on the TS pin (VTS), which is compared to an internal high-temperature cutoff threshold of VTCO. The TCO reference level provides the maximum limit for battery temperature during charging. MCV termination occurs when VCELL > VMCV. The maximum time-out (MTO) termination is when the charger safety timer countdown has completed during the active charge state. If the MTO, MCV, or TCO limit is exceeded during Fast charge, Standard charge, or top-off states, charge action is terminated.

Top-Off and Pulse Trickle Charging

The **bq2007** provides a post-detection timed charge capability called top-off to accommodate battery chemistries that may have a tendency to **terminate** charge prior to achieving full capacity. When **VSET** = **Vcc**, the top-off state is selected; charging continues **after** Fast charge **termination** for a period equal to the time-out value. In top-off mode, the Fast charge control cycle is **modified so** that MOD is activated for a pulse output of 73ms of every 585ms. This **results** in a rate **1/8** that of the Fast charge rate. Top-off charge is terminated by maximum temperature cutoff (**TCO**), maximum cutoff voltage (MCV), or maximum time-out termination.

Pulse trickle is used to compensate for **self-discharge** while the battery is idle and to condition a depleted low-voltage battery to a valid voltage prior to high-current charging. The battery is pulse trickle charged when Fast, Standard, or top-off charge is not active. The MOD output is active for a period of **286μs** of a period specified in Table 4. This results in a trickle rate of **6.64** for **PVD** and **6.82** when **-ΔV** is enabled.

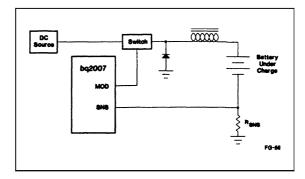


Figure 4. Constant-Current Switching Regulation

Charge Inhibit

Fast charge, **top-off**, and pulse trickle **may** be inhibited by using the INH input pin. When low, the bq2007 auspends all charge activity, drives all **outputs** to high **impedance**, and **assumes** a low-power operational state. When INH **returns** high, a fast-charge cycle is **qualified** and **begins** as soon as conditions allow.

Charge Current Control

The bq2007 controls charge current through the MOD output pin. In a frequency-modulated buck regulator configuration, the control loop senses the voltage at the SNS pin and regulates to maintain it between 0.04 • Vcc and 0.05 • Vcc. The nominal regulated current is IREG = 0.225V/Rsns. See Figure 4.

MOD pin is switched high or low depending on the voltage input to the SNS pin. If the voltage at the SNS pin is less than VSNSLO (0.04 • VCC nominal), the MOD output is switched high to gate charge current through the inductor to the battery. When the SNS voltage is greater than VSNSHI (0.05 • VCC nominal), the MOD output is switched low-shutting off charge current from the supply. The MOD pin can be used to gate an external charging current source. When an esternal current source is used, no sense resistor is required, and the SNS pin is connected to Vss.

10/14 Sept. 1996 B

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding V cc relative to Vss	-0.3	+7.0	V	
Topr	Operating ambient temperature	-20	+70	°C	Commercial
Tsrg	Storage temperature	-40	+85	°C	
TSOLDER	Soldering temperature		+260	•C	

Note:

Permanent device damage may occur if **Absolute Maximum** Ratings **are** exceeded. Functional operation **should** be limited to the Recommended DC Operating **Conditions** detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended **periods** of time may **affect** device reliability.

DC Thresholds (TA = TOPR; VCC = 5V ± 10%)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
Vsnshi	High threshold at SNS resulting in MOD = Low	0.05 • V _{CC}	±25	mV	
Vsnslo	Low threshold at SNS resulting in MOD = High	0.04 • Vcc	±10	mV	
VLTF	TS pin low-temperature threshold	0.5 • Vcc	±30	mV	SNS = 0V
V _{HTF}	TS pin high-temperature threshold	V _{TCO}	±30	mV	SNS = 0V
37	Endsf-discharge voltage MULT is pulled up to Vcc	0.262 • Vcc	±30	mV	SNS = 0V
VEDV	End-of-diechargevoltage MULT is pulled down to Vss	0.4 • Vcc	±30	mV	SNS = 0V
V _{MCV} _	BAT pin maximum cell voltage threshold	0.8 • Vcc	±30	mV	SNS = 0V
V ₂₀	20% state-of-charge voltage threshold at the BAT pin	¹⁸⁷ / ₃₂₀ • V _{CC}	±30	mV	Fast or standard charge state; MULT pulled to Vss
V ₄₀	40% state-of-charge voltage threshold at the BAT pin	¹⁹¹ / ₃₂₀ • V _{CC}	±30	mV	Fast or standard charge state; MULT pulled to Vss
V ₆₀	60% state-of-charge voltage threehold at the BAT pin	¹⁹⁵ ∕320 • Vcc	±30	mV	Fast or standard charge state; MULT pulled to Vss
V ₈₀	80% state-of-charge voltage threehold at the BAT pin	²⁰⁸ / ₃₂₀ • V _{CC}	±30	mV	Fast or standard charge state ; MULT pulled to Vss
V ₂₀	20% state-of-charge voltage threehold at the BAT pin	158/ ₃₂₀ • Vcc	±30	mV	Discharge-before-charge etate; MULT pulled to Vss; DIS = 1
V ₄₀	40% state-of-chargevoltage threehold at the BAT pin	¹⁶³ / ₃₂₀ • V _{CC}	±30	mV	Discharge-before-chargestate; MULT pulled to Vss ; DIS = 1
V ₆₀	60% state-of-charge voltage threshold at the BAT pin	¹⁶⁷ / ₃₂₀ • V _{CC}	±30	mV	Diecharge-before-chargestate; MULT pulled to Yss ; DIS = 1
V ₈₀	80% state-of-charge voltage threshold at the BAT pin	¹⁷¹ / ₃₂₀ • V _{CC}	±30	mV	Discharge-before-chargeetate; MULT pulled to V₈₈ ; DIS = 1

Sept. 1996 B 11/14

Recommended DC Operating Conditions (TA = 0 to +70°C)

Symbol	Parameter	Inlmum	Typical	Maximum	Unit	Notes
V_{CC}	Supply voltage	4.5	5.0	5.5	V	10%
Vrat	Voltage on BAT pin	0	-	V _∞	v	
VTS	Voltage on TS pin	0		Vœ	V	Thermistor input
VTCO	Temperature cutoff on TCO	0	•	0.5 • Vcc	V	Note 2
VCELL	Battery voltage potential	0		Vcc	٧	VBAT · VSNS
V _{TEMP}	Voltage potential on TS	0		Vcc	V	V _{TS} · V _{SNS}
	Logic input high	2.0			V	DCMD, FAST, VSEL, INH
VIH	Tri-level input high	Vcc • 0.3	-		V	TM
	Logic input low			0.8	v	DCMD, FAST, VSEL, INH
V _{IL}	Tri-level input low			0.3	V	TM
V _{OH}	Logic output high	Vcc • 0.8	-		v	DIS, LED₁₋₂, SEG_{A-G} @ I _{OH} = -10mA; MOD @ I _{OH} = -5mA
Vol	Logic output low			0.8	v	DIS, LED ₁₋₂ , SEG _{A-G} @ I _{OL} = 10mA; MOD @ I _{OL} = 5mA
Vонсом	COM output	V _{CC} - 0.8	-		V	@ I _{OHCOM} = -40mA
Іонсом	COM source	-40			mA	@ V _{OHCOM} = V _{CC} - 0.8V
Icc	Supply current		1	2.5	mA	No output load
Іон	DIS, LED ₁₋₂ SEG _{A-G} source	-10			mA	$@V_{OH} = V_{CC} \cdot 0.8V$
Іон	MOD	-5			mA	$@V_{OH} = V_{CC} \cdot 0.8V$
IoL	DIS, LED1-2, SEGA-G sink	10			mA	$@V_{OL} = V_{SS} + 0.8V$
I_{OL}	MOD	5	-	-	mA	$@V_{OL} = V_{SS} + 0.8V$
I _{IZ}	Tri-state inputs floating for Z state	-2.0	•	2.0	μА	тм
IL	Input leakage			±1	μА	$\overline{\text{INH}}$, VSEL, V = V_{SS} to Vcc
TT.	Input leakage	50		400	μA	DCMD, FAST, V = Vss to Vcc
I _{IL}	Logic input low current			70	uА	TM, $V = V_{SS}$ to $V_{SS} + 0.3V$
I _{IH}	Logic input high current	-70			μА	TM, V ≈ Vcc · 0.3V to Vcc

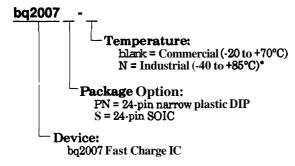
12/14 Sept. 1998 B

Impedance

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
RI	DC input impedance: pine TS, BAT, SNS, TCO	50	-	-	ΜΩ	
RPROG	Soft-programmed pull-up resistor	150	-	200	ΚΩ	MSEL, DSEL ₁ , DSEL ₂ , MULT, QDSEL; resistor value ± 10% tolerance
RFLT	Float state external resistor	-	5	-	ΜΩ	тм

Timing (TA = 0 to +70°C; VCC ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum_	Unit	Notes
dfcv	Deviation of fast charge safety time-out	0.84	1.0	1.16	•	At $V_{CC} = \pm 10\%$, $T_A = 0$ to 60° C; see Table 3
treg	MOD output regulation frequency	-	•	300	kHz	Typical regulation range; V∝ = 5.0V
tpend	Charge pending time-out		25	-	%	Ratio of fast charge time-out; see Table 4.
FCOM	Common LCD backplane frequency		73		Hz	LCD segment frame rate
FALARM	Alarm frequency output		3500		kHz	High tone
tpw	Pulse width for DCMD and INH pulse command	1	-	-	μв	Signal valid time
tmcv	Valid period for VCELL > VMCV	0.5	-	1	sec	If VCELL ≥ VMCV for tMCV during charge or top-off, then a transition a battery replacement.


Note: Typical is at TA = 25° C, $V_{CC} = 5.0$ V.

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	11		W VSNSHI • (0.01 • Vcc); is 0.04 • Vcc

Note: Change 1 = Sept. 1996 B changes from Dec. 1995.

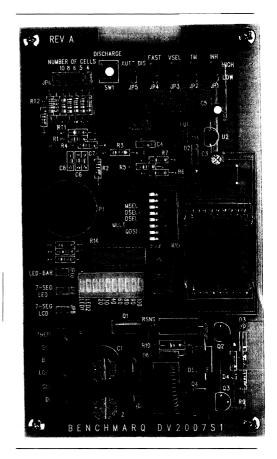
Ordering Information

• Contact factory for availability.

Product Brief DV2007S1

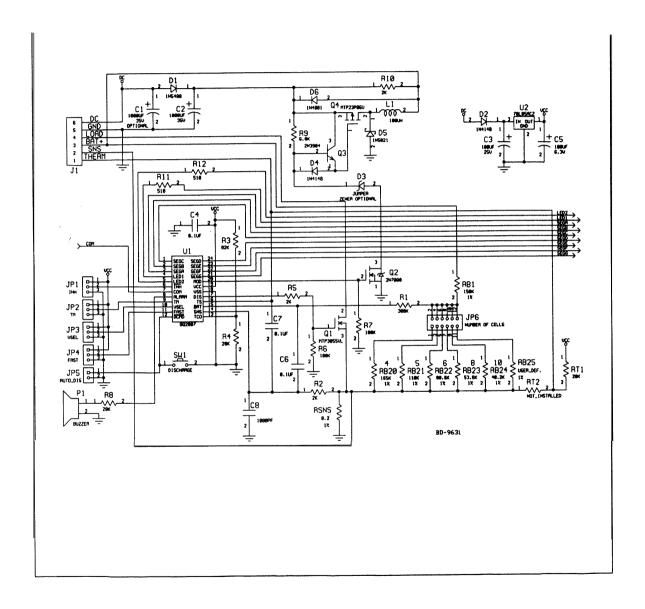
Fast Charge Development System

Features

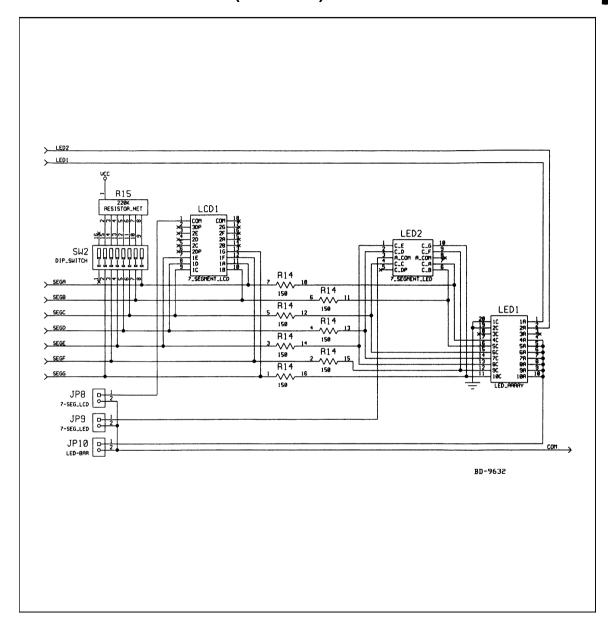

- bq2007 fast charge control evaluation and development
- Battery charge status display modes and driver interfaces are jumper configurable
 - On-board seven-step LED bargraph or ten-step BCD digit display
 - Charge status monitoring interface option
 - On-board charge status indication LEDs
- ➤ Fast charge termination by -ΔV, peak voltage detect (PVD), maximum voltage, maximum time, and maximum temperature
- ➤ Jumper-selectable for 4, 5, 6, 8, or 10 NiCd or NiMH cell pack charging
- ➤ Jumper-selectable standard or fast charge rates from 1 to 4 hours
- Discharge-before-charge push-button or automatic control

Introduction

The bq2007 Fast Charge IC is a single-chip CMOS IC that performs charge control, charge status, and charge status display in a 24-pin DIP package. The DV2007S1 Development System offers a quick method to evaluate the bq2007 functional features and to validate selected parameters prior to design implementation.


Functional Description

The DV2007S1 provides the platform for a functional evaluation of the bq2007 features on single PCB. The board contain all the connections required to fully exercise the bq2007 feature sets. See the bq2007 data sheet and application note AB-0019 entitled "Using the bq2007 Display Mode Options."



A full data sheet of this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

DV2007S1 Board Schematic

DV2007S1 Board Schematic (Continued)

V	O	te	2
	•		

Using the bq2007 Display Mode Options

Introduction

The **bq2007** Fast Charge IC **provides flexibility** with a wide variety of charge status monitor display mode **for**mate. **The bq2007** internal charge **status** monitor **can** be **configured** to support up to a **seven-segment bargraph** or a eingle BCD digit display. The **bargraph** display **indicates** up to **seven** monotonic **steps**, **whereas** the BCD digit indicates ten steps of 10% **increments**. The **bq2007** output drivers **can** direct-drive either LCD or LED interface **levels**.

Display Driver Modes

The bq2007 is designed to interface directly with LCD or LED type displays. The display driver mode is **selected** with the **soft-programmed** input MSEL and is independent of the **state-of-charge** monitor format or indications. The LED **signal levels** are driven when the MSEL &programmed input **is** pulled to **Voc** at initialization. The output pin COM is the common-anode **connection** for **LED SEGA-G.** See Figure 1.

The LCD interface mode is enabled when the MSEL soft-programmed input is pulled to Vss at initialization. An internal oscillator generates all timing signals required for the LCD interface. Output pin COM is the common

connection for static direct-driving of the LCD display backplane and is driven with an AC signal at the frame period. When enabled, each of the SEGA-G pine are driven with the correct-phase AC signal to activate the LCD segment. See Figure 1.

Charge Status Indication

Table 1 summarizes the bq2007 charge status display indicatione. The charge statue indicators include the DIS output, which can be used to indicate the discharge state. the audio ALARM output, which indicate charge completion and fault conditions, and the dedicated status outputs, LED₁ and LED2

Outputs LED₁₋₂ have three display modes that are selected at initialization by the input pine DSEL₁ and DSEL₂. The DSEL₁ and DSEL₂ input pine, when pulled down to Vss, are intended for implementation of a simple two-LED system, where LED₁ indicates the precharge status (i.e., charge pending and discharge) and LED₂ indicates the charge statue (i.e., charging and completion). DSEL₁ pulled up to Vcc and DSEL₂ pulled down to Vss mode allows the implementation of a eingle tri-color LED such that discharge, charging, and completion each have a unique color. DSEL₁ pulled down to Vss and DSEL₂ pulled up to Vcc mode allows for fault status information. See Figure 2

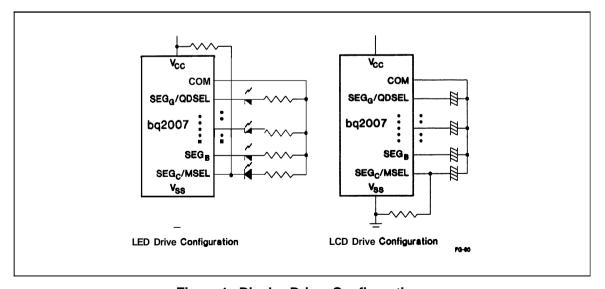


Figure 1. Display Driver Configurations

Aug. 1994

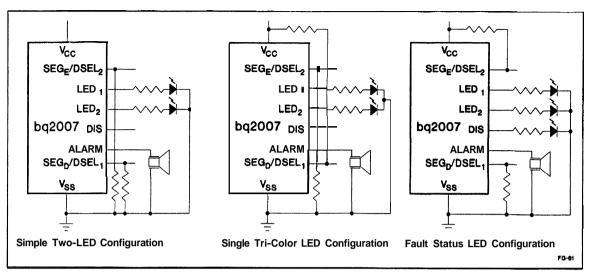


Figure 2. Charge Status Display Configurations

Table 1. bq2007 Charge Status Display Summary

Mode	Charge Action State	LED ₁	LED ₂	DIS	ALARM
	Battery absent	0	0	0	0
$DSEL_1 = L$	Charge pending (temp. limit, low voltage)	0	Flashing	0	0
$DSEL_2 = L$	Discharge in progress	0	1	1	0
(Mode 1)	Charging	Flashing	0	0	0
	Charge complete	1	0	0	High tone
	Fault (low-voltage time-out)	0	0	0	High tone
	Battery absent	0	0	0	0
$DSEL_1 = H$	Discharge in progress, pending	1	1	1	0
$DSEL_2 = L$	Charging	1	0	0	0
(Mode 2)	Charge complete	0	1	0	High tone
	Fault (low-voltage time-out)	0	0	0	High tone
	Battery absent	0	0	0	0
$DSEL_1 = L$	Charge pending (temp. limit, low voltage)	0	Flashing	0	0
$DSEL_2 = H$	Discharge in progress	0	Flashing	1	0
(Mode 3)	Charging	Flashing	0	0	0
	Charge complete	1	0	0	High tone
	Fault (low-voltage time-out)	0	1	0	High tone

Note:

1 = on; 0 = off; L = pulled down to Vss; H = pulled up to Vcc.

Audio Output Alarm

The **bq2007** audio alarm output generates an audio tone to indicate a charge completion or fault condition. The audio alarm output is a symmetrical duty-cycle AC signal that is compatible with **standard piezoelectric** alarm elements. A valid battery insertion **is** indicated by a single **3.5kHz** beep of **½-second** typical duration. The charge completion and fault **conditions** are indicated by a 9.5- to 16-second high-tone sequence of 42-second typical duration at a **2-second** typical repetition rate.

Charge Status Monitoring

The **bq2007** charge status monitor may display the battery voltage or charge safety timer as a percentage of the full-charged condition. **These** options **are** selected with the MULT soft-programmed input pin.

When **MULT** is pulled down to Vss, the battery charge status is displayed **as** a percentage of the battery voltage, and the single-cell battery voltage at the BAT pin is compared with internal charge voltage reference thresholds. **When VBAT** is greater than the internal thresholds of **V20, V40, V60,** or **V80,** the **respective 20%, 40%,** 60%, or **80%** display outputs are activated. The battery voltage directly indicates 20% charge increments, while the **10%** charge increments use a timer that is a function of the charge safety **timer**.

When MULT is pulled down to Vss and when VBAT exceeds V20 during charging, the 20% charge indication is activated and the timer begins counting for a period equal to \(^{1}64\) to \(^{1}32\) of the charge safety time-out period. When the timer count is completed, the 30% charge indication is activated. Should VBAT exceed V40 prior to the timer count completion, the charge status monitor activates the 30% and 40% indications. This technique is used for all the odd percentage charge indications to assure a monotonic charge status display.

When MULT is pulled up to Vcc, the bq2007 charge status monitor directly displays \(^1_{32}\) of the charge safety timer as a percentage of the full-charge time. This method is recommended over the voltage-based method when charging packs with different cell configuration (i.e. 5-cell or 6-cell pack) where the battery terminal voltages will vary greatly between packs. This method

offers an accurate charge status indication when the battery is fully discharged. When **using** the timer-based method, diecharge-before-charge is recommended.

During discharge with **MULT** pulled down to **Vss**, the charge statue monitor indicates the percentage of the battery voltage by comparing VBAT to the internal **dis**charge voltage **reference thresholds**. In BCD format, the diecharge **thresholds** V80, V60, V40, and V20 **correspond** to a battery **charge state indication** of 90%, 70%, 50%, and 30%, respectively. In **bargraph format**, the **same dis**charge **thresholds** correspond to a battery charge state indication of 90%, 60%, 40%, and 30%, respectively. **Differences** in the **battery** charge **state** indications **are** due to the finer **granularity** of the **BCD** versus the **bargraph** format.

During discharge and when **MULT** is pulled up to **Vcc**, the state-of-charge monitor BCD **format displays** the **dis**charge condition, letter "d," whereas the **bargraph** format has no indication.

The charge status display **is blanked** during **the** charge pending state and when the battery pack is removed.

Charge Status Display Modes

The **bq2007** charge status monitor can be displayed in two modes summarized in Table 2. **The display** modes are a seven-segment monotonic **bargraph** or a **seven-**segment BCD single-digit format. When QDSEL is pulled down to **Vss**, pins **SEGA-G** drive the decoded **seven** segments of a single BCD digit display, and when QDSEL is pulled up to **Vcc**, **pins SEGA-G** drive the seven segments of a **bargraph** display.

In the **bargraph** display mode, outputs **SEGA_G** allow options for a three-segment to seven-segment **bargraph dis**play. The three-segment charge statue display uses outputs **SEGB**, **SEGD**, and **SEGF** for 30%, 60%, and 90% charge indications, respectively. The four-segment charge **status** display **uses** outputs **SEGA**, **SEGC**, **SEGD**, and **SEGE** for **20%**, **40%**, 60%, and 80% indications. respectively. The seven-segment charge status monitor **uses** all segments. See *Figure* 3.

The BCD display mode drives pins **SEGA_G** with the decoded seven-segment single-digit information. The display indicates in 10% increments from a **BCD** zero count at charge initiation to a **BCD** nine count indicating 90% charge capacity. Charge completion is indicated by the letter "F," a fault condition by the letter "E," and the discharge condition by the letter "d." See Figure 4.

Aug. 1994

Table 2. bq2007 Charge Status Display Summary

Mode	Display Indication	SEGA	SEGB	SEGc	SEGD	SEGE	SEGF	SEGG
	20% charge	1	0	0	0	0	0	0
	30% charge	1	1	0	0	0	0	0
QDSEL = H	40% charge	1	1	1	0	0	0	0
	60% charge	1	1	1	1	0	0	0
	80% charge	1	1	1	1	1	0	0
	90% charge	1	1	1	1	1	1	0
	Charge complete	1	1	1	1	1	1	1
	0% charge—digit 0	1	1	1	1	1	1	0
	10% charge—digit 1	0	1	1	0	0	0	0
	20% charge—digit 2	1	1	0	1	1	0	1
	30% charge—digit 3	1	1	1	1	0	0	1
	40% charge—digit 4	0	1	1	0	0	1	1
QDSEL = L	50% charge—digit 5	1	0	1	1	0	1	1
	60% charge—digit 6	1	0	1	1	1	1	1
	70% charge—digit 7	1	1	1	0	0	1	0
	80% charge—digit 8	1	1	1	1	1	1	1
	90% charge—digit 9	1	1	1	1	0	1	1
	Charge complete—letter F	1	0	0	0	1	1	1
	Fault condition—letter E	1	0	0	1	1	1	1
	Discharge—letter d	0	1	1	1	1	0	1

Note: 1 = on; 0 = off; L = pulled down to Vss; H = pulled up to Vcc.

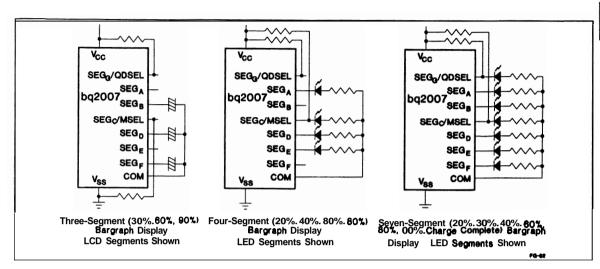


Figure 3. Charge Status Bargraph Display Configurations

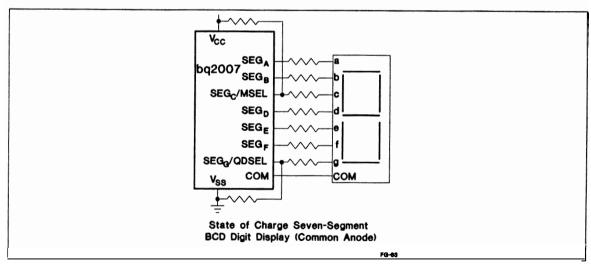


Figure 4. Charge Status BCD Digit Display Mode

Aug. 1994

6/6

Using the bq2007

1

Enhanced Features for Fast Charge

Introduction

This application note describes the correct setup of the bq2007 features and gives design examples for a NiCd or NiMH switch-mode and gated current source fast charger applications.

The **bq2007** is targeted for applications **requiring** fast-charging and charge status monitoring at minimal **cost**. It provides sophisticated full-charge detection **techniques** such as PVD (peak voltage detection) and ΔV (negative delta voltage) that enable the user to take advantage of advanced battery technologies **such** as nickel metal-hydride (NiMH) and high-capacity fast-charge nickel cadmium (NiCd).

The **bq2007** offers flexibility by providing a wide variety of charge status monitoring and charge state display formats. The internal charge status monitor can be **configured** to support up to a seven-segment **bargraph** or a single-digit display. The **bargraph display** indicates seven monotonic **steps**, whereas the single digit **counts** in ten steps of **10%** increments. The output can direct-drive either LCD or LED interface levels.

The **bq2007** indicates charge state status with an audio alarm output **option** and two dedicated output pins with programmable display options. The **DSEL**₁₋₂ inputs can select one of the three display modes for the **LED**₁₋₂ outputs.

Background

A **significant** advantage of the **bq2007** over other fast-charge solutions is the flexibility to select **PVD** or **-AV** as the primary decisions for fast-charge termination PVD is the recommended termination method for **NiMH** batteries, while **-AV** is recommended for NiCd batteries. **-AV** or PVD **detection** in the **bq2007** may be temporarily disabled during periods when the charge current fluctuates. **-AV** or **PVD** may be permanently disabled without affecting other **bq2007** charge-termination functions.

The bq2007 pmvidea battery protection by trickle-charge conditioning of a battery that is below the low-voltage threshold (Vedu). The battery voltage (Vcell) is compared to the low-voltage threshold (Vedu) and charge will be inhibited if Vcell < Vedu. The condition trickle current and fault time-out are a percentage of the fast charge rate and maximum time-out (MTO).

To ensure safety for the battery and syatem, **fast** charging also **terminates** baaed on a high-temperature cutoff

threshold (TCO), a safety time-out, and a maximum cell voltage threshold (MCV). To avoid possible premature fast-charge termination when charging batteries after long periods of storage, the bq2007 disables PVD, and AV detection during a ehort %old-off period at the start of fast charge. During the hold-off period when fast charge is selected, the bq2007 charges at the topoff rate to prevent excessive overcharging of a fully charged battery. This hold-off period is configured as described in the bq2007 data sheet.

The bq2007 may be configured to have two or three charge stages. In a two-stage configuration, the fast-charge stage controlled by the bq2007 is preceded and followed by a pulse trickle charge at a rate controlled by bq2007 input pins FAST, TM, and VSEL. In a three-stage configuration, the fast charge is followed by a 'top-off' charge stage where the battery is charged at ½s of the fast charge rate. This allows the battery to be quickly and safely brought to a full charge state. Following top-off, pulse trickle is used to compensate for eelf-discharge while the battery is idle. The trickle rate is C/64 for PVD and C/32 when -ΔV is enabled.

Charger Circuit Examples

Two detailed applications follow this **section**. One pmvidea direct control of a switch-mode regulator, and the other **provides control** of an external current source.

The switching mode **constant-current** regulator is used on the **DV2007S1** development system. The board layout and schematic is **described** in the layout guidelines section.

Gating Current

Figure 1 shows an example of external gated current source. With SNS connected to Vss, the bq2007 enables charge current to the battery by taking MOD high at the start of charging and maintaining this state until charging is terminated. In this example, R7, R19, R15, and Q1 and Q2 form the switching circuit. When MOD goes high, Q2 switches on—turning on Q1. When MOD goes low, the base current in Q1 is turned off and the charging path is switched off.

The current-handling capability of this circuit is limited by the product of the current gains of the transistors and by the 5mA drive capability of the MOD pin.

This limitation may be removed by replacing the PNP at Q1 with a pFET. See Table 1 for suggested transistors,

Nov. 1994

Table 1	Suggested	Transistors /	(10)
Table 1.	Suggested	Transistors ((U)

Q1	Туре	Package	Maximum Current	Maximum Voltage
IRFR9010	pFET	DPAK	5.3	-50
IRFR9022	pFET	DPAK	9.0	-50
IRFR9020	pFET	DPAK	9.9	-50
IRFD9014	pFET	HEXDIP	1.1	-60
IRFD9024	pFET	HEXDIP	1.6	-60
IRF9Z10	pFET	TO-220	4.7	-50
IRF9Z22	pFET	TO-220	8.9	-50
IRF9Z20	pFET	TO-220	9.7	-50
IRF9Z32	pFET	TO-220	15	-50
BD136	PNP	TO-225	1.5	-60
MJE171	PNP	TO-225	3.0	-60
TIP42A	PNP	TO-220	6.0	-60

Note: For very high **currents**, two parallel **pFETs** or an **nFET** with a high-side driver circuit may be suitable.

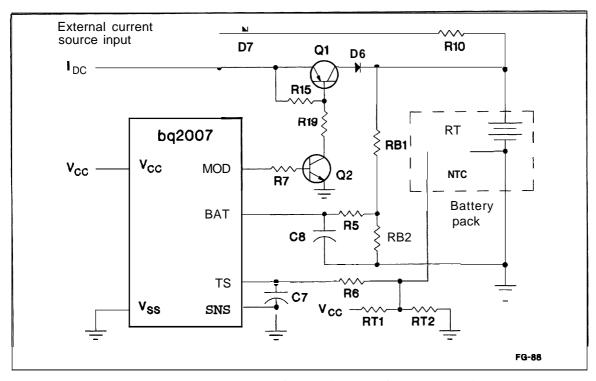


Figure 1. Gated External Source (Bipolar Switch Option)

2/14 Nov. 1994

Charge Action Control

The bq2007 charge action is controlled by input pins DCMD, VSEL, FAST and TM. When charge action is initiated, the bq2007 enters the charge-pending state, checks for acceptable battery voltage and temperature, and performs any required diecharge-before-charge operations. DCMD controls the diecharge-before-charge function, and VSEL, FAST, and TM select the charger configuration. See Tables 4 and 5 of the bq2007 data sheet.

Charge Status Indication

Table 2 summarizes the **bq2007** charge statue display. The charge status indicators include the DIS output, which can be used to indicate the discharge state, the audio **ALARM** output, which indicates charge completion and fault conditions, and the dedicated status outputs. **LED1** and **LED2**.

Outputa LED₁₋₂ have three display modes that are selected at initialization by the input pins DSEL₁ and DSEL₂. The DSEL₁ and DSEL₂ input pins, when pulled down to Vss, are intended for implementation of a simple two-LED system, where LED₂ indicates the precharge statue (i.e., charge pending and discharge) and LED₁ in

dicates the charge status (i.e., charging and completion). DSEL₁ pulled up to Vcc and DSEL₂ pulled down to Vss mode is for implementation of a single tri-color LED such that discharge, charging, and completion each have a unique color. DSEL₁ pulled down to Vgs and DSEL₂ pulled up to Vcc mode allows for fault status information

Audio Alarm Selection

The alarm output waveform is a 3.5kHz square wave signal that allows a direct connection to drive standard piezoelectric alarm elements. Piezoelectric alarm elements are designed for a maximum sound output at a specific frequency and drive voltage. The alarm element must be selected for a maximum sound output at a frequency of 3.5kHz with a 5V peak-to-peak drive signal. The PCB mount element can be connected directly to the bq2007 alarm output with a 20K isolation resistor. The design of a molded resonant cavity should follow the manufacturers recommended procedures to assure maximum sound output. Manufactures also provide several boost circuits that can be used to increase the drive voltage for increased sound output levels.

Table 2. bq2007 Charge Status Display Summary

Mode	Charge Action State	LED ₁	LED ₂	DIS	ALARM
	Battery absent	0	0	0	0
DSEL ₁ = L	Charge pending (temp. limit, low voltage)	0	Flashing	0	0
DSEL ₂ = L	Discharge in progress	0	1	1	0
(Mode 1)	Charging	Flashing	0	0	0
	Charge complete	11	0	0	High tone
	Fault (low-voltage time-out)	0	0	0	High tone
	Battery absent	0	0	0	0
DSEL ₁ = H	Discharge in progress, pending	1	1	1	0
DSEL ₂ = L	Charging	1	0	0	0
(Mode 2)	Charge complete	0	1	0	High tone
	Fault (low-voltage time-out)	0	0	0	High tone
	Battery absent	0	0	0	0
DSEL ₁ = L	Charge pending (temp. limit, low voltage)	0	Flashing	0	0
DSEL ₂ = H	Discharge in progress	0	Flashing	1	0
(Mode 3)	Charging	Flashing	0	0	0
	Charge complete	1	0	0	High tone
	Fault (low-voltage time-out)	0	1	0	High tone

Note: 1 = on; 0 = off; L = pulled down to V_{SS} ; H = pulled up to V_{CC} .

Nov. 1994

Selecting the BAT Divider for Charge Monitoring

The voltage based state of charge monitoring is enabled when charging packs with a fixed number of cells by pulling the multi-cell pack **select** input MULTI to Vss. When MULT = 0, internal voltage thresholds are compared with the BAT pin input voltage for both charge and discharge capacity status indications. When discharge-before-charge is initiated, the state-of-charge monitor indicates the discharge condition as monotonic decreasing steps from the charged condition. The voltage charge status monitoring circuit is shown in **Fig.** 2. The circuit changes its voltage threshold reference divider for charge or discharge monitoring when the discharge signal is zero or one, respectively. The voltage thresholds are a fixed ratio of the VCC supply voltage and are specified in the **bq2007** data sheet in the section entitled *DC Thresholds.' The voltage thresholds were selected based on typical NiCad and NiMH battery characteristics for a typical charge rate of 1C and a typical discharge rate of 1 Amp.

To optimize the charge status monitoring for a range of fixed-cell **packs** (i.e. **MULTI = 1)**, the BAT divider should be calculated such that the highest **fixed** cell pack will be centered at the EDV threahold. For example, to charge

packs that range from 4 to 6 fixed cells, select the BAT divider MULTI = 0. The BAT divider should be determined by BAT divider equation 2 for values shown in Table 4. To further optimize, you can fit the battery characteristics to the end points of the EDV and MCV thresholds. This will center the battery voltage charge characteristics in the center of the bq2007 charge monitoring thresholds. This is possible since the full charge detection methods (PVD, DV) are not dependent on absolute voltage value. When adjusting the battery divider, the maximum cutoff voltage (VMCV) must not be exceeded.

Charge Status Monitoring

The **bq2007** charge status monitor may **display** the battery voltage or charge safety timer as a percentage of the full-charged condition. These options **are** selected with the MULT input pin.

when MULT is pulled down to Vss, the battery charge status is displayed as a percentage of the battery voltage, and the single-cell battery voltage at the BAT pin is compared with internal charge voltage reference thresholds. When Vbat is greater than the internal thresholds of V20, V40, V60, or V80, the respective 20%, 40%, 60%, or 80% display outputs are activated. The battery voltage directly

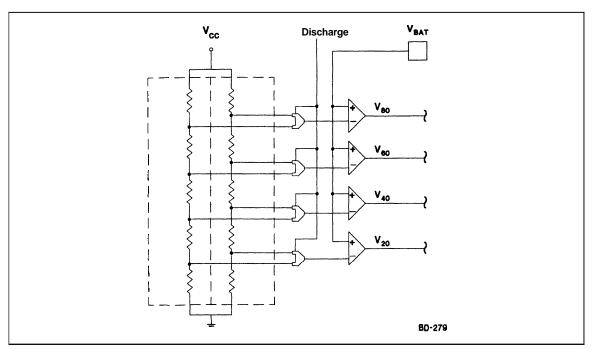


Figure 2. Voltage Charge Status Monitoring Circuit

4/14 Nov. 1994

indicates 20% charge increments, while the 10% charge increments use a timer that is a function of the charge safety timer.

When MULT is pulled down to Vss and when VBAT exceeds V20 during charging, the 20% charge indication is activated and the timer begins counting for a period equal to 1/64 to 1/32 of the charge safety time-out period. When the timer count is completed, the 30% charge indication is activated. Should VBAT exceed V40 prior to the timer count completion, the charge status monitor activates the 30% and 40% indications. This technique is used for all the odd percentage charge indications to assure a monotonic charge status display.

When MULT is pulled up to Vcc, the bq2007 charge status monitor directly displays \(^{1}_{32}\) of the charge safety timer as a percentage of full charge. This method is recommended over the voltage-based method when charging multi-cell packs where the battery terminal voltages can vary greatly between packs. This method offers an accurate charge status indication when the battery is fully discharged.

During discharge with MULT pulled **down** to **Vss**, the charge status monitor **indicates** the **percentage** of the battery voltage by comparing VBAT to the **internal** discharge voltage reference thresholds. In BCD **format**, the discharge **thresholds V80, V60, V40**, and **V20 correspond** to a battery charge state indication of 90%, 70%, 50%, and 30%, **respectively**. In **bargraph** format, the same discharge **thresholds** correspond to a battery charge state indication of 90%, 60%, 40%, and 30%, respectively. Differences in the battery charge state indications **are** due to the finer granularity of the BCD **versus** the **bargraph** format.

During discharge and when MULT is pulled up to Vcc, the state-of-charge monitor segment format displays the discharge condition, letter "d," whereas the bargraph format has no indication.

The charge status display is blanked during the charge pending state and when the battery pack is removed.

Charge Status Display Modes

The **bq2007** charge status monitor can be displayed in two modes summarized in Table 3. The display modes are a **seven-segment** monotonic **bargraph** or a **seven-segment** single-digit format. When QDSEL is pulled down to **Vss**, pins **SEGA-G** drive the decoded seven segments of a single segment digit display, and when QDSEL is pulled up to **Vcc**, pins **SEGA-G** drive the seven segments of a **bargraph** display.

In the bargraph display mode, outputs SEGA-G allow options for a three-segment to seven-segment bargraph display. The three-segment charge status display uses outputs SEGB,

SEGD, and SEGF for 30%, 60%, and 90% charge indications, respectively. The four-segment charge status display uses outputs SEGA, SEGC, SEGD, and SEGE for 20%, 40%, 60%, and 80% indications, respectively. The seven-segment charge status monitor uses all segments.

The segment display mode drives pins SEGA-G with the decoded seven-segment single-digit information. The display indicates in 10% increments from a segment zero count at charge initiation to a segment nine count indicating 90% charge capacity. Charge completion is indicated by the letter "F," a fault condition by the letter "E," and the discharge condition by the letter "d." See Table 3.

Display Driver Modes

The bq2007 is designed to interface with LCD or LED type displays. The LED signal levels are driven when the MSEL input is pulled to V_{CC} at initialization. The output pin COM is the common anode connection for LED SEG_{A-G}.

The LCD interface mode is enabled when the MSEL input pin is pulled to Vss at initialization. An internal oscillator generates all the timing signals required for the LCD interface. The output pin COM is the common connection for static direct-driving of the LCD display backplate and is driven with an AC signal at the frame period. When enabled, each of the SEGA-G pins is driven with the correct-phase AC signal to activate the LCD segment. In segment mode, output pins SEGA-G interface to LED or LCD segments.

Discharge Before Charge

It may be **desirable** in the application to allow the **user** to occasionally **discharge** the battery to a known voltage level prior to charge. **The** reason for **this** may either be to remedy a **voltage-depression** effect found in some **NiCd batteries** or to **determine** the **battery's** charge capacity.

Figure 3 **illustrates** the implementation of this function. Discharge-before-charge is initiated on a positive strobe signal on DCMD.

Note: This function takes precedence over a charge action and **commences** immediately **when** conditions warrant, forcing DIS to a high state until the voltage sensed on BAT falls below **Vcc/5**. **Charging** begins **as** soon **as** conditions allow.

Care should be taken not to overheat the battery during this process; excessive temperature is not a condition that terminates discharge.

Configuring the BAT Input

The bq2007 uses the battery voltage sense input on the BAT pin to control discharge-before-charge, qualify

Nov. 1994 5/14

charge initiation, **terminate** charge at an **absolute** limit, facilitate peak voltage detect (PVD) and negative delta voltage $(\cdot \Delta V)$ detection, and **detect** a battery **replacement**.

V_{BAT} may be derived from a simple resistive network across the battery. As shown in Figure 1, resistors RB1 and RB2 are chosen to divide the battery voltage down to the optimal detection range. When MULT is pulled up to V_{CC}, battery voltage is sensed at the BAT pin by a resistive voltage divider that divides the terminal voltage between 0.262 • V_{CC} (V_{EDV}) and 0.8 • V_{CC} (V_{MCV}). The bq2007 charges multi-cell battery packs from a minimum of N cells, to a maximum of 1.5 • N cells. The battery voltage divider is set to the minimum cell battery pack (N) by the BAT pin voltage divider ratio equation:

$$\frac{R1}{R2} - \left(\frac{N}{1.33}\right) - 1$$
 Equation 1

When MULT is pulled down to **Vss**, tighter charge voltage limits and voltage-based charge status display are selected. This is recommended for charging packs with a fixed number of **cells where** the battery voltage

divider range is between 0.4 • Vcc (Ved) and 0.8 • Vcc (V_{MCV}). The bq2007 charges fixed-cell battery packs of N cells. The battery voltage divider is set by the divider ratio equation:

$$\frac{R1}{R2} - \left(\frac{N}{2}\right) - 1$$
 Equation 2

Although virtually any value may be **chosen** for **RB1** and **RB2** due to the high input impedance of the BAT pin, the values selected **must** not be so low **as** to appreciably drain the battery nor so large **as** to degrade the circuit's **noise performance.** Constraining the source **resistance** as seen from BAT between $20K\Omega$ and $1M\Omega$ is acceptable over the **bq2007** operating range. Total impedance between the battery terminal and **VSS** should **typically** be about $300K\Omega$ to $1M\Omega$. See Table 4.

Note: Because Vsns may be positive in bq2007 switching regulation applications, the actual internal comparison uses VBAT - Vsns, or VCELL. This internal value VCELL maintains a representative voltage independent of any current through Rsns.

Table 3. bg2007 Charge Status Display Summary

Mode	Display Indication	SEGA	SEGB	SEG _C	SEGD	SEGE	SEGF	SEGg
	20% charge	1	0	0	0	0	0	0
	30% charge	1	1	0	0	0	0	0
QDSEL = H	40% charge	1	11	1	0	0	0	0
. [60% charge	1	1	11	11	0	0	0
. [80% charge	1	1	1	1	1	0	0
. [90% charge	1	1	1	11	1	11	0
	Charge complete	11	1	11	1	1	1	11
	0% charge—digit 0	1	1	1	1	1	1	0
	10% charge—digit 1	0	1	1	0	0	0	0
	20% charge—digit 2	1	1	0	1	1	0	1
	30% charge—digit 3	1	1	1	1	0	0	1
	40% charge—digit 4	0	1	1	0	0	1	1
	50% charge—digit 5	1	0	1	1	0	1	1
QDSEL = L	60% charge—digit 6	1	0	1	1	1	1	1
	70% charge—digit 7	1	1	1	0	0	11	0
	80% charge—digit 8	1	1	1	1	1	1	1
	90% charge—digit 9	1	1	1	1	0	1	1
	Charge complete—letter F	1	0	0	0	1	1	1
	Fault condition—letter E	1	0	0	1	1	1	1
	Discharge—letter d	0	1	1	1	1	0	1

Note: 1 = on; 0 = off; L = pulled down to Vss; H = pulled up to Vcc.

6/14 Nov. 1994

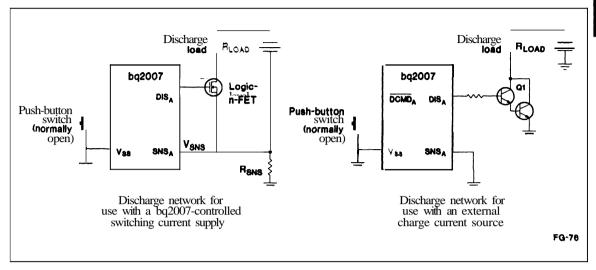


Figure 3. Battery Conditioning Network

Table 4. Suggested RB1 and RB2 Values for NiCd and NiMH Cells

Number of Cells (VBAT Divisor)	RB1(KΩ)	RB2(K Ω)
4	150	165
5	150	110
6	150	80.6
8	150	53.6
10	150	40.2

Note:

MULTI = 0; RB1/RB2 = (N/2) - 1.

Temperature Sensing and the TCO Pin

The bq2007 uses the **temperature** sense input on the TS pin to qualify charge initiation and termination. A negative temperature coefficient (NTC) thermistor referenced to SNS and placed in close **proximity** to the battery may be used as a temperature-to-voltage transducer as shown in Figure 1. This example shows a simple linearization network **constituted** by RT1 and RT2 in conjunction with the **thermistor**, RT.

Temperature-decision thresholds are defined as LTF (low-temperature fault) and TCO (temperature cutoff). Charge action initiation is inhibited if the temperature is not within the LTF-to-TCO range. In this case, the charge pending state is active on the charge status display (see Table 2), and charging does not initiate until the battery temperature returns to this range.

Once initiated, charging terminates if the temperature is either less than LTF or greater than TCO. The bq2007 interprets the reference points VLTF and VTCO as Vss-referenced voltages, with VLTF fixed at ½ VCO and VTCO equal to the voltage presented on the TCO pin. See Figure 4. Note that since the voltage on pin TS decreases as temperature increases, VTCO should always be less than ½ VCO. The resistive dividers may be used to generate the desired VTCO.

Vcc Supply

The $V\infty$ supply provides both power and voltage reference to the **bq2007**. This reference directly affects BAT voltage and internal time-base voltage measurements.

The time-base is trimmed during manufacturing to within 5 percent of the typical value with $V_{CC} = 5V$. The oscillator varies directly with Vcc. If, for example, a 5% regulator supplies V_{CC} , the time-base could be in **error** by as much as 10%.

Charge State Actions

Once the required discharge is completed and temperature and voltage prequalifications are met, the charge state is initiated. The charge state is c o n f i i by the VSEL, FAST, and **TM** input p i . . The FAST input selects between Fast and Standard charge rates. The Standard charge rate is 1/4 of the Fast charge rate, which is accomplished by disabling the regulator for a period of 286µs of every 1144µs (25% duty cycle). In addition to

Nov. 1994

FAST Input State	TM Input State	Time-out Period (min)	MOD Duty Cycle	Hold-off period (sec)	Trickle Rep Rate -ΔV ^C /32	Trickie Rep Rate PVD ^C /64
V_{SS}	Float	640 (%)	25%	2400	219Hz	109Hz
V_{SS}	V_{SS}	320 (^C / ₄)	25%	1200	109Hz	55Hz
Vss	V _{CC}	160 (^C / ₂)	25%	600	55Hz	27Hz
Vcc	Float	160 (^C / ₂)	100%	600	219Hz	109Hz
Vcc	V _{SS}	80 (C)	100%	300	109Hz	55Hz
Vcc	Vcc	40 (2C)	100%	150	55Hz	27Hz

Table 5. bq2007 Charge Action Control Summary

throttling back the charge current, time-out and hold-off **safety** time are **increased** accordingly.

The VSEL input selects the voltage termination method. The termination mode sets the top-off state and trickle charge current rates. The TM input selects the Fast charge rate, the Standard rate, and the corresponding charge times. Once charging begins at the Fast or Standard rate, it continues until terminated by any of the following conditions:

- Negative delta voltage(-AV)
- Peak voltage detect (PVD)
- Maximum temperature cutoff (TCO)

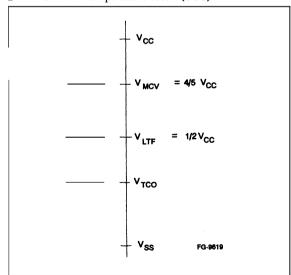


Figure 4. Temperature Reference Points

- Maximum time-out (MTO)
- Maximum cutoff voltage (MCV)

Voltage Termination Hold-off

To prevent early termination due to an initial false peak battery voltage, the -AV and PVD terminations are disabled during a short %old-off period at the start of charge. During the hold-off period when fast charge is selected (FAST = 1), the bq2007 will top off charge to prevent excessive overcharging of a fully charged-battery. Once past the initial charge hold-off time, the termination ie enabled. TCO and MCV terminations are not affected by the hold-off time.

-AV or PVD Termination

Table 6 summarizee the two modee for full-charge voltage termination detection. When VSEL = Vss, negative delta voltage detection occurs when the voltage seen on the BAT pin falls 12mV (typical) below the maximum sampled value. VSEL = Vcc selects peak voltage detect termination and the top-off charge state. When charging a battery pack with a fixed number of cells, the -\Delta V and PVD termination thresholds are -6mV and 0 to -3mV per cell, respectively. The valid battery voltage range on VBAT for -AV or W D termination is from 0.262 • vcc to 0.8 • vcc.

8/14 Nov. 1994

Top-Off Charge

The top-off charge option allows for the self-discharge replacement trickle current to be very low, but still provides for filling up the last fraction of capacity after the fast-charge phase hae terminated Top-off occurs at \(\frac{1}{2} \) so the fast charge rate to prevent excess heat generation, and terminates after a period equal to the safety time-out. It also terminates if TCO or MCV is detected.

Top-off is not **recommended** in **applications** where a battery charge is re-initiated with extremely high **frequency** (many times per day); for example, when the unit is returned to the charge cradle after each short period of use.

Pulse trickle is used to compensate for self-discharge while the battery is idle and to condition a depleted low-voltage battery to a valid voltage prior to high-current charging. The battery is pulse trickle charged when Fast, Standard, or top-off charge is not active. This results in a trickle rate of %4 for PVD and %32 when -AV is enabled.

Table 6. VSEL Configuration

VSEL	Detection Method	Top-Off	Pulse Trickle Rate
V_{SS}	-AV	Disabled	^C /32
Vcc	PVD	Enabled	C/64

Charge Inhibit

Fast charge, top-off, and pulse trickle may be inhibited by using the INH input pin. When low, the bq2007 suspends all charge activity, drives all outputs to high impedance, and assumes a low-power operational state. When INH returns high, a fast-charge cycle is qualified and begins as soon as conditions allow.

Power Supply Selection

The DC supply voltage, VDc, must satisfy two requirements:

- To support the bq2007 Vcc supply, VDC must be adequate to provide for 5V regulation after the losses in the regulator and across D1 (VDC ≥ 7.7V using the 78L05).
- To support the charge operation, VDC > (number of cells MCV_{MAX}) + V_{LOSS} in the charging path.
 (MCV_{MAX} is the maximum cell voltage threshold with the maximum bq2007 Vcc.)

Polarity Reversal Protection

If the DC input has any risk of being accidentally connected with power (+) and ground (-) reversed, then the system input should include either a protection diode to protect against circuit damage or a diode bridge to provide both protection and operation. This also increases minimum input voltage for charger operation by approximately 1V to 2V.

Layout Guidelines

PCB layout to minimize the impact of **system** noise on the **bq2007** is **important** when the **bq2007** is **used** as a switching modulator, with a separate nearby switching regulator, or close to any other **significant noise** source.

- Avoid mixing signal and power grounds by using a single-point ground technique incorporating both a small signal ground path and a power ground path.
- The charging path components and associated traces should be kept relatively isolated from the bq2007 and its supporting components.
- 0.1 μF and 10 μF decoupling capacitors should be placed close together and very close to the Vcc pin.
- 0.1μF capacitors and resistors forming R-C filters connected to pins BAT, TS, TCO, and MCV should be as close as possible to their associated pins.
- Because the bq2007 uses Vcc for its reference, additional loading on Vcc is not recommended.
- Diode D1 (1N4148) is recommended for rectification and filtering.
- If the DCMD input is electronically controlled, care should be taken to prevent noise-induced false transitions.
- 8. For **bq2007-modulated** switching applications:

A $2K\Omega$ **resistor** is required between the MOD pin and the transistor.

- A 1000pF capacitor/1KΩ resistor R-C filter should be as close as possible to the SNS pin.
- The 0.1µF capacitors for BAT and TS should be routed directly to SNS and not to ground.

Figures 6, 7, and 8 **show** an example layout of the **DV2007S1** Development Board. **Figure** 9 is a schematic of the board. Table 7 **contains** the parts list for the board. A comparable layout is recommended.

Nw. 1994 9/14

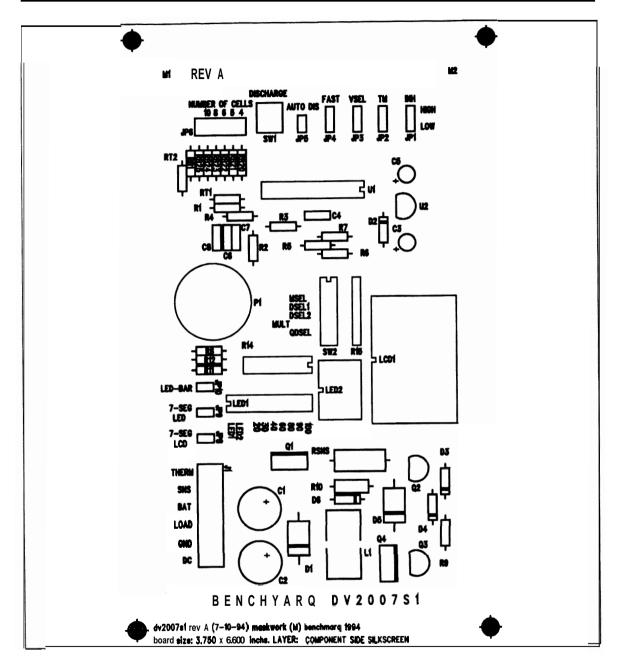


Figure 6. DV2007S1 Development Board Layout

Component Placement

10/14 Nov. 1994

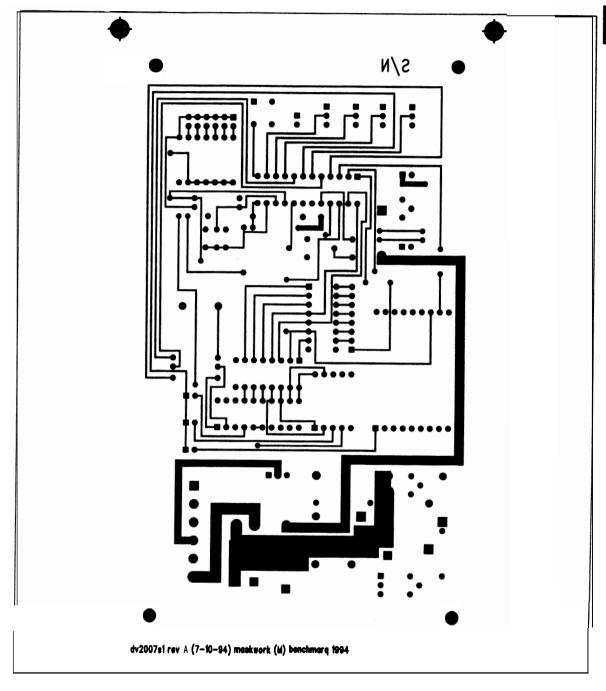


Figure 7. DV2007S1 Development Board Layout

Nov. 1994

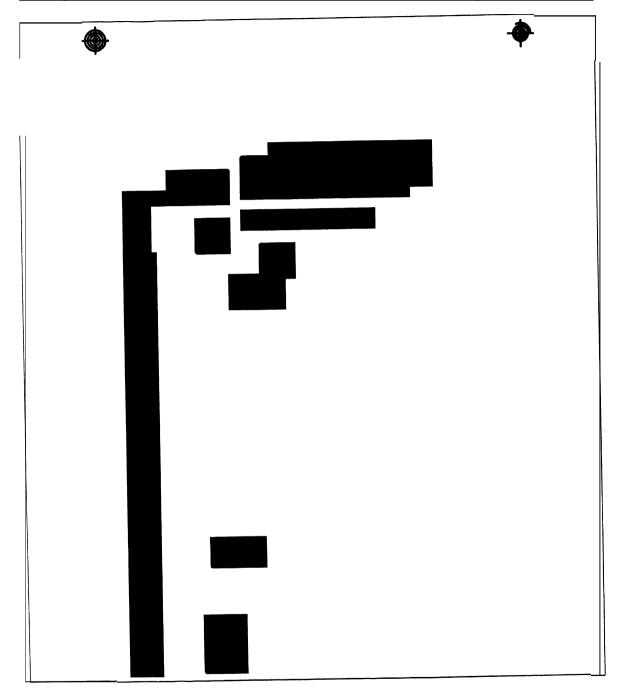


Figure 8. DV2007\$1 Development Board Layout

12/14 Nov. 1994

Table 7. DV2007\$1 Development Board Parts List

Component Name	Component Description
C2, C1 – Optional	1000μF
C5, C3	100μF
C4, C6, C7	0.1μF
C8	1nF
D1	1N5400
D4, D2	1N4148
D3	1N751A
D5	1N5821
D6	1N4001
JP1, JP2, JP3, JP4	HEADER 3
JP5, JP8, JP9, JP10	HEADER 2
J1	CON6
LCD1	7-SEGLED
LED1	LED BAR
LED2	7-SEGLCD
L1	100μΗ
P1	BUZZER
Q1	MTP3055EL
Q2	2N7000
Q3	2N3904
Q4	MTP23P06E
R14	Resistor Spack
RB1	150K
RB2X	User Selected
RSNS	0.2
RT1	20K
RT2	Open
R1	300K
R6, R7	100K
<u>R2</u> , R5, R10	2K
R3	82K
R4	20K
R8	20K
R9	6.8K
R12, R11	510
SR	SIP8
SW1	SW pushbutton
SW2	SW DIP-8
U1	bq2007
u 2	78L05

Nov. 1994 13/14

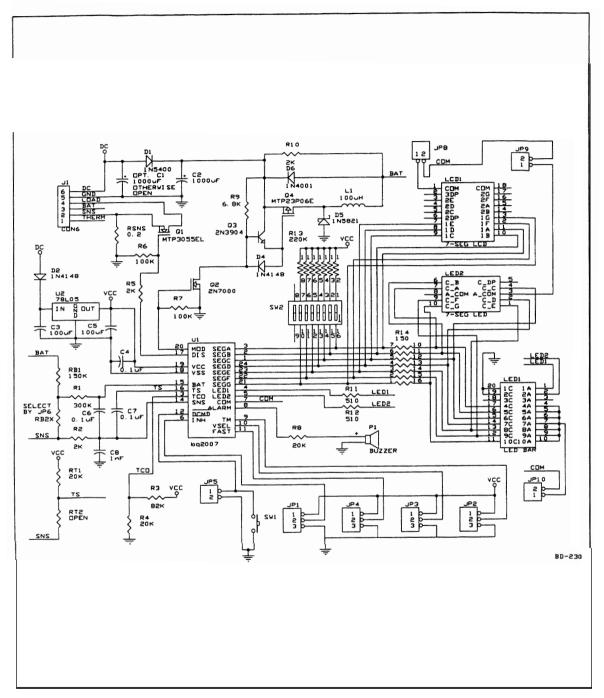


Figure 9. DV2007S1 Development Board Schematic

14/14 Nov. 1994

<u>bq2031</u>

Lead-Acid Fast Charge IC

Features

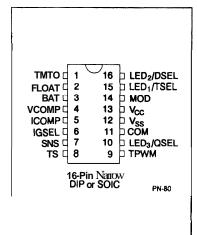
- Conforms to battery manufacturers' charge recommendations for cyclic and float charge
- Pin selectable charge algorithms
 - Two-Step Voltage with temperature-compensated constant-voltage maintenance
 - Two-Step Current with constant-rate pulsed current maintenance
 - Pulsed Current: hysteretic, on-demand pulsed current
- Pin-selectable charge termination by maximum voltage, Δ²V, minimum current, and maximum time
- Pre-charge qualification detects shorted, opened, or damaged cells and conditions battery
- Charging continuously qualified by temperature and voltage limits
- Internal temperaturecompensated voltage reference

- Pulse-width modulation control
 - Ideal for high-effiliency switch-mode power conversion
 - **Configurable** for linear or gated current **use**
- Direct LED control outputs display charge statue and fault conditions

General Description

The **bq2031** Lead-Acid **Fast** Charge IC is designed to optimize charging of lead-acid chemistry batteries. A flexible pulse-width modulation regulator allows the **bq2031** to control constant-voltage, constant-current, or pulsed-current charging. The regulator frequency is set by an external capacitor for design flexibility. The switch-mode design keeps power dissipation to a minimum for high charge current applications.

A charge cycle begins when power is applied or the battery is replaced. For safety, charging is inhibited until the battery voltage is within configured limits. If the battery voltage


is less than the low-voltage threshold, the bq2031 provides trickle-current charging util the voltage rises into the allowed range or an internal timer runs out and places the bq2031 in a Fault condition. This procedure prevents high-current charging of cells that are possibly damaged or reversed. Charging is inhibited anytime the temperature of the battery is outside the configurable, allowed range. All voltage thresholds are temperature-compensated.

The **bq2031** terminates fast **(bulk)** charging based on the following:

- Maximum voltage
- Second difference of cell voltage (△²V)
- **Minimum** current (in constant-voltage **charging**)
- Maximum time-out (MTO)

After bulk charging, the **bq2031** provides temperature-compensated maintenance (float) charging to maintain battery capacity.

Pin Connections

Pin Names

TMIO FMAT	Time-out timebase input State control output	LED₃/ QSEL	Charge status output 3/ Charge algorithm select input 1
BAT	Battery voltage input	COM	Common LED output
VCOMP	Voltage loop comp input	\mathbf{v}_{ss}	System ground
ICOMP	Current loop comp input	Vcc	5.0V±10% power
IGSEL	Current gain select input	MOD	Modulation control output
SNS	Sense resistor input	LED ₁ /	Charge status output 1/ Charge algorithm select
TS	Temperature sense input	ISEL	input 2
TPWM	Regulator timebase input	LED ₂ / DSEL	Charge status output 2/ Display select input

Sept. 1996 C 1/14

2/14

Pin De	scriptions	TPWM	Regulation timebase input
ТМТО	Time-out timebase input This input sets the maximum charge time.		This input uses an external timing capacitor to ground the pulse-width modulation (PWM) frequency. See equation 9.
	The resistor and capacitor values are determined using equation 6, Figure 9 shows the	COM	Common LED output
	resistor/capacitor connection.		Common output for LED ₁₋₃ . This output is in a hiih-impedance state during initializa-
FLOAT	Float state control output		tion to read program inputs on TSEL, QSEL, and DSEL
	This open-drain output uses an external resistor divider network to control the BAT	divider network to control the BAT OSEL	Charge regulation select input
	input voltage threshold (VFLT) for the float charge regulation. See Figure 1.		With TSEL, selects the charge algorithm. See Table 1.
BAT	Battery voltage input	MOD	Current-switching control output
	BAT is the battery voltage sense input. This potential i~ generally developed using a high-impedance resistor divider network connected between the positive and the negative terminals of the battery. See Figure 6 and equation 2		MOD is a pulse-width modulated push/pull output that is used to carrol the charging current to the battery. MOD switches high to enable current flow and low to inhibit current flow.
VCOMP	Voltage loop compensation input	LED ₁₋₃	Charger display status 1 3 outputs
	This input uses an external C or R-C network for voltage loop stability .		These charger statue output drivers are for the direct drive of the LED display. Display
IGSEL	Current gain select input		modes are shown in Table 2. These outputs are tri-stated during initialization so that QSEL, TSEL, and DSEL can be read.
	This three-state input is used to set IMIN for fast charge termination in the Two-Step Volt age algorithm and for maintenance current	DSEL	Display select input
	regulation in the Two-Step Current algorithm. See Tables 3 and 4.		This three-level input controls the LED ₁₋₃ charge display modes. See Table 2.
ICOMP	Current loop compensation input	TSEL	Termination select input
	This input uses an external C or R-C network for current loop stability.		With QSEL, selects the charge algorithm. See Table 1.
SNS	Charging current sense input	$\mathbf{v}_{\mathbf{c}\mathbf{c}}$	V _{CC} supply
	Battery current is sensed via the voltage developed on this pin by an external sense		5.0V, ± 10% power
	resistor, Rsns, connected in series with the low side of the battery. See equation 8.	V_{SS}	Ground
TS	Temperature sense input	Func	tional Description
	This input is for an external battery tempera- ture monitoring thermistor or probe. An ex-	The bq20	31 functional operation is described in terms of:
	ternal resistor divider network sets the lower and upper temperature thresholds. See Fig.		e algorithms e qualification
	ures 7 and 8 and equations 4 and 5.	■ Charg	e status display
			ge and current monitoring
		■ Tempe	erature monitoring

Sept. 1996 C

- Fast charge termination
- Maintenancecharging
- Charge regulation

Charge Algorithms

Three charge algorithms are available in the **bq2031**:

- Two-Step Voltage
- Two-Step Current
- Pulsed Current

The state **transitions** for these algorithms are **described** in Table 1 and are shown graphically in Figures 2 through 4. The **user selects** a charge algorithm by configuring pins QSEL and TSEL.

Charge Qualification

The **bq2031** starts a charge cycle when power is applied while a battery is present or when a battery is inserted. Figure 1 shows the state diagram for pre-charge qualification and temperature monitoring. The **bq2031** first checks that the battery temperature is within the allowed, user-configurable range. If the temperature is out-of-range (or the thermistor is missing), the **bq2031** enters the Charge Pending state and waits until the bat-

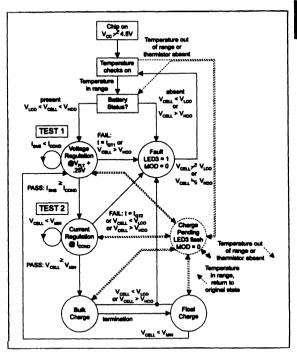


Figure 1. Cycle Start/Battery Qualification State Diagram

Table 1. bg2031 Charging Algorithms

Algorithm/State	QSEL	TSEL	Conditions	MOD Output
Two-Step Voltage	L	H/L Note 1	•	•
Fast charge, phase 1			while $V_{BAT} < V_{BLK}$, $I_{SNS} = I_{MAX}$	Current regulation
Fast charge, phase 2			while $I_{SNS} > I_{MIN}$, $V_{BAT} = V_{BLK}$	Voltage regulation
Primary termination			$I_{SNS} = I_{MIN}$	
Maintenance			V _{BAT} = V _{FLT}	Voltage regulation
Two-Step Current	Н	L	•	•
Fast charge			while $V_{BAT} < V_{BLK}$, $I_{SNS} = I_{MAX}$	Current regulation
Primary termination			$V_{BAT} = V_{BLK} \text{ or } \Delta^2 V < -8mV^{Note 2}$	
Maintenance			Isns pulsed to average IFLT	Fixed pulse current
Pulsed Current	Н	Н	•	
Fast charge			while $V_{BAT} < V_{BLK}$, $I_{SNS} = I_{MAX}$	Current regulation
Primary termination			$V_{BAT} = V_{BLK}$	
Maintenance			$I_{SNS} = I_{MAX}$ after $V_{BAT} = V_{FLT}$; $I_{SNS} = 0$ after $V_{BAT} = V_{BLK}$	Hysteretic pulsed current

Notes:

- 1. May be high or low, but do not float.
- 2. A Benchmarq proprietary algorithm for accumulating successive differences between samples of V_{BAT}.

Sept. 1996 C 3/14

tery temperature is within the allowed range. Charge Pending is annunciated by LED3 flashing.

Thermal monitoring continues throughout the charge cycle, and the bq2031 enters the Charge Pending state anytime the temperature is out of range. (There is one exception; if the bq2031 is in the Fault state—see below—the out-of-range temperature is not recognized until the bq2031 leaves the Fault state.) All timers are suspended (but not reset) while the bq2031 is in Charge Pending. When the temperature comes back into range, the bq2031 returns to the point in the charge cycle where the out-of-range temperature was detected.

When the temperature is valid, the bq2031 performs two tests on the bettery. In test 1, the bq2031 regulates a voltage of $V_{FLT} + 0.25V$ across the battery and observes Isns. If Isns does not rise to at least Icond within a time-out period (e.g., the cell has failed open), the bq2031 enters the Fault state. If test 1 passes, the bq2031 then regulates current to Icond (= Imax5) and watches V_{CELL} (= $V_{BAT} \cdot V_{SNS}$). If V_{CELL} does not

rise to at least VFLT within a time-out period (e.g., the cell has failed short), again the bq2031 enters the Fault state. A hold-off period is enforced at the beginning of qualification test 2 before the bq2031 recognizes its "pass" criterion. If this second test passes, the bq2031 begins fast (bulk) charging.

Once in the Fault state, the bq2031 waits util Vcc is cycled or a battery insertion is detected. It then starts a new charge cycle and begins the qualification process again.

Charge Status Display

Charge status is annunciated by the LED driver outputs LED₁-LED₃. Three display modes are available in the bq2031; the user selects a display mode by configuring pin DSEL. Table 2 shows the three modes and their programming pins.

The bq2031 does not distinguish between an over-voltage fault and a "battery absent" condition The bq2031 enters the Fault state, annunciated by turning on LED3, when-

Table 2. bq2031 Display Output Summary

Mode	Charge Action State	LED ₁	LED ₂	LED ₃
	Battery absent or over-voltage fault	Low	Low	High
	Pre-charge qualification	Flash	Low	Low
DSEL = 0	Fast charging	High	Low	Low
(Mode 1)	Maintenance charging	Low	High	Low
	Charge pending (temperature out of range)	X	X	Flash
	Charging fault	X	X	High
	Battery absent or over-voltage fault	Low	Low	High
	Pre-charge qualification	High	High	Low
DSEL = 1 (Mode 2)	Fast charge	Low	High	Low
(Wode 2)	Maintenancecharging	High	Low	Low
	Charge pending (temperature out of range)	X	Х	Flash
	Charging fault	X	х	High
	Battery absent or over-voltage fault	Low	Low	High
	Pre-charge qualification	Flash	Flash	Low
	Fast charge: current regulation	Low	High	Low
DSEL = Float (Mode 3)	Fast charge: voltage regulation	High	High	Low
(Wode 3)	Maintenancecharging	High	Low	Low
	Charge pending (temperature out of range)	x	Х	Flash
	Charging fault	Х	Х	High

Notes:

 $1 = V_{CC}$; $0 = V_{SS}$; X = LED state when fault occurred; Flash = $\frac{1}{6}$ s low, $\frac{1}{6}$ s high.

In the Pulsed Current algorithm, the **bq2031** annunciates maintenance when charging current is off and fast charge whenever charging current is on.

Sept. 1996 C

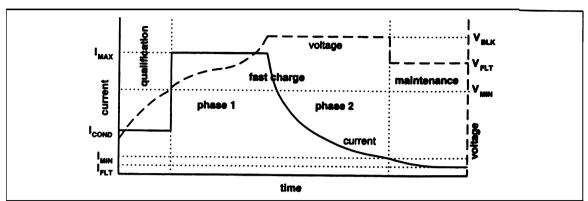


Figure 2. Two-Step Voltage Algorithm

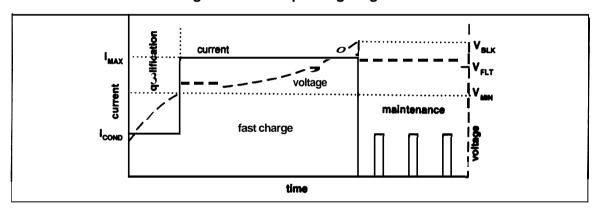


Figure 3. Two-Step Current Algorithm

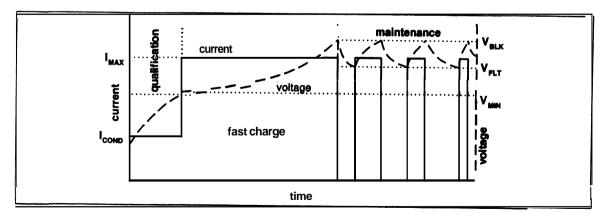


Figure 4. Pulsed Current Algorithm

Sept. 1996 C 5/14

ever the battery is absent. The **bq2031**, therefore, **gives** an indication that the charger is on even when no battery is in place to be charged.

Configuring Algorithm and Display Modes

QSEI/LED₃, DSEI/LED₂, and TSEI/LED₁ are bi-directional pins with two functions; they are LED driver pine as outputa and programming pins for the bq2031 as inputs. The selection of pull-up, pull-down, or no pull resistor programs the charging algorithm on QSEL and TSEL per Table 1 and the display mode on DSEL per Table 2. The bq2031 latches the program states when any of the following eventa occurs:

- 1. Vcc rises to a valid level.
- 2. The bq2031 leaves the Fault state.
- 3. The bq2031 detects battery insertion.

The LEDs will go blank for approximately **750ms** (typical) while new programming data is latched.

For example, Figure 5 shows the **bq2031 configured** for the Pulsed Current algorithm and display mode 2.

Voltage and Current Monitoring

The bq2031 monitors battery pack voltage at the BAT pin. A voltage divider between the positive and

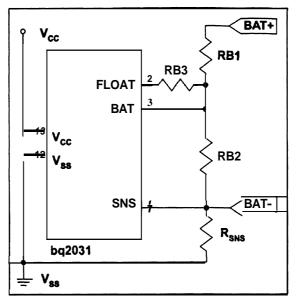


Figure 6. Configuring the Battery Divider

negative terminals of the battery pack is used to present a scaled battery pack voltage to the BAT pin and an appropriate value for regulation of float (maintenance) voltage to the FLOAT pin. The bq2031 also uses the volt-

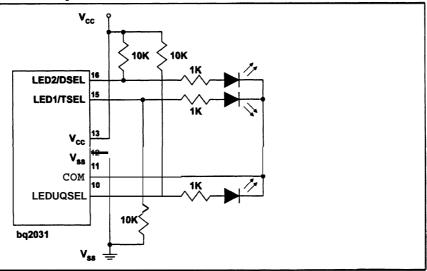


Figure 5. Configuring Charging Algorithm and Display Mode

6/14 Sept. 1996 C

ageacross asenseresistor(Rsns) between the negative terminal of the battery pack and ground to monitor current. See Figure 6 for the configuration of this network.

The **resistor** valuee are calculated **from** the following:

Equation 1

$$\frac{RB1}{RB2} = \frac{(N * V_{FLT})}{2.2V} - 1$$

Equation 2

$$\frac{RB1}{RB2} - \frac{RB1}{RB3} - \left(\frac{\cdot V_{BLK}}{2.2} \right) - 1$$

Equation 3

$$I_{MAX} = \frac{0.275V}{R_{SNS}}$$

where:

- N = Number of cells
- **VFLT** = Desired float voltage
- VBIK = Desired bulk charging voltage
- Imax = Desired maximum charge current

These parameters are typically specified by the battery manufacturer. The total resistance presented across the battery pack by RB1 + RB2 should be between $150 k\Omega$ and $1M\Omega$.. The minimum value ensures that the divider network does not drain the battery excessively when the power source is disconnected. Exceeding the maximum value increases the noise susceptibility of the BAT pin.

An empirical procedure for setting the valuee in the resistor network is as follows:

- 1. Set RB2 to 49.9 k Ω . (for 3 to 18 series cells)
- 2. Determine **RB1** from equation 1 given **VFLT**
- 3. Determine RB3 from equation 2 given **V**BLK
- 4. Calculate **Rsns from** equation **3** given **Imax**

Battery Insertion and Removal

The **bq2031 uses** V_{BAT} to detect the **presence** or **absence** of a battery. The **bq2031** determines that a battery is present when V_{BAT} is between the High-Voltage Cutoff (V_{LCO} = 0.6 ° V_{CC}) and the Low-Voltage Cutoff (V_{LCO} = 0.8V). When V_{BAT} is outside **this** range, the **bq2031** determines that no battery is present and transitions to the Fault state. Transitions **into** and out of the range between V_{LCO} and V_{HCO} are treated as battery insertions and removals, respectively. Besides being **used** to detect battery insertion, the V_{HCO} limit implicitly serves as an

over-voltage charge termination, because exceeding this limit causes the bq2031 to believe that the battery has been removed.

The user must include a pull-up resistor from the positive terminal of the battery stack to VDC (and a diode to prevent battery discharge through the power eupply when the eupply is turned off) in order to detect battery removal during periods of voltage regulation. Voltage regulation occurs in pre-charge qualification test 1 prior to all of the fast charge algorithms, and in phase 2 of the Two-Step Voltage fast charge algorithm.

Temperature Monitoring

The **bq2031** monitors temperature by **examining** the voltage presented **between** the **TS** and **SNS** pine **(VTEMP)** by a **resistor** network that **includes** a Negative Temperature Coefficient **(NTC)** thermistor. **Resistance variations** around that value are **interpreted** as **being proportional** to the battery temperature (see Figure 7).

The temperature thresholds used by the **bq2031** and their **corresponding** TS pin voltage are:

■ TCO—Temperature cutoff—Higher limit of the temperature range in which charging is allowed. VTCO = 0.4 • VCC

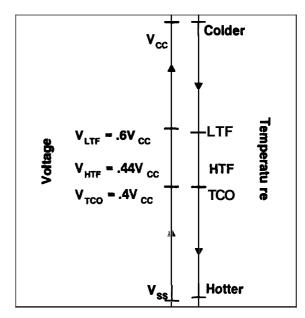


Figure 7. Voltage Equivalent of Temperature Thresholds

Sept. 1996 C 7/14

- HTF—High-temperature **fault—Threshold** to which temperature must drop **after** temperature cutoff is exceeded before charging can begin again. **VHTF** = 0.44 Vcc
- LTF—Low-temperature fault—Lower limit of the temperature range in which charging is allowed. VLTF = 0.6 Vcc

A resistor divider network **must** be implemented that presents the defined voltage levels to the TS pin at the desired temperatures (see Figure 8).

The equations for determining RT1 and RT2 are:

Equation 4

$$0.6 * V_{CC} = \frac{(V_{CC} - 0.275)}{1 + \frac{RT1 * (RT2 + R_{LTF})}{(RT2 * R_{LTF})}}$$

Equation 5

$$0.44 = \frac{1}{1 + \frac{RT1 * (RT2 + R_{HTF})}{(RT2 * R_{HTF})}}$$

where:

■ RLTF = thermistor resistance at LTF

RHTF = thermistor resistance at HTF

TCO is determined by the values of RT1 and RT2. 1% resistors are recommended.

Disabling Temperature Sensing

Temperature sensing can be disabled by removing RT and using a $100k\Omega$ resistor for RT1 and RT2.

Temperature Compensation

The internal voltage reference used by the bq2031 for all voltage threshold determinations is compensated for temperature. The temperature coefficient is -3.9mV/°C, normalized to 25°C. Voltage thresholds in the bq2031 vary by this proportion as ambient conditions change.

Fast Charge Termination

Fast charge termination criteria are programmed with the **fast** charge **algorithm** per Table 1. Note that not all criteria **are** applied in **all** algorithms.

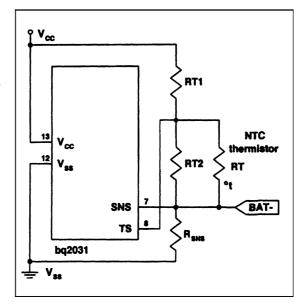


Figure 8. Configuring Temperature Sensing

Minimum Current

Fast charge terminates when the charging current drops below a minimum current threshold **programmed** by the value of **IGSEL** (see Table 3). This is used by the Two-Step Voltage algorithm.

Table 3. IMIN Termination Thresholds

IGSEL	I _{MIN}
0	I _{MAX} /10
1	I _{MAX} /20
Z	I _{MAX} /30

Second Difference ($\Delta^2 V$)

Second difference is a **Benchmarq** proprietary algorithm that **accumulates** the difference between **successive** samples of **VBAT**. The **bq2031 takes** a sample and **makes** a termination decision at a frequency equal to 0.008 • **tMTO**. Fast charge **terminates** when the accumulated difference is ≤ -8mV. Second difference is used only in the **Two-Step** Current algorithm, and is subject to a hold-off period (see below).

Maximum Voltage

Fast charge terminates when **VCELL** \geq VBLK. **VBLK** is **set** per equation 2. Maximum voltage is **used** for fast charge termination in the Two-Step Current and Pulsed Current algorithms, and for transition from **phase 1** to phase **2** in the Two-Step Voltage algorithm. This criterion is subject to a hold-off period.

Hold-off Periods

Maximum V and Δ^2 V termination criteria are subject to a hold-off period at the start of **fast** charge equal to 0.15 **thmo.** During **this** time, these **termination** criteria are ignored.

Maximum Time-Out

Fast charge terminates if the programmed MTO time is reached without some other termination shutting off fast charge. MTO is programmed **from 1** to **24 hours** by an R-C network on TMTO (see Figure 9) per the equation:

Equation 6

$$t_{MTO} = 0.5 \cdot R \cdot C$$

where R is in $k\Omega$, C is in μF , and t_{MTO} is in hours. Typically, the maximum value for C of $0.1\mu F$ is used.

Fast charge termination by MTO is a Fault only in the Pulsed Current algorithm; the bq2031 enters the Fault state and waits for a new battery insertion, at which time it begins a new charge cycle. In the Two-Step Voltage and Two-Step Current algorithms, the bq2031 transitions to the maintenance phase on MTO time-out.

The MTO timer starts at the beginning of fast charge. In the Two-Step Voltage algorithm, it is cleared and restarted when the **bq2031** transitions from phase 1 (current regulation) to phase 2 (voltage regulation). The **MTO** timer is suspended (but not reset) during the out-of-range temperature (Charge Pending) state.

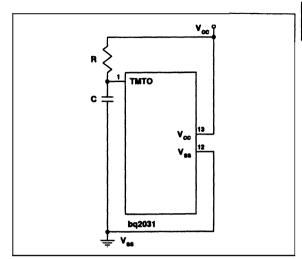


Figure 9. R-C Network for Setting MTO

Maintenance Charging

Three algorithms are used in maintenance charging:

- Two-Step Voltage algorithm
- Two-Step Current algorithm
- Pulsed Current algorithm

Two-Step Voltage Algorithm

In the Two-Step Voltage algorithm, the **bq2031** provides charge maintenance by regulating charging voltage to **VFLT.** Charge **current** during maintenance is limited to **ICOND.**

Two-Step Current Algorithm

Maintenance charging in the Two-Step Current Algorithm is implemented by varying the period (Tp) of a **fixed** current (**ICOND** = **IMAX/5**) and duration (0.2 **seconds**) pulse to achieve the configured average maintenance current value. See Figure 10.

Maintenance current can be calculated by:

Equation 7

Maintenance current =
$$\frac{((0.2) * I_{COND})}{T_P} = \frac{((0.04) * I_{MAX})}{T_P}$$

where Tp is the period of the waveform in seconds.

Table 4 gives **the** values of P programmed by IGSEL.

Sept. 1996 C

Table 4. Fixed-Pulse Period by IGSEL

IGSEL	Tp (sec.)
L	0.4
Н	0.8
Z	1.6

Pulsed Current Algorithm

In the Pulsed Current algorithm, charging current is turned off after the initial fast charge termination until VCELL falls to VFLT. Full fast charge current (IMAX) is then re-enabled to the battery until VCELL rises to VBLK. This cycle repeats indefinitely.

Charge Regulation

The bq2031 controls charging through pulse-width modulation of the MOD output pin, supporting both constant-current and constant-voltage regulation. Charge current is monitored by the voltage at the SNS pin, and charge voltage by voltage at the BAT pin. These voltages are compared to an internal temperature-com-

pensated reference, and the MOD output modulated to maintain the desired value.

Voltage at the SNS pin is determined by the value of **resistor** RsNs, so nominal regulated current is set by:

Equation 8

$I_{MAX} = 0.275V/R_{SNS}$

The switching frequency of the MOD output is determined by an **external** capacitor (CPWM) between the pin TPWM and ground, per the following:

Equation 9

$F_{PWM} = 0.1/C_{PWM}$

where C is in μ F and F is in kHz. A typical switching rate is 100kHz, implying CPWM = 0.001μ F. MOD pulse width is modulated between 0 and Woof the switching period.

To prevent oscillation in the voltage and current control loop, frequency compensation networks (C or R-C) are typically required on the VCOMP and ICOMP pine (respectively) to add poles and zeros to the loop control equations. A software program, "CNFG2031," is available to assist in configuring these networks for buck type regulators. For more detail on the control loop in buck topology, see the application note, "Compensating the bq2031 in Buck-Mode Switching Applications.' For assistance with other power supply topologies, contact the factory.

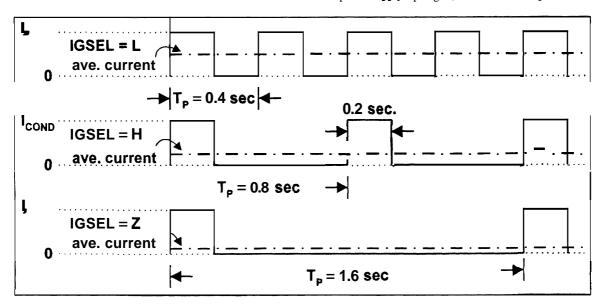


Figure 10. Implementation of Fixed-Pulse Maintenance Charge

10/14 Sept. 1996 C

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
VT	DC voltage applied on any pi. excluding Vcc relative to Vss	-0.3	+7.0	V	
		-20	+70	°C	Commercial
Topr	Operating ambient temperature	-40	+85	°C	Industrial "N"
TSTG	Storage temperature	-55	+125	°C	
TSOLDER	Soldering temperature		+260	°C	10 s. max.
TBIAS	Temperature under bias	-40	+85	°C	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. **Functional** operation should be limited to the Recommended DC Operating Conditions detailed in **this** data **sheet. Exposure** to conditions beyond the operational **limits** for extended **periods** of time may **affect** device reliability.

DC Thresholds (TA = TOPR; VCC = 5V ±10%)

Symbol	Parameter	Rating	Unit	Tolerance	Notes
	Internal reference voltage	2.20	V	1%	T _A = 25°C
VREF	Temperature coefficient	-3.9	mV/°C	10%	
VLTF	TS maximum threshold	0.6 • Vcc	V	±0.03V	Low-temperature fault
V _{HTF}	TS hysteresis threshold	0.44 • Vcc	V	±0.03V	High-temperature fault
V_{TCO}	TS minimum threshold	0.4 • Vcc	V	±0.03V	Temperature cutoff
V _{HCO}	High cutoff voltage	0.60 • V _{CC}	V	±0.03V	
V _{MIN}	Under-voltage threshold at BAT	0.34 • Vcc	V	±0.03V	
V _{LCO}	Low cutoff voltage	0.8	V	±0.03V	
V _{SNS}		0.275	V	10%	I _{MAX}
	Current sense at SNS	0.05	v	10%	ICOND

Sept. 1996 C 11/14

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V_{CC}	Supply voltage	4.5	5.0	5.5	V	
VTEMP_	TS voltage potential	0		Vcc	V	V _{TS} · V _{SNS}
VCELL	Battery voltage potential	0		Vcc	v	V _{BAT} - V _{SNS}
Icc	Supply current		2	4	mA	Outputs unloaded
I _{IZ}	DSEL tri-state open detection	-2		2	μA	Note2
112	IGSEL tri-state open detection	-2		2	μA	
		V _{CC} -1.0	-		V	QSEL,TSEL
V_{IH}	Logic input high	Vcc-0.3	-		V	DSEL, IGSEL
			-	Vss+1.0	V	QSEL,TSEL
V_{IL}	Logic input low		•	Vss+0.3	V	DSEL, IGSEL
	LED1, LED2, LED3, output high	Vcc-0.8	•		V	I _{OH} ≤ 10mA
Vон	MOD output high	Vcc-0.8	-		V	I _{OH} ≤ 10mA
	LED ₁ , LED ₂ , LED ₃ , output low		•	Vss+0.8V	V	I _{OL} ≤ 10mA
	MOD output low		-	Vss+0.8V	v	IoL ≤ 10mA
Vol	FLOAT output low		•	V _{SS} +0.8V	V	IoL ≤ 5mA, Note 3
	COM output low		•	Vss+0.5	V	I _{OL} ≤ 30mA
	LED ₁ , LED ₂ , LED ₃ , source	-10			mA	V _{OH} =V _{CC} -0.5V
Іон	MOD source	-5.0			mA	V _{OH} =V _{CC} -0.5V
	LED ₁ , LED ₂ , LED ₃ , sink	10			mA	$V_{OL} = V_{SS} + 0.5V$
IoL	MOD sink	5			mA	$V_{\rm OL} = V_{\rm SS} + 0.8V$
TOL	FLOAT sink	5			mA	$V_{OL} = V_{SS} + 0.8V$, Note 3
	COM sink	30			mA	V _{OL} = V _{SS} +0.5V
I _{IL}	DSEL logic input low source			+30	μА	$V = V_{SS}$ to V_{SS} + 0.3V, Note 2
	IGSEL logic input low source			+70	μA	V = V _{SS} to V _{SS} + 0.3V
T	DSEL logic input high source	-30			μА	V = V _{CC} - 0.3V toV _{CC}
I _{IH}	IGSEL logic input high source	-70	-		μА	V = V _{CC} - 0.3V toV _{CC}
IL	Input leakage	-	-	±1	μА	QSEL, TSEL, Note 2

Notes:

- 1. All voltages relative to Vss except where noted.
- 2. Conditions during initialization after Vcc applied.
- 3. SNS = OV

Impedance

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
RBATZ	BAT pin input impedance	50			MΩ	
Rsnsz	SNS pin input impedance	50			MΩ	
RTSZ	TS pin input impedance	50			МΩ	
R _{PROG1}	Soft-programmed pull-up or pull-down resistor value (for programming)			10	kΩ	DSEL, TSEL, and QSEL
RPROG2	Pull-up or pull-down resistor value			3	kΩ	IGSEL
R _{MTO}	Charge timer resistor	20		480	kΩ	

Timing (TA = TOPR; VCC = 5V ±10%)

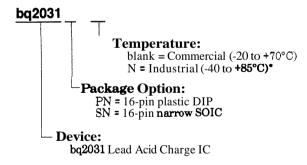
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tmto	Charge time-out range	1		24	hours	See Figure 9
tqr1	Pre-charge qual test 1 time-out period		0.02tmro			
tQT2	Pre-charge qual test 2 time-out period		0.16tmto			
tDV	Δ ² V termination sample frequency	•	0.008t _{MTO}			
tH01	Pre-charge qual test 2 hold-off period	-	0.002tmro			
tH02	Bulk charge hold-off period		0.015tmto			
F _{PWM}	PWM regulator frequency range		100		kHz	See Equation9

Capacitance

Symbol	Paramater	Minimum	Typical	Maximum	Unit
Смто	Charge timer capacitor		0.1	0.1	μF
CPWM	PWM R-C capacitance		0.001		μF

Sept. 1996 C

Data Sheet Revision History


Change No.	Page No.	Description	Nature of Change
1		Descriptions	Clarified and consolidated
1		Renamed	Dual-Level Constant: Current Mode to Two-Step Current Mode VMCV to VHCO VINT to VLCO tuv1 to tqT1 tuv2 to tqT2
1		Consolidation	Tables 1 and 2
1		Added figures	Start-up states Temperature sense input voltage thresholds Pulsed maintenance current implementation
1		Updated figures	Figures 1 through 6
1		Added equations	Thermistor divider network configuration equations
1		Raised condition	MOD VoL and VoH parameters from ≤5mA to ≤10µA
1		Corrected Conditions	VSNS rating from VMAX and VMIN to IMAX and IMIN
1		Added table	Capacitance table for CMTO and CPWM
2	6	Changed values in Figure 5	Was 51K; is now 10K

Note:

Change 1 = Dec. 1995 B changes from June 1995 A data sheet.

Change 2 = Sept. 1996 C from Dec. 1995 B.

Ordering Information

[•] Contact **factory** for availability.

Sept. 1996 C

Fast Charge Development System

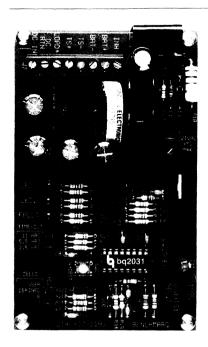
Control of On-Board **PNP Switch-Mode Regulator**

Features

- bg2031 fast charge control evaluation and development
- Accepts AC (21V RMS max.) or DC (30V max.) inputs
- On-board configuration for fast charge of 3 or 6 lead-acid cells: user-defined option allows other configurations
- Selectable charge algorithms: Two-Step Voltage. Two-Step Current, or Pulsed Current
 - Constant current (up to 3.5A) and constant voltage (up to 15V) provided by on-board switch-mode regulator
- Charge termination by maximum voltage, second difference of cell voltage, minimum current, or maximum time-out
- Direct connections for battery, thermistor, and reset
- Jumper-configurable three-LED display

General Description

The DV2031S1 Development System provides a development environment for the bg2031 Lead-Acid Fast Charge IC. The DV2031S1 incorporates a bg2031 and a bucktype switch-mode regulator to provide fast charge control for 3 or 6 lead-acid cells.


The DV2031S1 can be configured for three different charge algorithms with jumpers JP2 and JP3. The charge algorithms available are:

- Two-Step Voltage
- Two-Step Current
- Pulsed Current

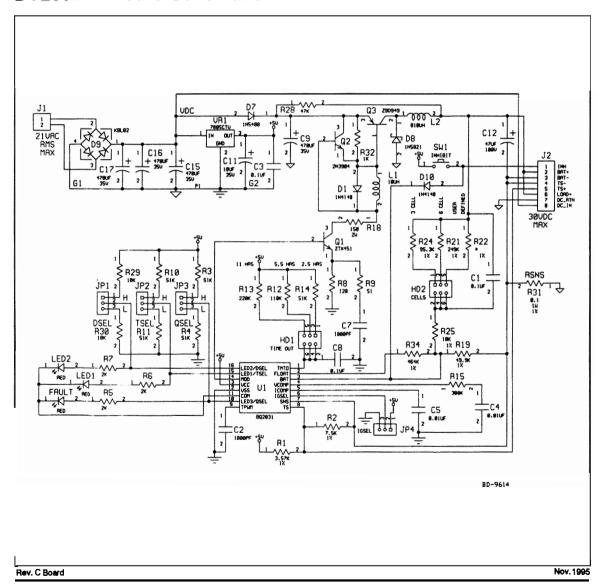
Each algorithm consists of pre-charge qualification, fast charge, and maintenance charge periods.

Fast charge termination occurs on:

- Maximum voltage
- The second difference of cell voltage ($\Delta^2 V$)

- Minimum current
- Maximum time-out

The maintenance charge may be configured for either a regulated float voltage or a pulsed current.


The bq2031 can be reset and a new charge cycle started with either the momentary on-board switch (SW1) or via the INH input on connector J2. The reset signal simulates a "Battery Absent" condition. Charging is inhibited as long as the reset signal is active; once it is released, the charge cycle re-starts at pre-charge qualification.

A full data sheet for this product is available on our web site (http://www.benchmarg.com), or you may contact the factory for one.

Nov 1995 Rev. C Board The vprovides a power supply (AC or DC) and batteries and configures the board for the number of cells, the maximum time-out period, the minimum current threshold, and the LED display mode. The board has direct connections for the battery and the provided thermistor.

Before using the DV2031S1 board, please review the bq2031 data sheet and the application note entitled "Using the bq2031 to Charge Lead-Acid Batteries".

DV2031S1 Board Schematic

to Charge Lead-Acid Batteries

Description of Operation

The bq2031 has two primary functions: lead-acid battery charge control and switch-mode power conversion control. Figure 1 is a block diagram of the **bq2031**. The charge control circuitry is capable of a variety of fullcharge detection techniques and supports three different charging algorithms. The Pulse-Width Modulator (PWM) provides control for high-efficiency current and voltage regulation.

Starting a Charge Cycle and Battery Qualification

When Vcc becomes valid (rises past its minimum value), the first activates battery temperature monitoring. Temperature is indicated by the voltage between the pins TS and SNS (V_{TEMP}). If the **bq2031** finds the temperature out of range (or the thermistor is absent), it enters the Charge Pending State. In this state, all timers are sus-

pended, charging current is kept off by MOD being held low, and the state is annunciated by **LED3** alternating high and low at approximately 4th second intervals.

Temperature **checks** remain active throughout the charge cycle. They are **masked** only when the **bq2031** is in the Fault state (see below). When the temperature returns to the allowed charging range, timers are restarted (not reset) and the bq2031 returns to the state it was in when the temperature fault occurred.

When the thermistor is **present** and the temperature is within the allowed range, the **bq2031** then checks for the presence of a battery. If the voltage between the BAT and SNS pine (VCRLL) is between the Low-Voltage Cut-Off threshold (VLCO) and the High-Voltage Cut-Off (VHCO), the **bq2031 perceives** a battery to be present and begins pre-charge battery qualification after a 500ms (typical) delay. If any new temperature or voltage faults occur during this time, the bq2031 immediately transitions to the appropriate state.

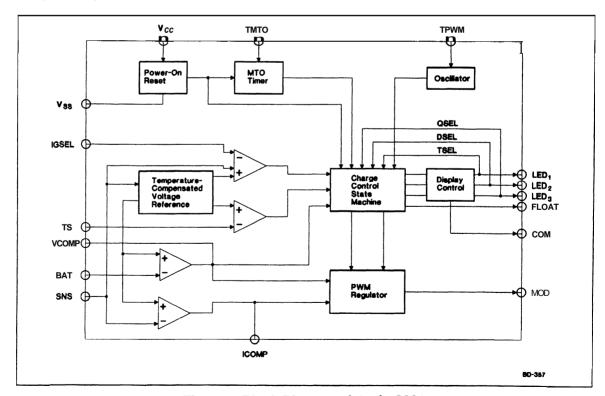


Figure 1. Block Diagram of the bq2031

Dec. 1995 1/16

Using the bq2031 to Charge Lead-Acid Batteries

If VCELL is less than VLCO or above VHCO, the bq2031 believes no battery is present and enters the Fault state; MOD is held low and LED3 is turned on. This light gives the customer an indication that the charger is on, even though no battery is present. The bq2031 leaves the Fault state only if it sees VBAT rise past VLCO or fall past VHCO, indicating a new battery insertion. If temperature is within bounds, there will again be a 500ms delay before battery qualification tests start.

Battery Qualification Tests

In teat 1, the bq2031 attempts to regulate a voltage = VPLT + 0.25V across the battery pack. The bq2031 monitors the time required for Isns, the charging current, to rise to Icond = Imax/5. If the current fails to rise to this level before the time-out period torn expires (e.g. the battery has failed open), the bq2031 enters the Fault state, indicated by the LED3 pin going high. Charging current is removed from the battery by driving the MOD pin low, and the bq2031 remains in this state until it detects the wnditions to start a new charge cycle; the battery is replaced or Vcc is cycled off and then back on.

If test 1 passes, the bq2031 will start test 2 by attempting to regulate a charging current of ICOND into the battery pack. It will monitor the time required for the pack voltage to rise above VMIN (the voltage may already be over this limit). If the voltage fails to rise to this level before the time out period tq72 expires (e.g., the battery has failed short), the bq2031 again enters the Fault state as described above. If teat 2 passes, the bq2031 then begins fast (bulk) charging.

Fast Charging

The user configures the bq2031 for one of three fast charge and maintenance algorithms.

Two-Step Voltage (Figure 3)

This algorithm consists of three phases:

- Fast Charge phase 1: The charging current is limited at IMAX until the cell voltage rises to VBLK.
- Fast Charge phase 2: The charging voltage is regulated at VBLK until the charging current drops below IMIN.
- Maintenance phase: The charging voltage is regulated at VFLT.

Two-Step Current (Figure 4)

This algorithm consists of two phases:

■ Fast Charge phase: The charging current is regulated at IMAX until the cell voltage rises to VBLK or the

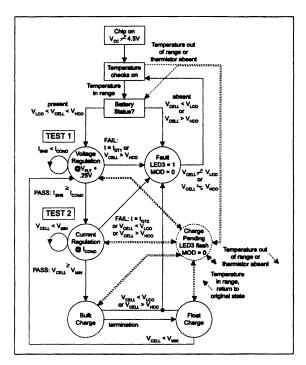


Figure 2. Cycle **Start/Battery** Qualification State Diagram

"Second Difference" of cell voltage drops below -8mV while VBAT is over 2.0V. Second Difference is the accumulated differences between successive samples of VBAT. The Second Difference technique looks for a negative change in battery voltage as the battery begins overcharging (see Figure 6).

 Maintenance phase: Fixed-width pulses of charging current = Iconp are modulated in frequency to achieve an average value of IMIN. See Appendix A for implementation details.

Pulsed Current (Figure 5)

This algorithm consists of two phases:

- Fast Charge phase: The charging current is regulated at IMAX until the cell voltage rises to VBLK.
- Maintenance phase: Charging current is removed until the battery voltage falls to VFLT; charging current is then restored and regulated at IMAX until the battery voltage once again rises to VBLK. This cycle is repeated indefinitely.

2/16 Dec. 1995

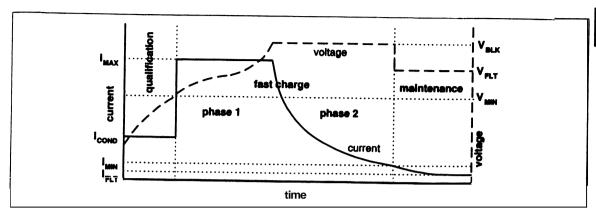


Figure 3. Two-Step Voltage Algorithm

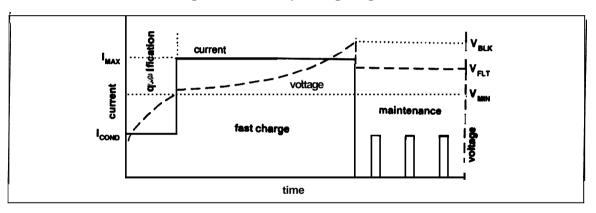


Figure 4. Two-Step Current Algorithm

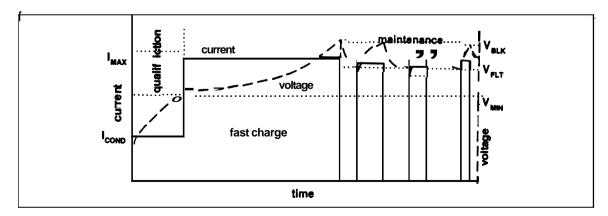


Figure 5. Pulsed Current Algorithm

Dec. 1995

Safety Time-Out

A safety timer limits the time the charger can spend in any phase of the charging cycle except maintenance. This Maximum Time-Out (MTO) timer is reset at the end of successful pre-charge qualification when the bq2031 begins fast charging. If MTO times out before a fast charge termination criterion is met, the charging current is turned off (MOD driven low) and the bq2031 enters the Fault state exactly as if it had failed a pre-charge qualification test.

There is one exception. In the Two-Step Voltage algorithm, MTO is reset when the bq2031 transitions from the current-limited phase 1 to the voltage-regulated phase 2 of fast charging. If MTO expires while the bq2031 is still in phase 1, it does not enter the Fault state but instead transitions to phase 2 (and MTO is reset). If MTO expires while the bq2031 is still in state 2, the bq2031 enters the Fault state.

During maintenance, the MTO timer is reset at the beginning of each new pulse in the Two-Step Current and Pulsed Current algorithms. It expires (and puts the bq2031 in the Fault state) only if the bq2031 became 'jammed' with a pulse stuck on. The MTO timer is not active during the maintenance phase of the Two-Step Voltage algorithm.

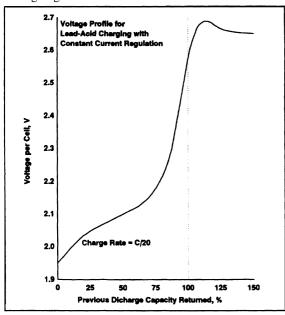


Figure 6. Voltage Roll-Off In Constant Current Charging **Profile**

Hold-off Periods

Old age and/or abuse can create conditions in lead-acid batteries that may generate a large transient voltage spike when current-regulated charging is first applied. This spike could cause early termination in the fast charge algorithms by mimicking their voltage-based termination criteria. To prevent this, the bq2031 uses a "hold-off" period at the beginning of the fast charge phase. During this time, all voltage criteria are ignored except cutoff voltages. (Straying outside the range between VHCO and VLCO still causes the bq2031 enters the Fault state and shuts off charging current.) A hold-off period is also enforced during test 2 of pre-charge qualification for the same reason.

Configuration Instructions

Selecting Charge Algorithm and Display Mode

QSEI/LED₃, DSEI/LED₂, and TSEI/LED₁ are bidirectional pins with two functions: they are LED driver pins as outputs and programming pins for the bq2031 as inputs. The selection of pull-up, pull-down, or no pull resistor for these pins programs the charging algorithm on QSEL and TSEL per Table 1 and the diilay mode on DSEL per Table 2 The bq2031 forces the output driver on these bi-directional pins to their high-impedance state (as well as their common return output pin, COM) and latches the programming data sensed on the inputs when any one of the following three events occurs:

- 1. Vcc rises to a valid level.
- 2. The bg2031 leaves the Fault state.
- The bq2031 detects battery insertion.

The **LEDs** go blank for approximately **0.75s**. (typical) while new programming data is latched.

Figure 7 shows the **bq2031** configured for the **Pulsed** Current algorithm and display mode 2.

Table 1. Programming Charge Algorithms

Charge Algorithms	QSEL	TSEL	Programmable Thresholds
Two-Step Voltage	L	H/L*	IMAX, VBLK, VFLT
Two-Step Current	Н	L	IMAX, VBLK, IMIN
Pulsed Current	Н	Н	I _{MAX} , V _{BLK} , V _{FLT}

Note: • Set either high or low; do not float pin.

4/16 Dec. 1995

The MTO timer also resets at the beginning of the pre-charge qualification period. However, tQT1 or tQT2 (the qualification test time limits) expire and put the bq2031 in the Fault state before the MTO limit can be reached. The MTO timer is suspended while the bq2031 is m the Fault state, and is reset by the conditions that allow the bq2031 to exit that state.

Table 2. bq2031 Display Output Summary

Mode	Charge State	LED ₁	LED ₂	LED ₃
	Battery absent	Low	Low	High
DSEL = 0	Pre-charge qualification	Flash*	Low	Low
(Mode 1)	Fast charging	High	Low	Low
	Maintenance charging	Low		Low
	Charge pending (temperature out of range)	X	X	Flash*
	Fault	X	х	High
	Battery absent	Low	Low	High
DSEL = 1	Pre-charge qualification	High	High	Low
(Mode 2)	Fast charge	Low		Low
	Maintenance charging	High	Low	Low
	Charge pending (temperature out of range)	Х	х	Flash*
	Fault	Х	х	High
_	Pre-charge qualification	Flash Low High Low	Low	
	Battery absent	Low	Low	High
DSEL = Float	Fast charge: current regulation	Low	High	Low
(Mode 3)	Fast charge: voltage regulation	High		Low
	Maintenance charging			Low
	Charge pending (temperature out of range)	X	Х	Flash*
	Fault	X	Х	High

Note:

1 = V_{CC} , 0 = V_{SS} , X = LED state when fault occurred. • Flash = $\frac{1}{6}$ sec. low, $\frac{1}{6}$ sec. high

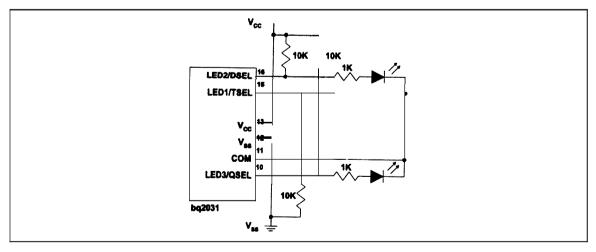


Figure 7. Configuring 10K Two-Step Charging Algorithm

and Display Mode Selection

Dec. 1995

Using the bq2031 to Charge Lead-Acid Batteries

A resistor-divider network must be implemented that **presents** the **defined** voltage levels to the TS pin at the desired temperatures (see Figure 10).

The equations for **determining RT1** and RT2 are:

Equation 4

$$0.6 * V_{CC} = \frac{(V_{CC} - 0.275)}{1 + \frac{RT1 * (RT2 + R_{LTF})}{(RT2 * R_{LTF})}}$$

Equation 5

$$0.44 = \frac{1}{1 + \frac{RT1 * (RT2 + R_{HTF})}{(RT2 * R_{HTF})}}$$

where:

- RLTE = Thermistor resistance at LTF
- RHTF = Thermistor resistance at HTF

TCO is determined by the values of RT1 and RT2. 1% resistors are recommended. As an example, the resistor values for several temperature windows computed for a Philips 2333-640-63103 thermistor are shown in Table 5.

Table 5. RT1 and RT2 Values for Temperature Thresholds

	1 Cilipoi	atalo IIII	00110100	
LTF (℃)	HTF (℃)	TCO (℃)	RT1 (kΩ)	RT2 (kΩ)
0	45	47	3.57	7.50
5	45	47	3.65	8.66
-5	50	52	2.74	5.36

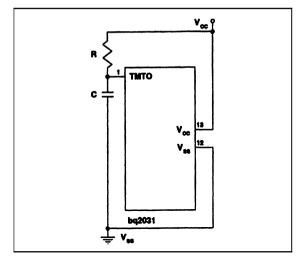


Figure 11. RC Network for Setting MTO

Disabling Temperature Sensing

Temperature sensing may be disabled by removing the thermistor and RT1, and using a value of $100k\Omega$ for RT1 and RT2.

Setting Timers

The user sets the Meximum Time-Out (MTO) value. All other timing periods used in the bq2031 are fixed as fractions of MTO (see Table 6). MTO is set by an R-C network on the TMTO pin as shown in Figure 11.

Table 6. Timing Parameters

Symbol	Parameter	Minimum	Typical	Maximum	Unit
tmro	Maximum Time Out range	1		24	hours
tqrı	Qualification time-out test 1		0.02tmto		
tqr2	Qualification time-out test 2		0.16t _{MTO}		
t _D V	-Δ ² V termination sample frequency		0.008t _{MTO}		
tho1	Qu cation test 2 hold-off period		0.002tmto		
tho2	Bulk-charge hold-off period		0.015tmto		

alifi

8/16 Dec. 1995

The equation for MTO is:

Equation 6

MTO (in hours) =
$$0.5 * R * C$$

where R is in $k\Omega$ and C is in μF . The value for C must not exceed $0.1\mu F$.

Example: An MTO of 5 hours is set by R = $100k\Omega$ and C = 0.1μ F

Switch-Mode Power Conversion

The **bq2031** incorporates the necessary PWM control **circuitry** to support switch-mode voltage and current regulation

Figure 12 shows a functional block diagram of a switch-mode buck topology converter using the bq2031. The battery voltage is divided down to a per-cell equivalent value at the BAT pin. During voltage regulation, the voltage on the BAT pin (VBAT) is regulated to the internal band-gap reference of 2.2V at 25°C (with a temperature drift of -3.9 mV°C). The charge current through the inductor L is sensed across the resistor Rsns. During current regulation, the bq2031 regulates the voltage on the SNS pin (Vsns) to a temperature-compensated reference of 0.275V.

The passive components C_1 on the I_{COMP} pin, Rv and Cv on the V_{COMP} pin, and C_P across the high side of the battery voltage divider form the phase compensation network for the current and voltage control loops, respectively, The diodes $(D_{b1}$ and $D_{b2})$ serve to prevent battery drain when VDC is absent, while the pull-up resistor (R_P) is used to detect battery removal. The resistor R_S , typically a few tens of $m\Omega$, is optional and depends on the battery impedance and the resistance of the battery leads to and from the charger board.

Pulse-Width Modulator

The **bq2031** incorporates two PWM circuits, one for each control loop (voltage and current, see *Figure* 13). Each PWM circuit runs off a common saw-tooth waveform (Vs) whose time-base is controlled by a timing capacitor (Cpwm) on the TPWM pin.

The relationship between C_{PWM} and the switching frequency (Fs) is given by:

Equation 7

$$F_S = \frac{0.1}{C_{PWM}} \text{ kHz}$$

where **CPWM** is in uF.

Each PWM loop starts with a comparator whose positive terminal is driven by Vs. The negative terminal is driven by the output of an Operational Transconductance Amplifier (OTA) which, with the compensation network connected h a VCOMP & ICOMP, generates the control signal Vc. The OTA characteristics are: $R_O = 250k\Omega$; $G_M = 0.42m$ -mho; gain bandwidth = 80MHz. The output of each comparator, along with the ramp waveform (Vs), is used to generate a pulse-width modulated waveform at a constant frequency on the MOD output. Figure 14 shows the relationehip of MOD with Vc and Vs.

The MOD output **swings** rail-to-rail and can source and **sink 10mA**. It is used to control the drive circuitry of the switching transistor.

The pulse-width modulated square-wave signal on the MOD pin is synchronized to the **internal** sawtooth ramp signal. The ramp-down time **(TD)** is **fixed** at approximately 20% of the ramp time-period **(TP)**. This **limits** the maximum duty-cycle achievable to approximately 80%. See **Figure** 14.

Example: At a switching frequency of $F_s = 100kHz$, $T_D = 2\mu s$.

Inductor Selection

The inductor selection **criteria** for a DC-DC buck converter vary depending on the **charging** algorithm used. For the Two-Step Current and **Pulsed** Current charge algorithms, the inductor equation is:

Equation 8

$$L = \frac{(N * V_{BLK} * 0.5)}{F*\Delta I}$$

where:

- N = Number of cells
- VBLK = Bulk voltage per cell, in volts
- Fs = Switching frequency, in hertz
- ΔI = Ripple current at **IMAX**, in amps

The ripple current is usually set between 20-25% of IMAX.

Example: A 6-cell **SLA** battery is to be charged at **IMAX** = **2.75A** in a buck topology running at **100kHz**. The **VBLK** threshold is set at **2.45V** per cell and the charger is conf i d for **Pulsed Current** mode. **Assuming** a ripple = 2590of **IMAX**, the inductor value required is:

Equation 9

$$L = \frac{(6 * 2.45 * 0.5)}{(100000 * 0.6875)} = 107 \mu H$$

Dec. 1995 9/16

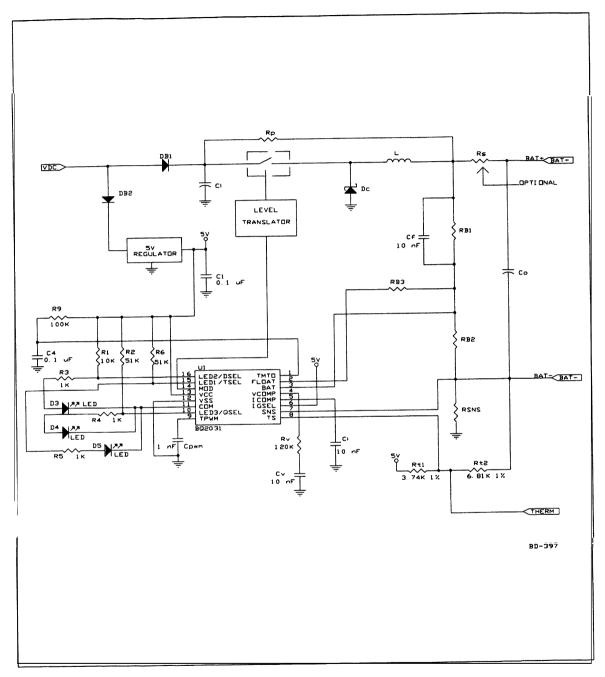


Figure 12. Functional Diagram of a Switch-Mode Buck Regulator Lead-Acid Charger Using the **bq2031**

10/16 Dec. 1995

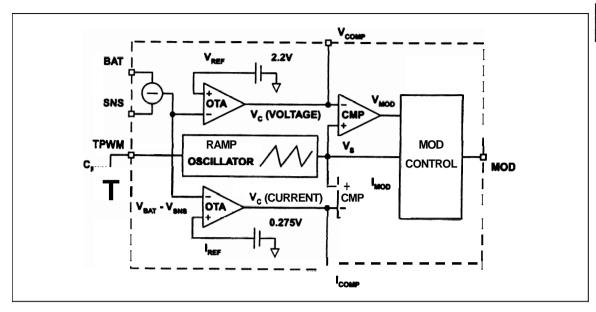


Figure 13. Block Diagram of the **bq2031** PWM Control Circuitry

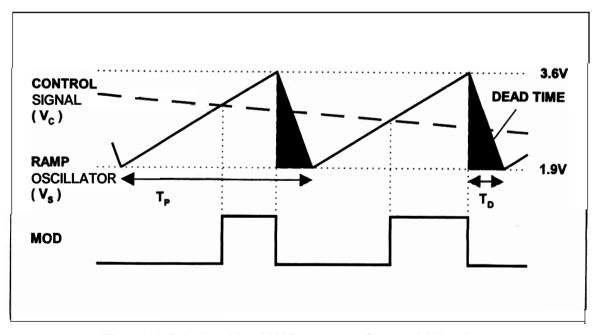


Figure 14. Relationship of MOD output to Sawtooth Waveform Vs and Control Signal Vc

Dec. 1995

Using the bq2031 to Charge Lead-Acid Batteries

The inductor formula for the Two-Step Voltage charge algorithm is dictated by the inductor **current**, which must remain continuous down to **Imin** during Fast Charge phase 2 (voltage regulation phase).

Equation 10

$$L = \frac{N * V_{BLK} * 0.5}{F_{S} * 2 * I_{MIN}}$$

Example: A 6-cell **SLA** battery is to be charged at **IMAX =** 2.75A in a buck topology running at 100 kHz. The **VBLK** threshold is set at **2.45V** per cell and the charger is configured for Two-Step Voltage mode, with **IMIN = IMAX/20**. The inductor value required is:

Equation 11

$$L = \frac{6 * 2.45 * 0.5}{(100000 * 2 * 0.1375)} = 267 \mu H$$

Phase Compensation

For buck-mode switching applications, the suggested component values shown in Figure 12 are good starting points. Further assistance is available from the bq2031 configuration software program "CNFG2031." More details on the calculations used in this program are available in the application note entitled "Compensating the bq2031 in Buck-Mode Switching Applications." For assistance with other power supply topologies, contact the factory.

Miscellaneous Issues

Vcc Supply

The Vcc supply provides **bq2031** power and **serves** as the reference voltage for all temperature sense thresholds (VLTF, VHTF, and VTCO) and the battery voltage thresholds VHCO and VMIN. The timer thresholds (MTO and its derivatives) are trimmed within 6% of the typical value with Vcc = 5V.

The VBLK and VFLT thresholds are set from an external divider network powered by the battery. These thresholds are referenced to an internal band-gap reference, and the accuracy of voltage regulation will not be adversely affected by variation in Vcc. The current regulation threshold (IMAX) is referenced to a temperature compensated reference and is also unaffected by Vcc.

DC Power Supply

The DC power supply voltage (VDC) for a switch-mode application must satisfy the following criterion:

Equation 12

$$V_{DC} = (N * V_{BLK}) + 3V$$

where:

- N = Number of cells
- V_{BLK} = Bulk voltage threshold per cell

Logical Control of Charging

Charge Inhibit

An inhibit input may be implemented by connecting the cathode of a emall-signal diode to the TS pin. A CMOS logic-level "1" applied to the anode of the diode then functions as an inhibit input, by driving the temperature sense voltage out of its allowed range and simulating an under-temperature condition. The bq2031 enters the Charge Pending state, shutting off charging current (driving MOD low) and suspending all timers. When the Inhibit signal is allowed to float, the bq2031 returns to its previous state (as long as the temperature is still within the allowed range). The bq2031 restarts (but does not reset) its timers, and the suspended charge cycle resumes at the point where it stopped.

Reset

A logical Reset signal for the **bq2031** can be created in a manner similar to the Charge Inhibit input described above. Instead of **being** connected to the TS pin, however, the diode is connected to the BAT input. In **this** confiiation, a logic "1" on the diode drives **VBAT** above **VHCO**, simulating battery removal. The **bq2031** enters the Fault state and waits to see a battery insertion; **VBAT** rising past **VICO** or falling past **VHCO**. Removing the logic "1" from the diode creates this transition (as long a battery is still present), and the **bq2031** starts a new charge cycle.

Caution: To avoid damage the bq2031, always keep the voltage applied to the anomaliof the diode below Vcc for either the Charge I bit or Reset implementations.

Layout Guidelines

Printed circuit board layout must adhere to the following guidelines to minimize noise injection on the high-impedance pins (BAT, VCOMP, ICOMP, and SNS).

- Use a single-point grounding technique such that the isolated small-signal ground path and the highcurrent power ground path return to the power supply ground.
- The charging path components and traces must be isolated from the voltage and current feedback small signal paths.
- 0.1µF and 10µF decoupling capacitors must be placed close to the Vcc pin. This also helps to prevent voltage dips while the bq2031 is driving the LEDs.

Dec. 1995

- 4. A 100pF capacitor, if used for coupling the BAT and SNS pins, must be placed close to those pins.
- The compensation network on ICOMP and VCOMP must be placed close to their respective pins.
- Minimize loop area in paths with high pulsating currents. In the example in Figure 15, this loop is fanned by D9, Q2, and C5.

Battery Removal Detection

The **bq2031** interprets **VBAT** rising past **VHCO** or falling past **VHCO** as battery removal, and the **bq2031** enters the Fault state until a new battery insertion is seen. The battery removal **transitions** are precluded during **periods** of voltage regulation unless circuitry **(e.g.,** a pull-up to VDC) is provided to pull **VBAT** out of the 'battery present" range.

Voltage regulation occurs during phase 2 of the Two-Step Voltage fast charge algorithm and in battery qualification test 1 which precedes all three algorithms. The time-out period of this test (= 0.02 • MTO) is at least 1.2 minutes and may be as long as 28.8 minutes. Unless waiting through this period before detecting battery removal is acceptable, the pull-up is required in the purely current regulated algorithms as well. A diode should also be installed in the path of the pull-up to prevent the power supply from draining the battery when the supply is turned off. Refer to resistor R12 and diode D3 in the example design in Figure 15.

This pull-up creates a background trickle charge current to the battery that can be **minimized** by minimizing the voltage overhead; that is, the voltage difference between the VDC supply and the battery stack.

Load-Only Operation

The bq2031 supports the case in which the charger must supply the load in the absence of a battery, provided the load can pass the two pre-charge qualifications tests (draw current of at least ICOND when regulated at VFLT+0.25V and maintain voltage of at least VMIN when regulated at ICOND). Further, the load must not create conditions that cause fast charge termination or it must be able to tolerate the conditions of maintenance regulation for the charge algorithm selected. This is regulation at VFLT in the case of the Two-Step Voltage algorithm or constant or hysteretic pulsed current supply in the case of the Two-Step Current and Pulsed Current algorithms, respectively. This can be a problem for intermittent loads unless circuitry is provided to maintain these conditions during the low-load or no-load periods.

Back-up Supply Regulation

To protect the system from damage during periods of fast charge voltage regulation, the bq2031 regulates to I_{MAX} if the current tries to rise above that level, and has an absolute Dec. 1995

current limit d 1.25 * IMAX. Similarly, during periods of fast charge current regulation, the bq2031 enforces a Velk upper limit on voltage, and regulates to Velk if the voltage tries to rise above this level. During the maintenance phase, the bq2031 regulates to Velk and Icono during periods of current or voltage regulation, respectively.

Applications Example: Single-Ended Buck Charger

Charger Specifications:

■ Charge Algorithm: Two-Step Voltage mode

■ Charge Current: 2.76 A

■ Battery Specifications: Yuaea 12V, 10Ah

The following information is derived from the battery **specifications**:

- Number of cells = 6 (divide battery voltage by 2, the SLA nominal V/cell)
- Capacity = 10 amp-hours
- VBLK threshold = 2.4V per cell (from the cyclic voltage specification)
- VFIT threshold = 2.2V per cell (from the float voltage specification)
- The safety timer (MTO) is **set** equal to the amp-hour capacity divided by the **charge current**:

Equation 13

MTO =
$$\frac{10}{2.75}$$
 = approximately 4 hours

■ The temperature window of operation from the Yuasa battery specifications is 0°C-45°C. This gives: LTF = 0°C and HTF = 45°C

Apply these **parameters** in equations 1 through 10 to determine values for the following:

- Battery divider network
- Sense resistor
- MTO time-out
- PWM frequency
- **Temperature** window network

The final schematic (see Figure 15) uses a low **Vce** (sat), high-gain, high-bandwidth PNP **transistor** (Q2) as the **switching** device in a single-ended **buck** topology powered from a DC **supply** of 24 V.

The power filter inductor (L2) is a 78-turn powdered-iron toroidal core inductor from Micrometals. The capacitor

13/16

Using the bq2031 to Charge Lead-Acid Batteries

(C4) is used to suppress the inductive effect of long lead wires from the board to the battery. The low Q inductor (L1) causes transistor Q2 to turn off faster during the commutation period. See Table 7 for the parts list for the design.

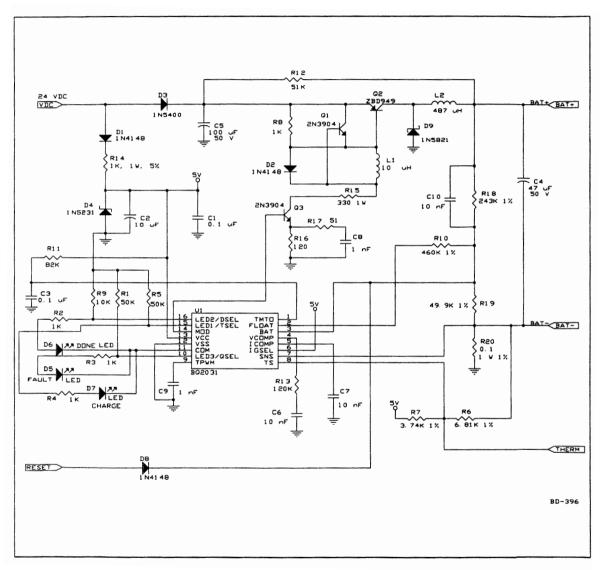


Figure 15. Example Schematic of a Single-Ended Buck Topology Charger Using the **bq2031**

14/16 Dec. 1995

Table 7. Parts List for a Single-Ended Buck Charger

Item	Quantity	Reference	Part
1	2	C1, C3	0.1μF
2	1	C2	10μF
3	1	C4	47μF
4	1	C5	100μF
5	2	C6, C7	10nF
6	2	C8, C9	1nF
7	3	D1 , D2, D8	1N4148
8	1	D3	1N5400
9	1	D4	1N5231
10	3	D5, D6, D7	LED
11	1	D9	1N5821
12	1	L1	10μH
13	1	L2	487µH
14	2	Q1, Q 3	2N3904
15	1	Q2	ZBD949
16	2	R9, RT1	10K
17	2	R1. R5	50K
18	4	R2, R3, R4, R8	1K
19	1	R6	6.81K 1%
20	1	R7	3.74K 1%
21	1	R10	460K 1%
22	1	R11	82K
23	1	R12	51K
24	1	R13	120K
25	1	R14	1K, 1W, 5%
26	1	R15	330 1W
27	1	R16	120
28	1	R17	51
29	1	R18	243K 1%
30	1	R19	49.9K 1%
31	1	R20	0.1
32	2	R21, R22	0.1Ω
33	1	U1	bq2031

Dec. 1995

Using the bq2031 to Charge Lead-Acid Batteries

Appendix A: Implementation Details of Pulsed Maintenance Charging

Two-Step Current Algorithm

Maintenance charging in the Two-Step Current Algorithm is implemented by varying the period (TP) of a fixed current (ICOND = IMAX/5) and duration (0.2 second) pulse to achieve the configured average maintenance current value. See Figure 16.

Maintenance current can be calculated by:

Equation 14

Maintenance current =
$$\frac{((0.2) \cdot I_{COND})}{T_P} = \frac{((0.04) \cdot I_{MAX})}{T_P}$$

where Tp is the period of the waveform in seconds.

Table 8 gives the values of Tp programmed by IGSEL

Table 8. Fixed Pulse Period by IGSEL

IGSEL	TP (sec.)
L	0.4
н	0.8
Z	1.6

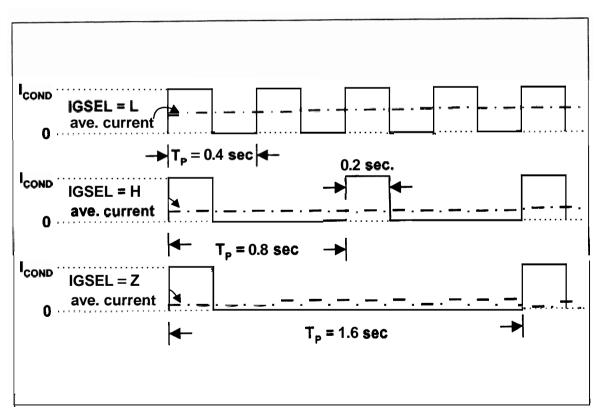


Figure 16. Implementation of Fixed-Pulse Maintenance Charge

16/16 Dec. 1995

Preliminary Switch-Mode Power

Conversion Using the bq2031

Introduction

The bq2031 incorporates the necessary PWM control circuitry to support switch-mode voltage and current regulation, as required by its charge control function block This application note describes how to configure the **bq2031** in buck mode switching power supply topology. A methodology for phase compensation of the voltage and current feedback loops is recommended. A brief description of the PWM control circuitry and phase compensation criteria appears below, followed by a discussion dealing with topology specific issues.

The Pulse Width Modulator

The **bq2031** incorporates two voltage mode direct duty cycle Pulse Width Modulators, one for each control loop (voltage and current). A block diagram is shown in Figure 1. Each PWM runs off a common saw-tooth waveform whose time-base is controlled by a capacitor, CPWM on the TPWM pin.

The relationship of C_{PWM} to the switching frequency, $\mathbf{F_S}$ is given by:

Equation 1

$$F_S = \frac{0.1}{C_{PWM}} kHz$$

where:

CPWM is in μF.

The **PWM** for either loop coneists of a comparator whose positive terminal is driven by the output of the sawtooth ramp signal, V_S, while the negative terminal is driven by the output of an Operational Transconductance Amplifier (OTA). The output is the control signal, Vc. The output of each PWM is logically ORed to generate a constant frequency pulse width modulated rectangular waveform at the MOD output. The relationship of the MOD output with respect to the OTA control signal, Vc, and the sawtooth ramp signal, V_{S_1} is shown in Figure 2.

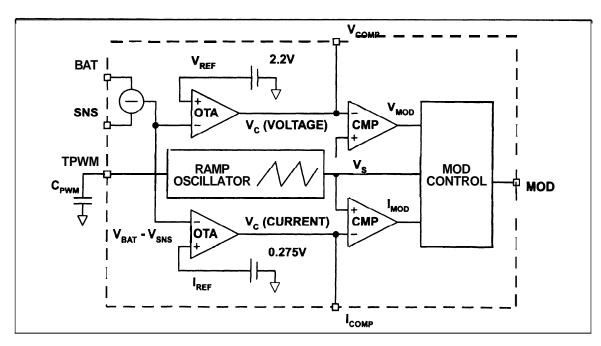


Figure 1. Block Diagram of the bg2031 PWM Control Circuitry

June 1996

Switch-Mode Power Conversion Using the bq2031 Preliminary

The MOD output swings rail-to-rail and can source and sink **10mA**. It is used to control a **switching** transistor in a switch-mode application.

The pulse width modulated square wave signal on the MOD pin is synchronized to the internal sawtooth ramp signal. The ramp-down time (T_D) is **fixed** at approximately 20% of the total period (T_P). **This** condition limits the maximum duty-cycle to approximately 80%. For example, with a switching frequency $F_S = 100 \text{kHz}$, $T_D = 2 \mu s$.

Phase Compensation

As in any feedback control system, phase compensation is necessary to achieve both loop stability and dynamic line and load response. As shown in the PWM block diagram (Figure 1) the bq2031 provides two high-impedance nodes, IcoMP and VcoMP, for current and voltage loop phase compensation. In a battery charger application the dynamic load response is not as much a concern as loop stability, especially during voltage regulation.

Voltage and Current Control Loops

Two independent PWM function blocks implement direct duty cycle control for current and voltage regulation. **During** current regulation the feedback signal is the voltage across the current sense resistor, Rsns, as shown in the current feedback loop model of Figure 3.

The current regulation total open-loop **transfer** function, $I_1(s)$, may be expressed as:

Equation 2

$$I_{L}(s) = A(s) * P_{\omega}(s) * P_{T}(s)$$

where:

- A(s) is OTA error amplifier and compensation network transfer function, Vc/Vo
- $\mathbf{P}_{\omega}(\mathbf{s})$ is the PWM transfer function. D/VC
- $P_T(s)$ is the power train transfer function, V_O/D
- D is the duty cycle of the PWM waveform

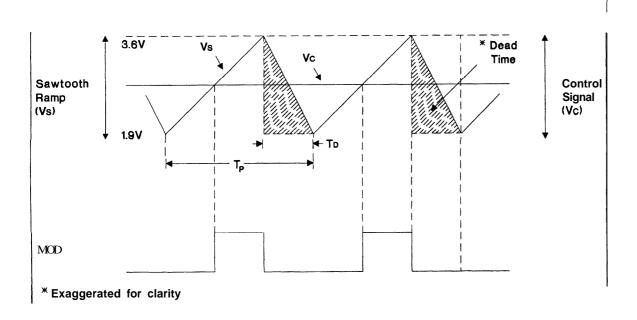


Figure 2. Relationship of MOD Output to Sawtooth Waveform

V_S and Control Signal Vc

2/16 June 1996

During voltage regulation, the feedback signal is the voltage sensed at the midpoint of the battery voltage divider

(between RB1 and RB2). The voltage feedback control loop is modeled as shown in Figure 4.

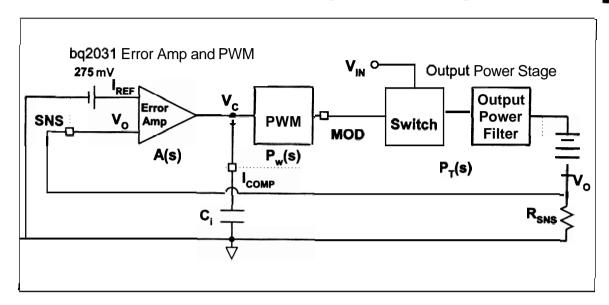


Figure 3. Model of Current Control Loop

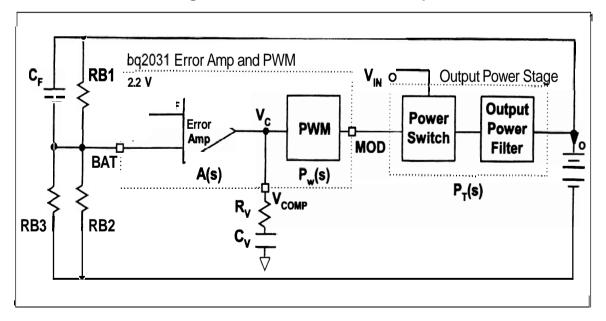


Figure 4. Model of Voltage Control Loop

June 1996 3/16

Switch-Mode Power Conversion Using the bq2031 Preliminary

For voltage regulation, the total open-loop transfer function, $V_L(s)$, may be expressed as:

Equation 3

$$V_{I}(s) = A(s) * P_{\varpi}(s) * P_{T}(s)$$

where:

 Pr(s) is the transfer function of the output power stage, Vo/D.

The switching frequency and circuit topology of the system dictate the gain-frequency characteristics of the output power stage. The PWM characteristics are fixed within the **bq2031**. **Thii** situation leaves the OTA and its associated compensation network as the only function block whose characteristics can be changed to achieve the desired loop stability and response.

The Error Amplifier

The bq2031 error amplifiers are the OTA (Operational Transconductance Amplifier) type. The parameters of interest (see Figure 6) are:

- Transconductance gain, g_m = 0.42 milli-mhos
- Output resistance of error amplifier, $R = 250k\Omega$
- Gain Bandwidth product = 80MHz

This situation fixes the maximum voltage gain at $105 (g_m^*R)$ or 40.4dB, which is good out to the 3dB corner frequency of 2MHz. Note that the 40dB gain is the maximum achievable, regardless of the impedance across the output to ground.

Criteria for Loop Stability

The gain and phase characteristics of the OTA and associated circuitry must be adjusted to meet the following three criteria for loop stability:

- Total open-loop gain (I_L(s) and V_L(s) above) must be forced to 0dB at a crossover freauency (F_C) equal to at least 1/6 the switching frequency (F_S).
- 2. The phase of the total open-loop gain at Fc must be at least 45 degress less than 180 degrees.

The above criteria for loop stability can be easily achieved if the total loop-gain transfer function exhibits dominant pole characteristics as shown in Figure 5.

Stabilizing the Current Loop

From Equation 2, the total open-loop transfer function is expressed as:

$$I_L(s) = A(s) * P_{\varpi}(s) * P_T(s)$$

 $P_{\omega}(s)$ (the transfer function for the PWM) is given as:

$$P_{\varpi}(s) = \frac{D_{MAX}}{V_{S}}$$

where:

- DMAX is the maximum duty cycle of the PWM waveform
- Vs is the peak-tupeakamplitude of the sawtooth waveform

For the **bq2031**, Vs is fixed at **1.7V**, and the maximum duty cycle is 80%. This condition reduces the PWM transfer function to:

Equation 4

$$P_{co}(s) = 0.47$$

P_T(s) (the transfer function for the output power stage) is given as:

Equation 5

$$\begin{split} P_{T}(s) = & \\ \frac{V_{IN} * (l + s * R_{i} * C_{B}) * R_{SNS}}{R_{i} * R_{SNS} * s[L + R_{O}R_{L} * C_{B} + R_{SNS} * R_{i} * C_{B}] * s^{2}L * R_{L} * C_{B}} \end{split}$$

where:

- s is the complex variable jω
- VIN is DC input voltage
- C_B is the equivalent internal battery capacitance (see Figure 11)
- L is inductor value
- R_I, is inductor resistance

 \mathbf{R}_{i} is the equivalent internal battery resistance (see Figure 11)

- RSNS is sense resistor value
- R_O is the equivalent battery load resistance (see Figure 11)

Stabilizing the current loop requires the compensation of the loop error amplifier to be such that the transfer func-

tion A(s) has dominant pole characteristics. This can be achieved by adding a capacitor, Ci, between ground and the output of the OTA error amplier as shown in Figure 6.

The transfer function A(s) is given as:

$$A(s) = \frac{V_C}{V_O} = \frac{(g_m * R)}{(1 + (s * R * C_i))}$$

4/16

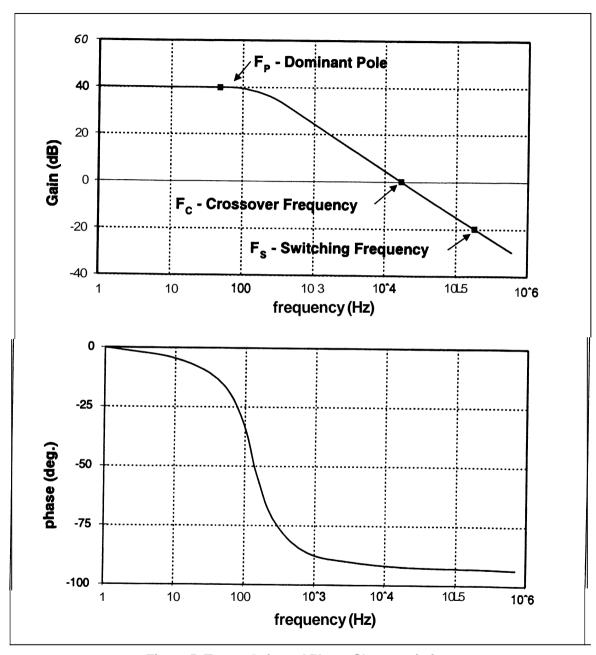


Figure 5. Target Gain and Phase Characteristics of a Stable Closed-Loop System

June 1996 5/16

Switch-Mode Power Conversion Using the bq2031 Preliminary

Substituting values for gm and R, we get:

Equation 6

$$A(s) = \frac{105}{(1 + (s * 250000 * C_i))}$$

where:

■ C_i is the output capacitance of the error amplifier (see Figure 6)

Substituting Equations 4 and 5 in Equation 2 gives the compensated total current loop gain transfer function:

Equation 7

$$I_{L}(s) = \frac{0.47 * V_{IN} * 105}{(1 + (s * 250000 * C_{i}))}$$

As shown in the bode plot for IL(s) (Figure 7), CI can be varied to achieve the necessary phase and gain margin for different V_{IN} values.

Stabilizing the Voltage Loop

Recalling Equation 3, the voltage regulation open-loop transfer function can be expressed as:

$$V_L(s) = A(s) * P_{\varpi}(s) * P_T(s)$$

The output power stage transfer function **Pr(s)** depends on the inductor and battery impedances.

The components required to compensate the error amplifier for achieving voltage loop stability appear in Figure 8.

The resultant transfer function of the compensated error amplifier may be expressed as:

Equation 8

$$A(s) = \frac{D * 105 * (1 + s*RB1*C_F) * (1 + (s*R_V*C_V))}{(1 + s*D*RB_1*C_F) * (1 + s*(2.5*10^5 + R_V) * C_V)}$$

where:

■ D = Battery voltage divider ratio during voltage regulation:

$$D = \frac{RB2 | | RB3}{((RB2 | | RB3) + RB1)}$$

- Note: See the application note entitled 'Using the bq2031 to Charge Lead-Acid Batteries' for instructions on calculating RB1, RB2, and RB3.
- RB1 = the resistor value between the high side of the battery stack and the BAT pin in the battery voltage divider network
- C_F = the capacitance in parallel with RB1
- Ry = series resistance between Vcomp and ground
- Cy = series capacitance between V_{COMP} and ground

(see Figure 8 and Voltage Loop Error Amplifier Compensation below for calculating the values of CF, Rv, and Cv.)

The above transfer function contributes two poles and two zeros.

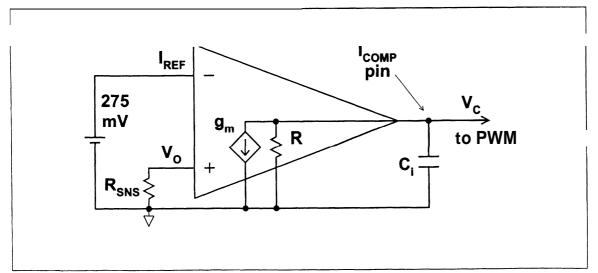


Figure 6. Compensation Network for the Current Loop

June 1996

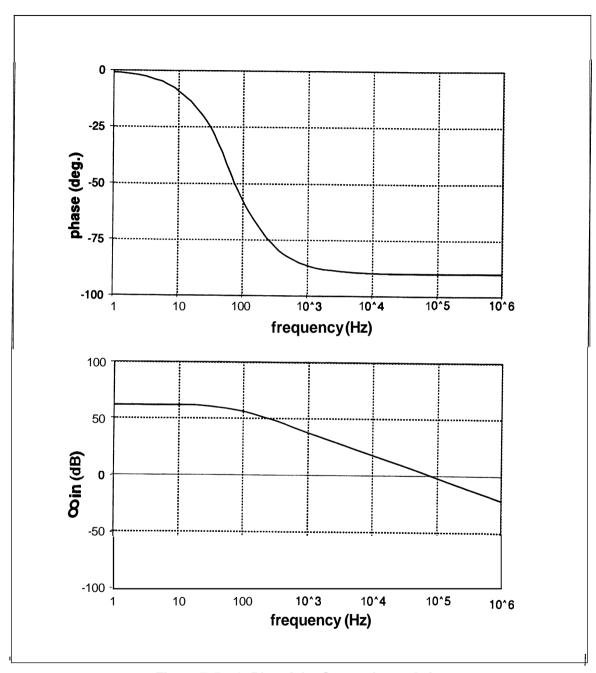


Figure 7. Bode Plot of the Current Loop-Gain

Transfer Function for V_{IN} = 24V

June 1996 7/16

Switch-Mode Power Conversion Using the bq2031 Preliminary

Poles (Equation 9)

fp1 =
$$\frac{1}{(2\pi * (2.5 * 10^5 + Rv) * Cv)}$$

$$fp2 = \frac{1}{(2\pi * D * RB1 * C_F)}$$

Zeroes (Equation 10)

$$fzl = \frac{1}{(2\pi * RB1 • C_F)}$$

$$fz2 = \frac{1}{(2\pi * Rv * Cv)}$$

The effect of this feedback and compensation network on the transfer function of **A(s)** is shown in Figure 9.

Voltage Loop Compensation for Buck Topology

Figure 10 shows a functional diagram of a switch-mode buck topology converter using the bq2031. The battery voltage is divided down to a per-cell equivalent value at the BAT pin. During voltage regulation, the voltage on the BAT pin (VBAT) is regulated to the internal band-gap reference of 2.2V (with a temperature drift of -3.9mV/°C). The charge current through the inductor L is sensed across the resistor Rsns. During current regulation, the bq2031 regulates the voltage on the SNS pin (VSNs) to a temperature-

compensated reference of **0.275V**. **This** in turn regulates the current to IMAX, provided that a properly designed resistor network **is** in use.

The passive component C on the Icomp pin and Rv and Cy on the **Vcomp** pin form the **phase compensation** network for the current and voltage control **loops**, respectively. The diode **(Db1)** prevents battery drain when VDC is absent, while the pull-up resistor **(R)** detects battery removal. The resistor **R13**, typically a few tens of $m\Omega$, is optional and depends on the battery impedance and the resistance of the battery leads to and from the charger board.

The Output Power Stage

The output power stage in a buck topology charger comprises the inductor L and the parallel combination of the output capacitor, Co, and impedance of the battery (see F i e 12). The output capacitor is **electrolytic** and in the range from $47\mu F$ to $100\mu F$. It **nullifies** the inductive effect of long leads from the charger terminals to the battery.

Inductor Selection

The inductor selection criteria for a DC-DC buck **converter** vary depending on the charging algorithm used. For the Two-Step Current and Pulsed Current charge algorithms, the inductor equation is:

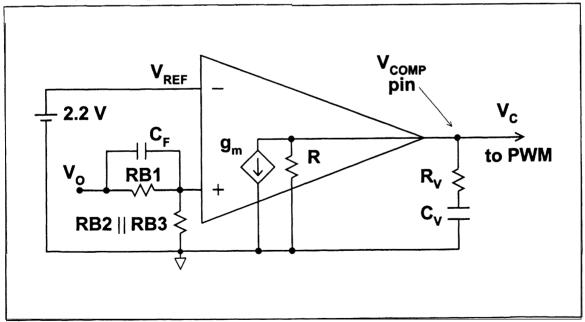


Figure 8. Compensation Network for the Voltage Loop

8/16 June 1996

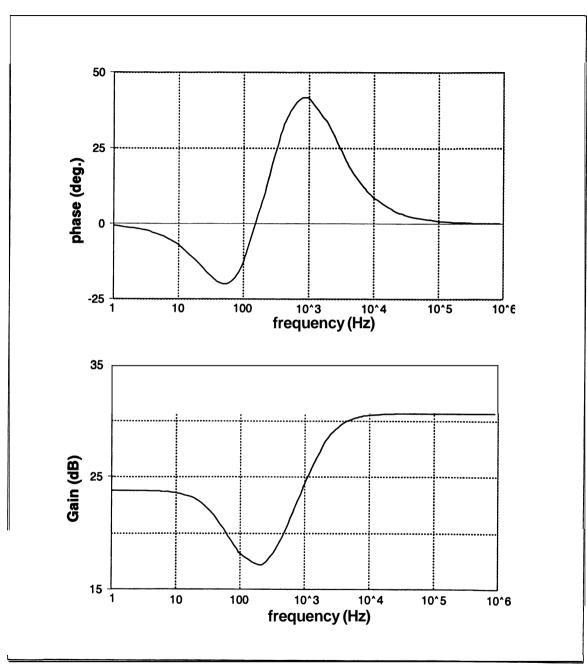


Figure 9. Effect of Compensation Network on Amplifier Transfer Function, A(s)

June 1996 9116

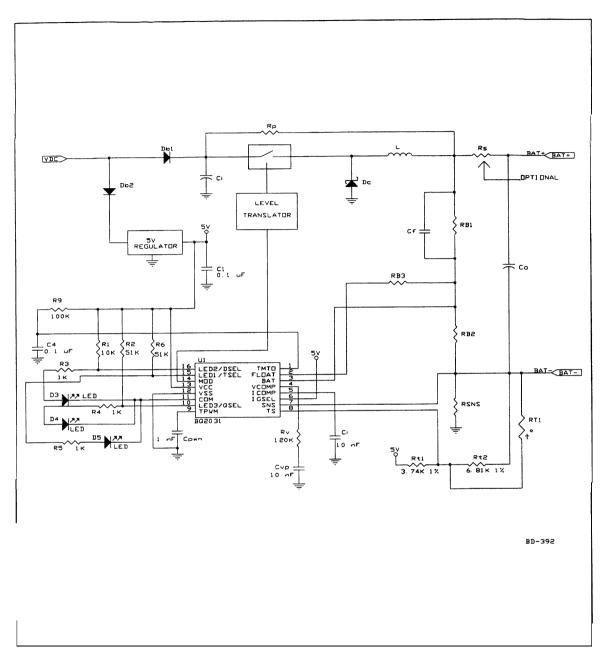


Figure 10. Functional Diagram of a Switch-Mode Buck Regulator Lead-Acid Charger Using the bq2031

10/16 June 1996

Equation 11

$$L = \frac{(N * V_{BLK} * 0.5)}{F*\Delta I}$$

where:

- x = N = number of cells
- VBLK = bulk voltage per cell, in volts
- Fs = switching frequency, in hertz
- ΔI = ripple current at **IMAX**, in amps

The ripple current is usually set between 20-25% of **IMAX**.

Example: A 6-cell SLA battery is to be charged at I_{MAX} = 2.75A in a buck topology running at 100kHz. The V_{BLK} threshold is set at 2.45V per cell and the charger is configured for Pulsed Current mode. Assuming a ripple = 25% of I_{MAX} , the inductor value required is:

$$L = \frac{(6 * 2.45 * 0.5)}{(10^5 * 0.6875)} = 107 \mu H$$

The inductor current, which must remain continuous down to **I**_{MIN} during Fast Charge phase 2 (voltage regulation phase), dictates the inductor formula for the **Two**-Step Voltage charge algorithm.

Equation 12

$$L = \frac{N * V_{BLK} * 0.5}{F_{S} * 2 * I_{MIN}}$$

Example: A 6-cell SLA battery is to be charged at IMAX = 2.75A in a buck topology running at 100 kHz. The VBLK threshold is set at 2.45V per cell and the charger is con-

figured for Two-Step Voltage mode, with **Imin = Imax/20**. The inductor value required is:

$$L = \frac{6 * 2.45 * 0.5}{(10^5 * 2 * 0.1375)} = 267 \mu H$$

Model of a Lead Acid Battery

The battery impedance can be **represented** as a capacitor (C_B) in series with its internal impedance (R) as **shown** in Figure 12. The capacitance can be **empirically** derived from the amp-hour rating of the battery. The rule of thumb is:

$$C_{B} = 100 * C$$

where C = the capacity of the battery in ampere-hours.

The internal resistance Ri of a lead-acid battery is dictated by:

- Number of cells, N
- Amp-hour capacity, C
- State of charge

Figure 12 shows the variation of the internal impedance of a Yuasa **NP6-12 (12V,** 6 amp-hrs) battery as a function of its state of charge.

An average value of the **impedance** swirg **is** recommended for use in loop stability **equations.** For example, with the battery above we recommend using R = 0.0552.

The resistor R_O models the **loading effects** of the battery when a voltage equivalent to **V**_{BLK} (typically **2.45V/cell)** is applied **across** the battery. The range of values R_O takes on depends on the bulk charge current, the bulk voltage, and the I_{MIN} to I_{MAX} ratio. For example: A 12V

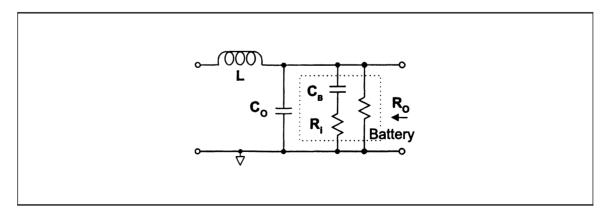


Figure 11. Model of Output LC Filter for Buck Topology

June 1996

Switch-Mode Power Conversion Using the bq2031 Preliminary

battery being charged at I_{MAX} = 3A will exhibit the following range with a I_{MIN}/I_{MAX} ratio of 1:20.

$$R_L(min) = 6 * \frac{2.45}{3} = 4.921$$

$$R_L(max) = 6 * \frac{2.45}{0.15} = 98\Omega$$

Use the minimum value for worst case scenario of loop stability.

The Power Stage Transfer Function

The transfer function of the output power stage, $P_{T}(s)$ can be expressed as:

Equation 13

$$P_{T}(s) = \frac{V_{IN} * (1 + (s * R * C_{B}))}{(1 + (s/\omega_{0})^{2} + (s * (R_{i}C_{B} + L/R_{0})))}$$

where:

$$\omega_0 = 1/\sqrt{L * C_B}$$

The poles and zeros of $P_T(s)$ are:

Equation 14

$$fzo = {1 \over (2\pi * R_i * C_B)}$$

fpo =
$$1/(2\pi * \sqrt{L * C_8})$$

A second pole is not used in these calculations:

$$\frac{1}{2\pi * (R_i C_B + \frac{L_i}{R_0})}$$

Typical Switch-Mode Buck Charger Specifications

The application specifications for a switch-mode buck topology charger are usually given as:

- DC input voltage, V_{IN} = 20 to 30V
- Switching frequency, F_S = 100kHz, T = 10µs
- Charge algorithm = Two-Step Voltage mode:
 - VBLK = 2.45V/cell , Vflt = 2.2V/cell
 - = IMAX = 3A, IMIN = IMAX/30 = 300mA
- Battery specs: 12V, 10A-hr, Internal impedance: 0.02 to 0.07Ω

PWM and Output Power Stage Transfer Functions

Starting **again** from the basic voltage regulation loopgain transfer function (Equation 3) is given as:

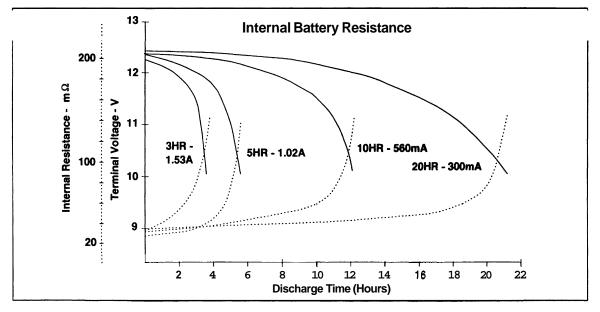


Figure 12. Internal Resistance of Yuasa NP6-12 Battery

vs. State of Charge

12/16 June 1996

Preliminary Switch-Mode Power Conversion Using the bg2031

$$V_{L}(s) = A(s) * P_{\varpi}(s) * P_{T}(s)$$

This equation can be written as:

$$V_L(s) = A(s) * G(s)$$

where G(s) is the combined transfer function of $P_{\omega(s)}$ and $P_{I}(s)$

Combining Equations 4 and 13:

Equation 15

$$G(s) = \frac{0.47 * V_{IN} * (1 + (s * R * C_B))}{(1 + (s/\omega_0)^2 + (s * (R_iC_B + \frac{I}{2}R_0)))}$$

Based on the typical values in the section above, the worst case values for loop **parameters** are:

- \blacksquare $V_{IN} = 30 V$
- \blacksquare R_i = 0.05 Ω
- $C_B = 100 * 10 = 1000 \mu F$
- $\mathbf{R} = \mathbf{R}_0 = \mathbf{4.9}\mathbf{\Omega}$

From Equation 12:

$$L = \frac{(6 * 2.45 * 0.5)}{(10^5 * 2 * 0.1)} = 367.5 \mu H$$

The resulting bode plots for **G(s)** are **shown** below.

Since the plots exhibit similar characteristics to that of the output power filter, we can use Equation 14 to determine the poles and zeros:

- f∞ = 263Hz
- fzo = 3183Hz

Voltage Loop Error Amplifier Compensation

For this control loop, we must find appropriate values for Ry and Cy, the compensation components for the Vyove vin. From Table 3 of "Using the bq2031 to Charge Lead-Acid nationes" the values for the divider network components are:

- RB1=261K
- RB2=49.9K
- RB3= 475K

Therefore

$$D = \frac{(RB2 * RB3)}{(RB2 * RB3 + (RB1 * (RB2 + RB3)))} = 0.15$$

From the first criterion for loop stability, set the crossover frequency Fc (0 dB loop-gain) to 1/20th the switching frequency:

$$F_C = F_S/20 = 5kHz$$

Set the two zeros of A(s), fzl and fz^2 , at 1/2 to cancel the second order poles of G(s) at fpo:

$$fz_1 = fz_2 = fp_0/2 = 263/2 = 131.5 Hz$$

From Equation 10's first zero, fzl:

$$C_F = \frac{1}{(2\pi * RB1 * fz1)} = \frac{1}{(2\pi * 2.61 * 10^5 * 131)} = 4.63nF$$

From Equation 9's second pole, fp2:

In order to achieve 0 dB loop-gain at Fc the compensated amplifier gain at fp2 must be forced to the absolute gain of **G(s)** at the **crossover** frequency, which can determined from the Bode plot in Figure 13 to be -31dB = 35.48.

The value for Rv can be determined from the gain magnitude equation for **A(s)** at fp2

A
$$(f_{p2}) = \frac{105 * D * R_V}{2.5 * 10^5 * R_V}$$

Using the value of 35.48 for **A(fp2)** in the above equation gives:

$$R_V = \frac{35.48 * 2.5 * 10^5}{35.48 - 15.75} = 450 k\Omega$$

Plugging this value for Rv into equation 10 for fz2 yields:

$$C_V = \frac{1}{2\pi * 450 * 10^3 * 131} = 2.7 \text{nF}$$

Substituting these values for Rv and Cv in equation 10 for fp2 gives:

$$fp2 = \frac{1}{2\pi \cdot (450k\Omega + (2.5 \cdot 10^5)) \cdot 2.7nF} = 84.2Hz$$

Figures 14 and 15 show the resultant Bode and loop gain plots for A(s), respectively.

Current Loop Error Amplifier Compensation

For this control loop, we **must find** the value for C_i , the compensation component for the Icomp pin. The compensation network component Ci must be chosen such that the current loop gain transfer function has a dominant pole at 1/20th of the switching frequency, F(s).

$$\frac{1}{2\pi * (2.5 * 10^5) * C_i} = 131.5$$

$$C_i = \frac{1}{2\pi * (2.5 * 10^5) * 131.5} = 4.84 nF$$

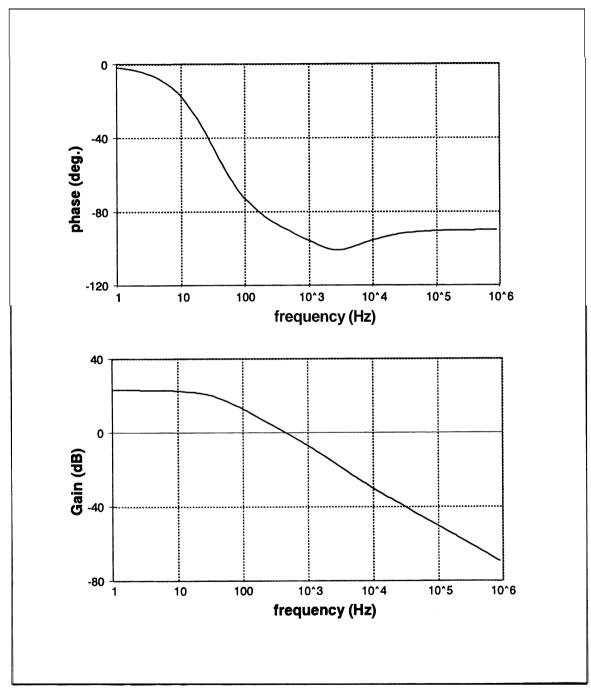


Figure 13. Bode Plot for G(s)

14/16 June 1996



Figure 14. Bode Plot for Error Amplifier, A(s)

June 1Q96 15/18

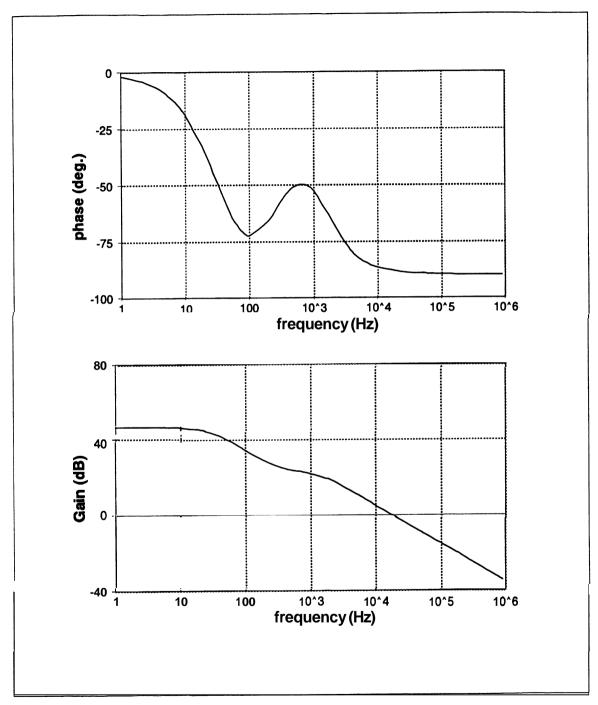


Figure 15. Loop Gain Bode/Example Buck Charger Design

18/16 June 1996

1/8

<u>bq2053x</u>

Lithium Ion Pack Supervisor

Features

- Protects and individually monitors two to four Lithium Ion series cells from overvoltage, undervoltage, and overcurrent
- Designed for battery pack integration
 - Small outline package, minimal external components and space, and low cost
 - Drives external N-FET switches
- User-selectable thresholds mask programmable by Benchmarq
- Operates on very low current,
 40μA for 4-cell, <20μA for 3-cell,
 and <15μA for 2-cell configuration
- Operates on very low standby current, < 1μA
- Available in 8-pin 150-mil narrow SOIC

General Description

The bq2053 Lithium Ion Pack Supervisors are designed to control the charge and discharge voltage safety limits for two to four lithium ion (Li-Ion) series cells, accommodating battery packs containing series/parallel configurations. The very low operating current does not overdischarge the cells during periods of storage, and does not significantly increase the system discharge load. The bq2053 can be part of a low-cost Li-Ion charge control system within the battery pack.

The bq2053 controls two external N-FETs to limit the charge and discharge potentials. Charging is allowed when the per cell voltage is below Vcz (charge enable voltage). When the voltage on any cell rises above Vov(overvoltage limit), the CHG pin goes low, shutting off charge to the battery pack. This safety feature prevents overcharge of any cell within the battery pack.

Discharge is allowed when the per-cell voltage is above **Vuy** (undervoltage limit).

If the voltage across any cell falls below Viv, the DSG output goes low, shutting off the battery discharge. This safety feature prevents overdischarge of any cell within the battery pack.

Charging and discharging are allowed if the voltage across BAT4N and GND is less than Voc (overcurrent limit). This safety feature prevents excessive pack current.

Vuy, Vcz, and Vov are programmed at Benchmarq. The default limits for Vuv and Vcz are 23V and Vov - 100mV, respectively. Five Vov limits are available (see Table 2). Contact Benchmarq for other options.

Pin Connections

Sept. 1996 C

BAT_{1P} 1 8 BAT_{1N} DSG 2 7 BAT_{2N} CHG 3 6 BAT_{3N} GND 4 5 BAT_{4N} 8-Pin Narrow SOIC PN-86

Pin Names

BATIP	Battery 1 positive input
BATIN	Battery 1 negative input
BAT _{2N}	Battery 2 negative input
BAT _{3N}	Battery 3 negative input
BAT _{4N}	Battery 4 negative input
DSG	Discharge control
CHG	Charge control
GND	Ground

l.

Pin Descriptions

BAT1P Battery 1 positive input

This input is connected to the positive **terminal** of the cell designated **BAT**₁ in Figure 2.

BAT1N Battery 1 negative input

This input is connected to the negative terminal of the cell designated BAT₁ in Figure 2. This input is connected to BAT_{1P} for less than four cells in a series.

de la constitución de la concesta de

BAT2N Battery 2 negative input

This input is connected to the negative tenninal of the cell designated BAT₂ in Figure 2. This input is connected to BAT_{1P} and BAT_{1N} for leas than three cells in a s e d.

BAT3N Battery 3 negative input

This input is connected to the negative tenninal of the cell designated BAT3 in **Figure** 2.

BAT4N Battery 4 negative input

This input is connected to the negative **termi**nal of the cell designated BAT4 in Figure 2

CHG Charge control output

This output controls the charge path to the battery pack. This output is **internally connected** to **BAT**₁**P** when charging is allowed (CHG =

High). CHG is internally connected to GND when charging is prohibited (CHG = Low).

DSG Discharge control output

This output controls the discharge path to the battery pack. This output is internally connected to BAT_{1P} when discharging is allowed (DSG = High). DSG is internally connected to BAT_{4N} when discharging is prohibited (DSG = Low).

GND System Ground

Battery pack return.

Functional Description

Figure 1 is a block diagram outlining the major components of the bq2053. Figure 2 shows a typical application example. The various functional aspects of the bq2053 are detailed in the following sections.

Configuration

The bq2053 may be configured to supervise two, three, or four-series cell packs. For two-series cell configurations, BAT_{1N} and BAT_{2N} are connected to BAT_{1P}. For three-series cell configurations, BAT_{1N} is connected to BAT_{1P}. See Table 1. The bq2053 controls two external N-FETs connected for low-side control of the battery pack. Contact Benchmarq for application examples.

Table 1. Pin Configuration for 2-, 3-, and 4-Series Cells

Number of Cells	Configuration Pins	Battery Pins
		BAT_{2N} - Negative terminal of second cell
2 cells	BAT _{1N} , BAT _{2N} tied to BAT _{1P}	BAT_{3N} - Negative terminal of third cell
		BAT_{4N} - Negative terminal of fourth cell
		BAT _{1N} - Positive terminal of first cell
3 cells	BAT _{1N} tied to BAT _{1P}	BAT _{2N} - Negative terminal of first cell
		BAT _{3N} – Negative terminal of second cell
		BAT _{4N} - Negative terminal of third cell
		BAT _{1P} Positive terminal of first cell
		BAT _{IN} - Negative terminal of first cell
4 cells	-	BAT_{2N} - Negative terminal of second cell
		BAT _{3N} - Negative terminal of third cell
		BAT _{4N} - Negative terminal of fourth cell

2/8 Sept. 1996 C

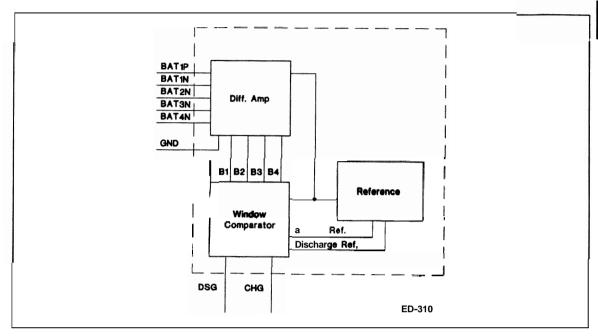


Figure 1. Block Diagram

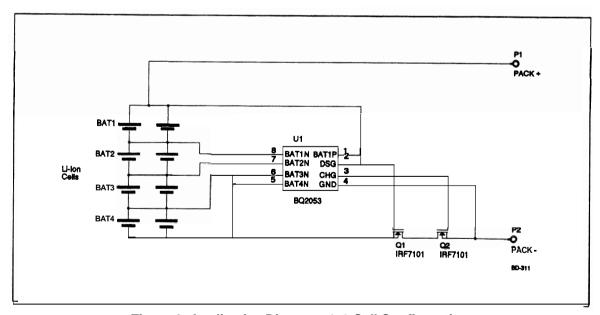


Figure 2. Application Diagram: 4x2 Cell Configuration

Sept. 1996 C 3/8

Thresholds

The **bq2053** monitors four thresholds for overcharge, overdischarge, and overcurrent protection. The default values **are** listed below.

Overvoltage during charge:

Table 2. Overvoltage Threshold Options

Part #	V _{OV} Limit	Tolerance
bq2053M	4.15V	
bq2053F	4.20V	11 F0/ (9 A coll)
bq2053	4.25V	±1.5% (3, 4 cell) ±1.7% (2 cell)
bq2053D	4.30V	
bq2053J	4.36V	

Charge enable voltage:

 $V_{CE} = V_{OV} - 100 \text{mV} \pm 50 \text{mV}$

Undervoltage during discharge:

 $V_{UV} = 2.3V \pm 100 \text{mV}$

Overcurrent limit during charge and discharge:

±250mV ±25mV

These thresholds **are** programmed at Benchmarq. Please contact **Benchmarq** for other voltage threshold and tolerance options.

The **bq2053** samples a cell every **25ms** (typical) and each measurement is fully differential. During this sample period, the cell is checked for a Vov, Vuv, Voc, VMIN, and VCE condition. Please refer to Figure 3 for the cell montoring timing.

Initialization

During the initial connection of the bq2053 circuit to the battery pack, the bq2053 recognizes a low voltage condition, and disables the DSG output. A charging supply must be applied to the bq2053 circuit to enable the pack. The charging supply must produce a voltage of greater than 30mV between BAT4N and GND for the bq2053 to recognize a valid charge condition, and enable the DSG output.

The bq2053 operating current is leas than $40\mu A$ in a 4-cell, $25\mu A$ in a 3-cell, and $15\mu A$ in a 2-cell configuration. This feature avoids possible cell damage due to overdischarging the battery pack and extends the storage time between recharge.

Discharge Supervision

Overdischarge protection is asserted when any cell voltages fall below the **Vuv threshold**. Once V w is reached, DSG goes low, disabling the discharge of the pack. The **bq2053** then enters the low-powerstandby mode.

Low-Power Standby Mode

When the bq2053 enters the low-power mode, DSG is disabled and the device consumes less than $1\mu A$. The differential signal between BAT4N and GND is then continuously monitored to determine if a valid charge condition exists. If the condition exists, the output is enabled to allow charging of the lithium ion cells. The charging supply must produce a voltage greater than 30mV between BAT4N and GND for the bq2053 to enable the DSG output. If charging is terminated while any cell is below the V_{UV} limit, DSG goes low, and the bq2053 returns to the low-power mode.

Charge Supervision

Overvoltage protection is asserted when any cell voltage exceeds the Vov threshold. Once Vov is reached, the CHG pin goes low, disabling charge into the battery pack. Charging is disabled until all cell voltages fall below VCE. This indicates that the overcharge has stopped and the pack is ready to accept further charge.

The **bq2053** can be part of a cost-effective charge control system which utilizes the pack protection circuit to limit the charge voltage to the lithium ion cells. The hysteresis between **Voy** and **Vcg** allows the lithium ion cell voltage to fall sufficiently before re-enabling the charge current.

Over-Current Supervision

The voltage across the BAT4N and GND pins is sampled approximately every 25ms for an overcurrent condition. If the bq2053 determines an overcurrent condition exists (either charge or discharge), it disables the CHG and DSG outputs. After an overcurrent condition is detected, the bq2053 then re-enables the CHG and DSG outputs for approximately 6ms every 100ms to determine if the condition still exists. If the voltage between BAT4N and GND is less than 250mV (typical), the bq2053 allows charging or discharging to continue, resets the overcurrent test, and once again begins sampling for an overcurrent situation.

4/8 Sept. 1996 C

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
V T	Voltage applied on any pin relative to BAT _{1P}	-18 to +0.31	V	
Tom	Operating temperature	- 30 to +85	•C	
Tstg	Storage temperature	-55 to +125	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

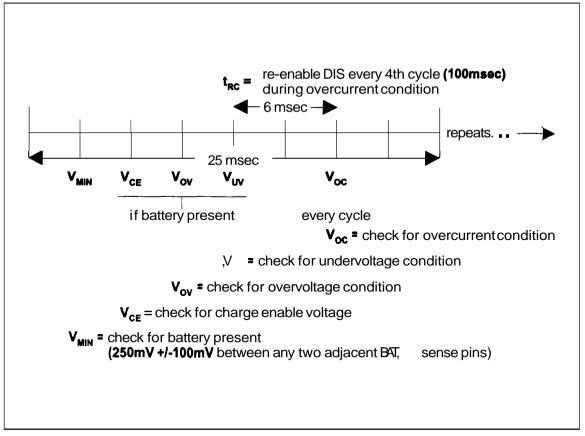


Figure 3. Cell Monitor Timing

Sept. 1996 C

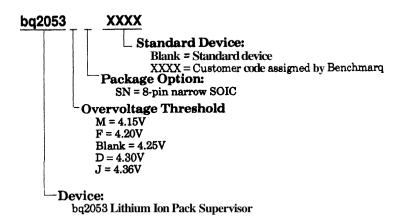
DC Electrical Characteristics (TA = TOPR)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
Voh	Output high voltage	BAT _{1P} - 0.5	-		٧	$I_{OH} = 50 \mu A$, CHG, DSG
V_{OP}	Operating voltage	3.0		18	٧	
			BAT4N +0.5		V	$I_{OL} = 50 \mu A, DSG$
Vol	Output low voltage	ow voltage GN	GND + 0.5	V	I _{OL} = 50 μ A , CHG	
	Operating current 2-cell		7	15	μA	
Icc	Operating current 3-cell		12	25	μA	
	Operating current 4-cell		25	40	μA	
Icclp	Low power current	-	-	1	μA	
R _{BAT1N,}	Battery input impedance		10		ΜΩ	

DC Thresholds (TA = TOPR)

Symbol	Parameter	Value	Unit	Tolerance	Conditions/Notes
17 .			W	± 1.5%	3- or 4- cell
Vov	Overvoltage limit	See Table I	See Table 1 V	±1.7%	2-cell
VCE	Charge enable voltage	Vov • 100mV	V	± 50mV	
v_{uv}	Undervoltage limit	2.3	V	± 100mV	
Voc	Overcurrent limit	± 250	mV	± 25mV	

Note: Standard device. Contact **Benchmarq** for different threshold options.


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	1, 4	Modified CHG state during discharge	Was: CHG = Low when VCELL = VUV Is: CHG = High when VCELL = VUV
1	4, 5	Overcurrent re-enable sample rate	Was: 12ms Is: 6ms
2	1, 2, 4, 6	2-cell configuration references removed	
2	4	Reworked Thresholds section with addition of Table 2	
2	5	New Cell Monitor Timing diagram (Figure 3)	

Change 1 = Feb. 1996 B 'Final' changes from Dec. 1994 *AdvancedInformation.' Change 2 = Sept. 1996 C changes from Feb. 1996 B. Note:

Sept. 1996 C 7/8

Ordering Information

8/8 Sept. 1996 C

Using the bq2053

Lithium Ion Pack Supervisor

Description of Operation

The bq2053 Lithium Ion Pack Supervisors are a family of low-cost safety devices designed to enforce high and low battery voltage limits during charge and discharge plus short-circuit protection for two-, three-, or four-seriee cell Li-Ion battery packs.

The bq2053 individually monitors each cell in the pack to determine if either an overvoltage or an undervoltage condition exists. The bq2053 incorporates overvoltage and undervoltage protection, breaking the battery charge or discharge path, as appropriate, if any cell voltage becomes greater or less than predefined limits. In addition, the bq2053 includes an overcurrent feature designed to protect against an accidental pack short-circuit.

The **bq2053** uses two external FETs to control the charge and discharge paths to the batteries. Their extremely low operating **current** does not overdischarge the cells during periods of storage and does not significantly increase the load on the battery. The chips **are** usable as part of a simple, low-cost, voltage hysteresis Li-Ion charge control system contained entirely within the battery pack.

The bq2053 family allows multiple cells in parallel in each aeries rank. **This** document will always refer to a single-cell per **series** rank. If multiple cells are configured in parallel in a single rank, careful matching of **cells**

during pack **assembly** by state-of-charge, manufacturer, age, and lot number **is** recommended.

Overvoltage Protection

Charging can occur whenever the voltage of each pack cell is below **Vce** (charge enable voltage). When any **indi**vidual cell voltage **rises** above **Vov** (overvoltage limit), the charge **FET** control pin (CHG) is driven to GND, disconnecting the charger **from** the pack **This** feature prevents overcharging on a cell-by-cell **basis**. CHG remains at **GND** until all cells **are** once again less than **Vce**.

Undervoltage Protection

Discharge can occur whenever the voltage of each cell is above Vuv (undervoltage limit). If any individual cell voltage falls below Vuv, the discharge FET control pin (DSG) is driven to BAT4N, disconnecting the load from the pack. The bq2053 is also placed in a sleep mode in which it consumes less than 1µA of current. This undervoltage protection feature prevents overdischarge on a cell-by-cell basis. DSG remains at BAT4N and the chip remains in sleep mode until the voltage at GND becomes less than that at BAT4N by the charge detect threshold value (VcD). This condition indicates the presence of a charging source.

Table 1, Pin Configuration for 2-, 3-, and 4-Series Cells

Number of Cells	Configuration Pins	Battery Pins
		BAT _{2N} - Negative terminal of second cell
2 cells	BAT _{1N} , BAT _{2N} tied to BAT _{1P}	BAT _{3N} - Negative terminal of third cell
		BAT4N - Negative terminal of fourth cell
		BAT _{1N} - Positive terminal of first cell
3 cells	BAT _{1N} tied to BAT _{1P}	BAT_{2N} - Negative terminal of first cell
		BAT_{3N} – Negative terminal of second cell
		BAT _{4N} – Negative terminal of third cell
		BAT _{1P} - Positive terminal of first cell
		BAT _{1N} - Negative terminal of first cell
4 cells	-	BAT _{2N} – Negative terminal of second cell
		BAT _{3N} - Negative terminal of third cell
		BAT_{4N} - Negative terminal of fourth cell

Sept. 1996 1/8

Using the bq2053 Lithium Ion Pack Supervisor

Overcurrent (Short-circuit) Protection

A short-circuit condition is detected if CHG and DSG are both active and the voltage between GND and BAT4N is greater than the overcurrent detect threshold $(V\infty)$.

Once these conditions are met, both CHG and DSG are driven low, disconnecting the load from the pack. The bq2053 will then re-enable CHG and DSG every 100ms until it finds the short-circuit condition above is false. CHG and DSG then remain enabled, and the chip returns to normal operation.

CHG and DSG States

Condition	CHG pin	DSG pin
Normal operation	BAT _{1P}	BAT _{1P}
Overvoltage	GND	BAT _{1P}
Undervoltage (Sleep Mode)	BAT _{1P}	BAT _{4N}
Overcurrent	GND	BAT _{4N}

Number of Cells

The user must configure the **bq2053** for **two-, three-,** or four-series cell operation, as Table 1 specifies.

Mask Configurable Parameters

Vov threshold and tolerance are configurable by Benchmarq during manufacturing. Contact the factory for availability.

Battery Monitor Timing

Battery monitoring operates on a 25ms time period (see Figure 1). At the beginning of each period, the bq2053 checks to see if more than 250mV (±100mV) potential is between any two sequential battery sense pins (BAT1P, BAT1N, BAT2N, BAT3N, and BAT4N), indicating the presence of a battery. If a battery is present, the chip then checks the VCE, voy, and VUV thresholds, in that order and at 3.125ms intervals. The chip changes the state of CHG and DSG accordingly if it finds that an error condition has appeared or disappeared since the last cycle.

6.25 ms after the time for the V w check, the chip will check the **Voc** threshold, **regardless** of Whether or not a battery was detected at the **beginning** of the cycle.

After an **overcurrent** condition has been **detected** (and the CHG and DSG outputs brought low), the **bq2053** will bring **the** CHG and DSG outputs high during every fourth cycle (every 100ms) at the same time it performs the **Vuy check**. When the V_{CC} **check** is performed 6.25ms later, CHG and DSG will **again** be driven low if the overcurrent condition still **exists**.

These monitoring cycles repeat indefinitely, as long as the operating voltage (Vop) is above 3.0V.

Auxiliary Circuits

A $_{number}$ of auxiliary circuits may be required in conjunction with the bq2053 depending upon the charac-

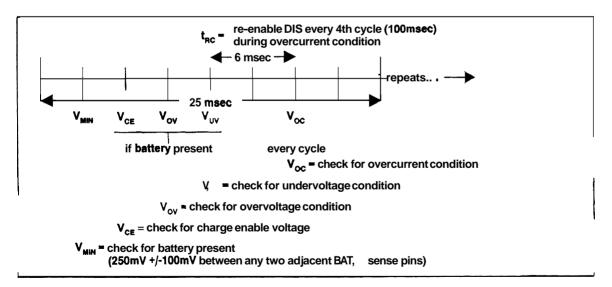


Figure 1. Battery Monitor Timing

Sept. 1996

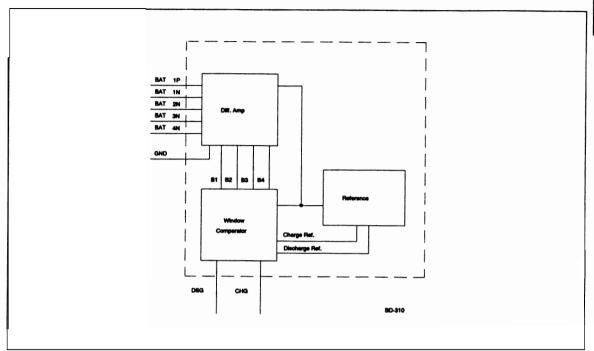


Figure 2. bq2053 Block Diagram

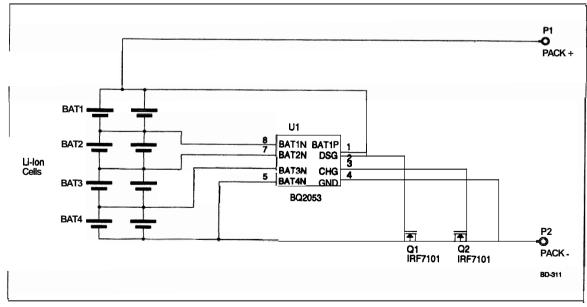


Figure 3. Basic Application Diagram: 4x2 Cell Configuration

Table 2. Ovewoltage Thresholds and Tolerance

		Vov	
		Tole	rance
Part No.	Value	3, 4 cell ±1.5%	2 cell ±1.7%
bq2053M	4.15V		
bq2053F	4.20V	Contact	Contact
bq2053	4.25V	factory for higher	factory for higher
bq2053D	4.30V	tolerances	tolerances
bq2053J	4.36V		

teristics of the application. These circuits are present in the **bq2153** module design (see Figure 4).

ESD and Inductive Spike Protection

The bq2153 module uses a few components external to the bq2053 to provide ESD and inductive spike protection. These components should be present in all designs where applicable. The components are C1 to C4, R1 to R3, C6, and R10 or RE3 and R9.

Ovewoltage Supply Protection

The **bq2153** has a circuit that is used to **limit** the voltage to **bq2053**. **This** circuit should be in place if the charging supply is capable of voltages greater than 18V. The circuit comprises R8, R9, D2, and D1.

Faster Short Circuit Protection

The bq2053 provides short circuit protection by monitoring the voltage across the control FETs. If the voltage is greater than \\\ \begin{array}{c} \pm 250 \pm 25 \end{array} \mu, \text{ the both control FETs are switched off.} \text{ Once these FETs are off, the bq2053 will wait 100ms before testing the voltage drop again by turning the FETs back on. In cases where mechanical restrictions on the contacts make a short highly unlikely, this protection may be adequate.

If faster short circuit protection is required, then an external circuit must be used. The primary function of the external circuit is to switch off the FETs earlier. With only the bq2053 to detect the short circuit, the short circuit might be present for as long as 25ms prior to detection. This situation may cause heating of the MOSFETs. This heating will increase the on resistance of the MOSFETs, which in return will cause additional heating.

Method 1 is to use R12, Q3, R7, and C7 to detect the short circuit faster. In this case, R11 is removed. By detecting the short circuit faster, the heating of the discharge MOSFET will be reduced due to the shorter ontime of the MOSFET. When the drop across the MOSFETs exceeds O.W in the discharge diiion, Q3 will pull the gate of the discharge MOSFET low and turn the discharge off. By AC coupling the signal from the **MOSFETs,** the protection will only be activated by the transient and not the steady-state condition. Once the discharge MOSFET is off, the bq2053 will keep the MOS-**FET** off for at least **100ms**, because the voltage across MOSFETs is greater than the overcurrent threshold. After this time, the bq2053 will turn on the MOSFETs, and if the short circuit is still present, then the process will repeat. In many cases, this method of short circuit is adequate; however, in some cases where the short circuit provides less than O.W across the MOSFETs and yet more than the rated current, the MOSFETs may sustain damage eventually due to the retest of the short circuit.

Method 2 is similar to Method 1, but R12 is removed while R11 is installed. In this case, the circuit detects a 0.7V drop across the MOSFETs and then pulls the BAT3N line low. This action causes the bq2053 to enter a low battery state with the discharge MOSFET off. The MOSFET will remain off until a charge is applied to the battery. In this method, the retest of the short is not done, and the MOSFETs are protected to a much greater degree. R7 and C7 should be adjusted if the battery is plugged into a power supply where a large input capacitor may look like a short circuit. In this case, the time constant of R7 and R8 should be increased to prevent this problem.

Series Element Selection

Configure the number of series cells using Table 3.

bq2153 Connection Sequence

Use precaution not to short any terminals of the battery to each other or any part of the **PCB** during assembly.

- Connect the most positive terminal of the battery pack to BAT_{1P}.
- In the case of a four-cell pack, connect the second most positive terminal to BAT_{1N}. In the case of a three-cell pack, connect the second most positive terminal to BAT_{2N}. In the case of a two-cell pack, connect the second most positive terminal to BAT_{3N}.
- In the case of a four-cell pack, connect the third most positive terminal to BAT2N. In the case of a three-cell pack, connect the third most positive terminal to BAT3N. In the case of a two-cell pack, connect the negative terminal to BAT4N.

4/8 Sept. 1996

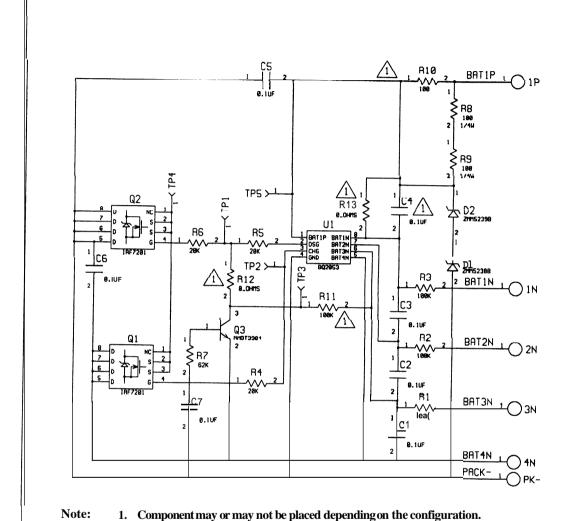


Figure 4. bq2153 Schematic

Sept. 1996

5/8

BD-2153b

Using the bq2053 Lithium Ion Pack Supervisor

- In the case of a four-cell pack, connect the fourth most positive terminal to BAT_{3N}. In the case of a three-cell pack, connect the negative terminal to BAT_{4N}.
- 5. In the case of a four-cell pack, conned the negative terminal to BAT_{4N}.
- 6. Connect the negative PACK conductor to PK-.

bq2053 Test Procedure

The following procedure verifies functionality of a bq2053 Lithium Ion protector circuit and refers to the test circuit shown in Figure 5.

Setup

- Set voltage supply to 3.6V the number of series cells, current limit to low setting (100mA), turn power off.
- Set current supply to +0.25A, voltage limit to ~5V, turn
 poweroff. For unipolar supply, connect for positive current.
- 3. Attach resistor string to BAT_{1P}, BAT_{1N}, BAT_{2N}, BAT_{3N}, BAT_{4N}.
- 4. Connect voltage supply.
- 5. Conned current supply and current meter.
- 6. Conned voltage meters.
- 7. **Turn** voltage supply on.
- 8. **Turn** current supply on.
- Check for current flow through FETs and voltage drop across them.
- If unit passing charge current with ~0.0125V across FETs, increase current to 1A.

Vov Overvoltage Limit

Increase voltage supply until current through FETs is interrupted. ICHG = 0 and VFETS = 5V. Check that voltage where current interrupted falls within limits for cell count in the following table:

Number of cells	2	3	4
Lower limit (V)	8.37	12.56	16.75
Upper Limit (V)	8.63	12.94	17.26

VCE Charge Enable Voltage

Once the Vov value is determined, decrease the voltage supply until the charge current is re-enabled. The voltage at which this occurs should be 50mV to 150mV below the Vov value.

VUV UndervoltageLimit

Reverse the polarity of the **current** supply so that a discharge is simulated. Lower the voltage supply to 2.5V per cell, then continue to lower it very slowly. The current flow will be interrupted at VUV. Verify that the voltage at which the discharge current was interrupted is within the following table:

Number of cells	2	3	4
Lower limit (V)	4.4	6.6	8.8
Upper Limit (V)	4.8	7 <u>.2</u>	9.6

Note that the unit will enter a sleep mode and will not wake up until the current supply is reversed to the charge direction.

Voc Overcurrent Limit

Set the voltage supply to **3.6V** per cell. Increase the current supply in the charge direction to 4A. Monitor the voltmeter across the FETs. Slowly increase the current supply. The current will be periodically interrupted when the voltage across the FETs is near **0.250V**. The voltage **across** the FETs at the time **just** prior to **being** turned off is the value for V_{∞} . Note that unless the voltmeter is across pins 4 and 5 of the **bq2053** chip, the measurement will have **error** due to the large currents involved. The V_{CH} procedure can be repeated for the discharge direction.

6/8 Sept. 1996

Table 3. bq2153 Circuit Configuration Options

Option	R8	R9	R10	R11	R12	R13	C3	C4	D1	D2
Accelerated short-circuit protection method 1	-	-	-	N	Y	-	-	-	-	-
Accelerated short-circuit protection method 2		-	-	Y	N	-	-	-	-	-
No accelerated short-circuit detection		-	-	N	N	-	-	-		
Overvoltage supply protection	N	N	Y	-	-		-	-	N	N
No overvoltage supply protection	Y	Y	N	-	-	-	-	-	Y	Y
2-cell configuration	-	-	-	-	-	Y	•	N	-	-
3-cell configuration	-	-	-	-	-	Y	Y	N	-	-
4-cell configuration	-	-		-		N	Y	Y	-	-

[•] Replace with zero ohm resistor.

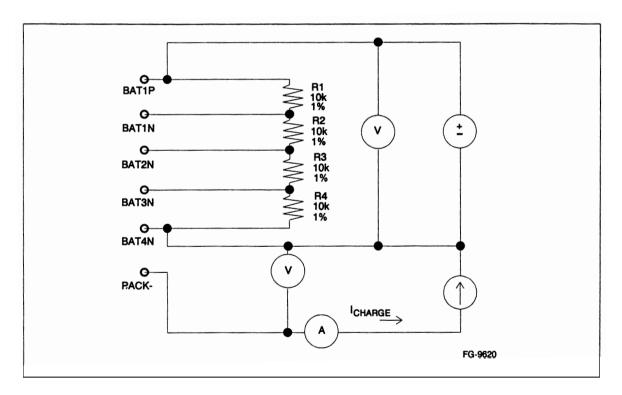


Figure 5. bq2053 Test Circuit

Sept. 1996 7/8

Notes

8/8 Sept. 1996

Lithium Ion Fast Charger

Features

- ➤ Safe charge of Lithium Ion battery packs
- Voltage-regulatedcurrentlimited charging
- ➤ Fast charge terminated by selectable minimum current; safety backup termination on maximum time
- ➤ Charging continuously qualified by temperature and voltage limit.
- Pulse-width modulation control ideal for high-efficiencyswitchmode power conversion
- ➤ Direct LED control outputs display charge statue and fault conditions

General Description

The **bq2054** Lithium Ion Fast Charge IC is designed to **optimize** charging of lithium ion (Li-Ion) chemistry batteries. A flexible pulsewidth modulation regulator allows the **bq2054** to control voltage and current during charging. The regulator frequency is **set** by an **external** capacitor for design **flexibility**. The switch-mode design keeps power diesipation to a minimum.

The bq2054 measures battery **tem** perature using an external thermistor for charge **qualification**. Charging begins when power is applied or on battery insertion.

For safety, the **bq2054** inhibits charging until the battery voltage and temperature are within **config**

ured limits. If the battery voltage is less than the low-voltage threshold, the bq2054 provides low-current conditioning of the battery.

A constant current-charging phase replenishes up to 70% of the charge capacity, and a voltage-regulated phase returns the battery to full. The charge cycle terminates when the charging current falls below a user-selectable current limit. Far safety, charging terminates after maximum time and is suspended if the temperature is outside the preconfigured limits.

The **bq2054** provides status **indications** of all charger states and faults for accurate determination of the battery and charge system conditions.

Pin Connections

LED2/DSEL ICTL [□ LED. BAT [□ MOD b vcc VCOMP□ 13 b ∨ss **ICOMP** I TERM C ☐ LCOM SNS 10 LED3 TS ☐ TPWM 16-Pin Narrow DIP or SOIC PN-964

Pin Names

TM	Time-out programming	TPWM	Regulator timebase input
	input	LED3	Charge status output 3
ICTL	Inrush current control output	LCOM	Common LED output
BAT	Battery voltage input	V_{SS}	System ground
VCOMP	Voltage loop comp input	Vcc	5.0V±10% power
ICOMP	Current loop comp input	MOD	Modulation control output
I _{TERM}	Minimum current	LEDi	Charge status output 1
SNS	termination select input Sense resistor input	LED2/ DSEL	Charge status output 2/ Display select input
TS	Temperature sense input		

Sept. 1996 D

1/14

Pin Descriptions		TS	Temperature sense input		
TM	Time-out programming input This input sets the maximum charge time.		This input is used to monitor battery temperature. An external resistor divider network sets the lower and upper temperature thresholds. See Figure 6 and Equations 3 and 4.		
	The resistor and capacitor values are determined using Equation 5. Figure 7 shows the resistor/capacitor connection.		Regulation timebase input		
	Inrush current control output		This input uses an external timing capacitor to ground to set the pulse-width modulation (PWM) frequency. See Equation 7.		
	ICTL is driven low during the fault or charge-complete states of the chip. It is used to disconnect the capacitor across the battery	LCOM	Common LED output		
:	pack terminals , preventing inrush currents from tripping overcurrent protection features in the pack when a new battery is inserted.		Common output for LED ₁₋₃ . This output is in a high-impedance state during initialization to read programming input on DSEL.		
BAT	Battery voltage input	MOD	Current-switching control output		
	BAT is the battery voltage sense input. This potential is generally developed using a high -impedance resistor divider network connected between the positive and the negative terminals of the battery. See Figure 4 and		MOD is a pulse-width modulated push/pull output that is used to control the charging current to the battery. MOD switches high to enable current flow and low to inhibit current flow.		
	Equation 1.	LED ₁₋₃	Charger display status 1-3 outputs		
	Voltage loop compensation input This input uses an external R-C network for voltage loop stability.		These charger status output drivers are for the direct drive of the LED display. Display modes are shown in Table 1. These outputs are trigger during initialization on that DSEI.		
ITERM	Minimum current termination select		tri-stated during initialization so that DSE can be read.		
	This three-state input is used to set Imin for fast charge termination. See Table 2.	DSEL	Display select input		
	Current loop compensation input		This three-level input controls the LED ₁₋₃ charge display modes. See Table 1.		
	This input uses an external R-C network for current loop stability.	Vcc	$ m V_{CC}$ supply		
SNS	Charging current sense input		5.0V, ± 10% power		
5115	Battery current is sensed via the voltage developed on this pin by an external sense resistor, R _{SNS} , connected in series with the negative terminal of the battery pack. See Equation 6.		Ground		

Charge Algorithm

The bq2054 uses a two-phase fast charge algorithm. In phase 1, the bq2054 regulates constant current (Isns = IMAX) until VCELL (= VBAT - VSNS) rises to VREG. The bq2054 then transitions to phase 2 and regulates constant voltage (VCELL = VREG) until the charging current falls below the programmed IMIN threshold. The charging current must remain below IMIN for 120 ± 40ms before a valid fast charge termination is detected. Fast charge then terminates, and the bq2054 enters the Charge Complete state. See Figures 1 and 2.

Charge Qualification

The bq2054 starts a charge cycle when power is applied while a battery is present or when a battery is inserted. Figure 2 shows the state diagram for pre-charge qualification and temperature monitoring. The bq2054 first checks that the battery temperature is within the allowed, user-configurable range. If the temperature is out of range, the bq2054 enters the Charge Pending state and waits until the battery temperature is within the

allowed range. Charge Pending is enunciated by **LEDs** flashing.

Thermal monitoring continues throughout the charge cycle, and the bq2054 enters the Charge Pending state when the temperature out of range. (There is one exception; if the bq2054 is in the Fault state—see below—the out-of-range temperature is not recognized until the bq2054 leaves the Fault state.) All timers are suspended (but not reset) while the bq2054 is in Charge Pending. When the temperature comes back into range, the bq2054 returns to the point in the charge cycle where the out-of-range temperature was detected.

When the temperature is valid, the bq2054 then regulates current to Iconp (=Imax/5). After an initial holdoff period tho (which prevents the chip from reacting to transient voltage spikes that may occur when charge current is first applied), the chip begins monitoring VCRLL. If VCRLL does not rise to at least Vmin before the expiration of time-out limit tro (e.g. the chip has failed short), the bq2054 enters the Fault state. If VMIN is achieved before expiration of the time limit, the chip begins fast charging.

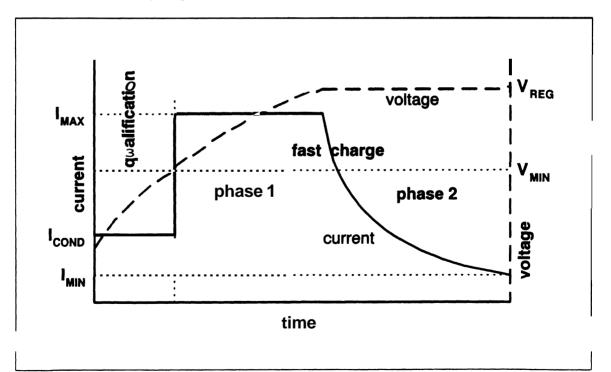


Figure 1. bq2054 Charge Algorithm

Sept. 1996 D

3/14

Note:

Once in the Fault state, the **bq2054** waits until **Vcc** is cycled or a new battery insertion is detected. It then starts a new charge cycle and **begins** the qualification process again.

Charge Status Display

Charge status is enunciated by the LED driver outputs LED₁-LED₃. Three display modes are available in the bq2054; the user selects a display mode by configuring pin DSEL. Table 1 shows the three display modes.

The bq2054 does not distinguish between an over-voltage fault and a "battery absent" condition. The bq2054 enters the Fault state, enunciated by turning on LED3, whenever the battery is absent. The bq2054, therefore, gives an indication that the charger is on even when no battery is in place to be charged.

Configuring the Display Mode and IMIN

DSEL/LED2 is a bi-directional pin with two functions; it is an LED driver pin as an output and a programming pin as an input. The selection of pull-up, pull-down, or no pull resistor programs the display mode on DSEL per Table 1. The **bq2054** latches the programming data **sensed** on the **DSEL** input when any one of the following three events occurs:

- 1. Vcc rises to a valid level.
- 2. The **bq2054** leaves the Fault state.
- 3. The bq2054 detects battery insertion.

The **LEDs** go blank for approximately **750ms** (typical) while new programming data is latched.

Table 1. **bq2054** Display Output Summary

Mode	Charge Action State	LED ₁	LED2	LED3
	Battery absent or over-voltage fault	Low	Low	High
	Pre-charge qualification	Flash	Low	Low
DSEL = 0 (Mode 1)	Fast charging	High	Low	Low
	Charge complete	Low	High	Low
_	Charge pending (temperature out of range)	X	Х	Flash
	Charging fault	X	х	High
	Battery absent or over-voltage fault	Low	Low	High
Dani i	Pre-charge qualification	High	High	Low
DSEL = 1 (Mode 2)	Fast charge	Low	High	Low
	Charge complete	High	Low	Low
	Charge pending (temperature out of range)	Х	X	Flash
	Charging fault	X	X	High
	Battery absent or over-voltage fault	Low	Low	High
'	Pre-charge qualification	Flash	Flash	Low
DSEL = Float	Fast charge: current regulation	Low	High	Low
(Mode 3)	Fast charge: voltage regulation	High	High	Low
	Charge complete	High	Low	Low
	Charge pending (temperature out of range)	Х	х	Flash
	Charging fault	Х	х	High

1 = V_{CC} ; 0 = V_{SS} ; X = LED state when fault occurred; Flash = $\frac{1}{6}$ sec. low, $\frac{1}{6}$ sec high.

4/14 Sept. 1996 D

Fast charge **terminates** when the charging current drops below a **minimum** current threahold programmed by the value of **ITERM** (see Table 2) and remains below that level for **120 ± 40ms**.

Table 2. Imin Termination Thresholds

ITERM	IMIN
0	I _{MAX} /10
1	I _{MAX} /20
Z	I _{MAX} /30

Figure 3 **shows** the **bq2054** configured for display mode 2 and **I**_{MIN} = **I**_{MAX}/10.

Voltage and Current Monitoring

The bq2054 monitors battery pack voltage at the BAT pin. The user must implement a voltage divider between the positive and negative terminals of the battery pack to present a scaled battery pack voltage to the BAT pin. The bq2054 also uses the voltage across a sense resistor (Rsns) between the negative terminal of the battery pack and ground to monitor the current into the pack. See Figure 4 for the configuration of this network.

The resistor values are calculated from the following:

Equation 1

$$\frac{RB1}{RB2} = \frac{N * V_{REG}}{2.05V} - 1$$

where:

V_{CELL} = Manufacturer specified charging **cell** voltage N = Number of cells in series

The current sense resistor, Rsns (see Figure 6), determines the **fast charge** current. The value of Rsns is given by the following:

Equation 2

$$I_{MAX} = \frac{0.250V}{R_{SNS}}$$

where:

- N = Number of cells
- VREG = Desired fast-charging voltage
- IMAX = Desired maximum charge current

These parameters are typically specified by the **battery** manufacturer. The total resistance **presented** across the **battery** pack by **RB1** + **RB2** should be between **150kQ** and **1MQ**. The **minimum** value **ensures** that the divider **network** does not drain the **battery excessively** when the power source is disconnected. Exceeding the **maximum** value **increases** the **noise** susceptibility of the BAT pin.

Hold-Off Period

Both V_{HCO} and I_{MIN} terminations are ignored during the first 1.33 ± 0.19 seconds of both the Charge Qualification and Fast Charge phases. This condition prevents premature termination due to voltage spikes which may occur when charge is first applied.

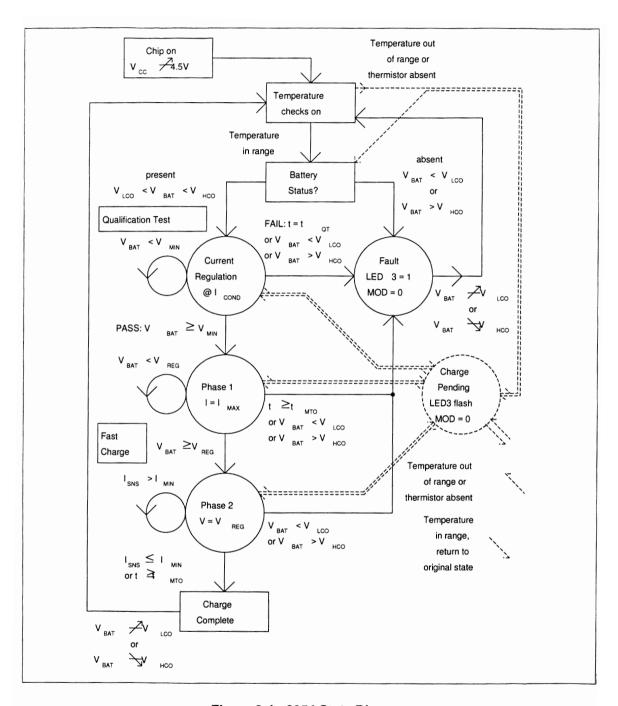


Figure 2. bq2054 State Diagram

6/14 Sept. 1996 D

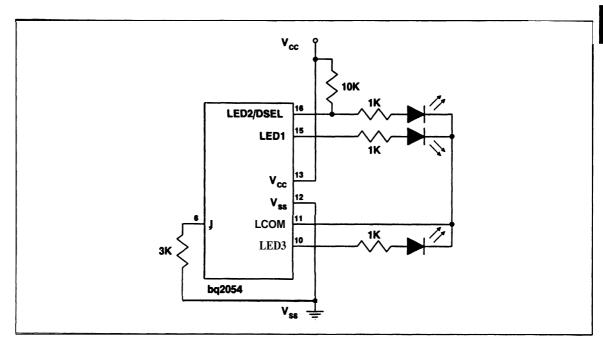


Figure 3. Configured Display Mode/I_{MIN} Threshold

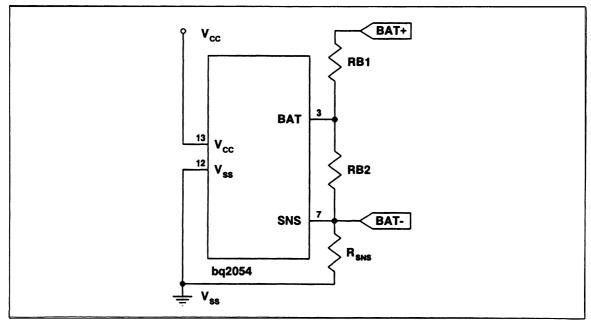


Figure 4. Configuring the Battery Divider

Sept. 1996 **D** 7114

Battery Insertion and Removal

VCELL is interpreted by the bq2054 to detect the presence or absence of a battery. The bq2054 determines that a battery is present when VCELL is between the High-Voltage Cutoff (VHCO = VREG + 0.25V) and the Low-Voltage Cutoff (VLCO = 0.8V). When VCELL is outside this range, the bq2054 determines that no battery is present and transitions to the Fault state. Transitions into and out of the range between VLCO and VHCO are treated as battery insertions and removals, respectively. The VHCO limit also implicitly serves as an over-voltage charge termination.

Inrush Current Control

Whenever the bq2054 is in the fault or charge-complete state, the ICTL output is driven low. This output can be used to disconnect the capacitor usually present in the charger across the positive and negative battery terminals, preventing the cap from supplying large inrush currents to a newly inserted battery. Such inrush currents may trip the overcurrent protection circuitry usually present in Li-Ion battery packs.

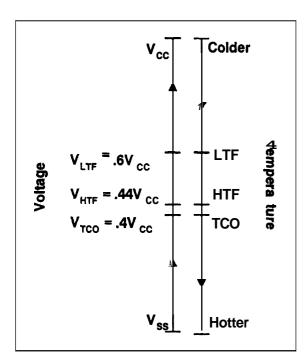


Figure 5. Voltage Equivalent of Temperature

Temperature Monitoring

The **bq2054 monitors** temperature by **examining** the voltage presented between the TS and SNS **pins** by a **resistor** network that includes a Negative Temperature **Coefficient (NTC) thermistor. Resistance** variations around that value **are** interpreted as **being** proportional to the battery temperature (**see Figure 5**).

The temperature thresholds used by the **bq2054** and their **corresponding** TS pin voltage are:

- TCO (Temperature Cutoff): Higher limit of the temperature range in which charging is allowed. VTCO = 0.4 • Vcc
- HTF (High-Temperature Fault): Threshold to which temperature must drop after temperature cutoff is exceeded before charging can begin again. V_{HTF} = 0.44 V_{CC}
- LTF (Low-Temperature Fault): Lower limit of the temperature range in which charging is allowed. VLTF = 0.6 VCC



Figure 6. Configuring Temperature Sensing

Sept. 1996 D

A resistor divider network can be implemented that presents the defined voltage **levels** to the TS pin at the desired temperatures (**see** Figure 6).

The equations for determining **RT1** and **RT2** are:

Equation 3

$$0.6 * V_{CC} = \frac{(V_{CC} - 0.250)}{1 + \frac{RT1 * (RT2 + R_{LTF})}{(RT2 * R_{LTF})}}$$

Equation 4

$$0.44 = \frac{1}{1 + \frac{\text{RT1} * (\text{RT2} + \text{R}_{\text{HTF}})}{(\text{RT2} * \text{R}_{\text{HTFF}})}}$$

where:

- RLTF = thermistor resistance at LTF
- RHTF = thermistor resistance at HTF

TCO is determined by the values of RT1 and RT2. 1% resistors are recommended.

Disabling Temperature Sensing

Temperature sensing can be disabled by placing $10k\Omega$ resistors between TS and SNS and between SNS and vcc.

Maximum Time-Out

MTO is programmed from 1 to 24 hours by an R-C network on the TM pin (see Figure 7) per the equation:

Equation 5

$$t_{MTO} = 0.5 \cdot R \cdot C$$

Where R is in $k\Omega$ and C is in μF , two is in hours. The maximum value for $C(0.1\mu F)$ is typically used.

The MTO timer is reset at the beginning of fast charge and when fast charge **transitions** from the current regulated to the voltage regulated mode. If MTO expires during the current regulated phase, the bq2054 enters the Fault state and terminates charge. If the MTO timer expires during the voltage regulated phase, fast charging terminates and the bq2054 enters the Charge Complete state.

The MTO timer is suspended (but not reset) during the out-of-range temperature (Charge Pending) state.

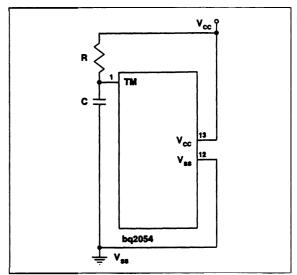


Figure 7. R-C Network for Setting MTO

Charge Regulation

The **bq2054** controls charging through pulse-width modulation of the MOD output pin, supporting both constant-current and constant-voltage regulation. Charge current is monitored at the SNS pin, and charge voltage is monitored at the BAT pin. These voltages are compared to an internal reference, and the MOD output modulated to maintain the desired value.

Voltage at the SNS pin is determined by the value of resistor RsNs, so nominal regulated current is set by

Equation 6

$I_{MAX} = 0.250V/R_{SNS}$

The switching frequency of the MOD output is determined by an external capacitor (CPWM) between the pin TPWM and ground, per the following:

Equation 7

$$F_{PWM} = 0.1/C_{PWM}$$

Where C is in μF and F is in kHz. A typical switching rate is 100kHz, implying $C_{PWM} = 0.001\mu F$. MOD pulse width is modulated between 0 and 80% of the switching period.

To prevent oscillation in the voltage and current control loops, frequency compensation networks (C or R-C) are typically required on the VCOMP and ICOMP pins (respectively).

Sept. 1996 D 9/14

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Un	Notes
Vcc	Vcc relative to Vss	-0.3	+7.0	V	
V _T	DC voltage applied on any pin excluding V _{CC} relative to V _{SS}	-0.3	+7.0	V	
	0	-20	+70	°C	Commercial
Topr	Operating ambient temperature	-40	+85	"C	Industrial "N"
T_{STG}	Storage temperature	-55	+125	°C	
TSOLDER	Soldering temperature		+260	°C	10 sec. max.

Note:

Permanent device damage may occur if **Absolute Maximum** Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in **this** data **sheet.** Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds (TA = TOPR; VCC = 5V ±10%)

Symbd	Parameter	Rating	Unit	Tolerance	Note8
V _{REF}	Internal reference voltage	2.05	V	1%	$T_A = 25^{\circ}C$
V 1621	Temperature coefficient	-0.5	mV/°C	1046	
VLTF	TS maximum threshold	0.6 • Vcc	V	±0.03V	Low-temperature fault
V _{HTF}	TS hysteresis threshold	0.44 • Vcc	V	±0.03V	High-temperature fault
V _{TCO}	TS minimum threshold	0.4 • Vcc	V	±0.03V	Temperaturecutoff
V _{HCO}	High cutoff voltage	V _{REG} • 0.25V	V	±0.03V	
VMIN	Under-voltage threshold at BAT	0.2 * Vcc	V	±0.03V	
VLCO	Low cutoff voltage	0.8	V	±0.03V	
V _{SNS}		0.250	V	1046	I _{MAX}
	Current sense at SNS	0.050	v	10%	ICOND

Recommended DC Operating Conditions (TA - TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	V	
V _{TEMP}	Temperature sense voltage	0		Vcc	V	$V_{TS} \cdot V_{SNS}$
VCELL	Per cell battery voltage input	0		v_{cc}	V	V _{BAT} - V _{SNS}
Icc	Supply current		2	4	mA.	Outputs unloaded
_	DSEL tri-state open detection	-2		2	μА	Note2
I_{IZ}	ITERM tri-state open detection	-2		2	μA	
V _{IH}	Logic input high	Vcc-0.3	-		V	DSEL, ITEM
V_{IL}	Logic input low		-	Vss+0.3	V	DSEL, ITERM
	LED ₁₋₃ , ICTL, output high	Vcc-0.8	-		V	I _{OH} ≤ 10mA
VoH	MOD output high	Vcc-0.8	-		v	I _{OH} ≤ 10mA
	LED ₁₋₃ , ICTL, output low		-	V _{SS} +0.8V	V	IoL ≤ 10mA
V_{OL}	MOD output low		-	V _{SS} +0.8V	V	I _{OL} ≤ 10mA
	LCOM output low		-	V _{SS+} 0.5	v	I _{OL} ≤ 30mA
Іон	LED ₁₋₃ , ICTL, source	-10			mA	V _{OH} =V _{CC} -0.5V
-011	MOD source	-5.0			mA	V _{OH} =V _{CC} -0.5V
	LED ₁₋₃ , ICTL, sink	10			mA	V _{OL} = V _{SS} +0.5V
I_{OL}	MOD sink	5			mA	$V_{\rm OL} = V_{\rm SS} + 0.8V$
	LCOM sink	30			mA	$V_{OL} = V_{SS} + 0.5V$
I_{IL}	DSEL logic input low source			+30	μА	$V = V_{SS}$ to $V_{SS} + 0.3V$, Note 2
TIL	ITERM logic input low source			+70	μА	$V = V_{SS}$ to V_{SS} + 0.3 V
I _{IH}	DSEL logic input high source	-30			μA	V = V _{CC} - 0.3V toV _{CC}
-in	ITERM logic input high source	-70			μA	V = V _{CC} = 0.3V toV _{CC}

Notes:

1. All voltages relative to Vss except where noted.

2. Conditions during initialization after VCC applied.

12/14 Sept. 1996 D

Impedance

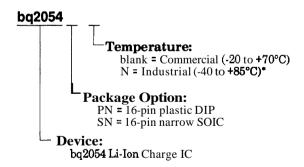
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
RBATZ	BAT pin input impedance	50			MΩ	
Rsnsz	SNS pin input impedance	60			ΜΩ	
RTSZ	TS pin input impedance	60			ΜΩ	
RPROG1	Soft-programmed pull-up or pull-down resistor value (for programming)			10	kΩ	DSEL
R _{PROG2}	Pull-up or pull-down resistor value			3	kΩ	ITERM
RMTO	Charge timer resistor	20		480	kΩ	

Timing (TA = TOPR; VCC = 5V ±10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tmro	Charge time-out range	1		24 hours		See Figure 7
tqr	Pre-charge qual test time-out period		0.16t _{MTO}			
tho	Termination hold-off period	1.14		1.52	sec.	
timin	Min. current detect filter period	80		160	msec.	
F _{PWM}	PWM regulator frequency range		100		kHz	Серини i=0.001µF

Capacitance

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Смто	Charge timer capacitor			0.1	μF
Срум	PWM R-C capacitance	•	0.001	•	μF


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	5, 7, 8, 10	Value Change	Changed Vsns and IMAX
2	5, 10	Value Change	Changed VREF
3	10	Coefficient Addition	Temperature coefficient added
4	5	New state diagram	Diagram inserted
4	1, 2, 8, 12	NC pin replaced with ICTL	
4	3, 5, 13	Termination hold-off period added IMIN detect filtering added	

Note:

Change 3 = April 1996 C changes from **Dec.** 1995 B. Change 4 = Sept. 1996 D changes from April 1996 C.

Ordering Information

• Contact factory for availability.

Preliminary DV2054S1

Fast Charge Development System

Control of On-Board PNP Switch-Mode Regulator

Features

- bq2054 fast charge control evaluation and development
- Accepts 24 VDC (max.) input supply
- On-board configuration for fast charge of 1, 2, 3, or 4 Li-Ion cells
- Constant current (up to 3.5A) and constant voltage (up to 15V) provided by on-board switch mode regulator
- Charge termination by maximum voltage, selectable minimum current, or maximum time-out
- Direct connections for battery, thermistor, and reset signal
- Jumper configurable three-LED display

General Description

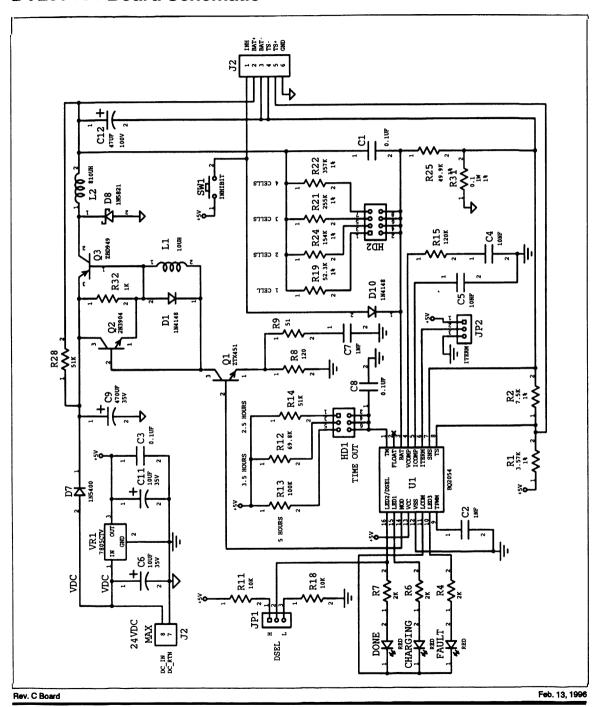
The DV2054S1 Development System provides a development environment for the bq2054 Lithium Ion Fast Charge IC. The DV2054S1 incorporates a bq2054 and a buck-type switch-mode regulator to provide fast charge control for 1 through 4 Li-Ion cells.

 F_{ast} charge is preceded by a pre-charge qualification period.

Fast charge termination occurs on:

- Maximum voltage
 Minimum current I_{MAX} divided by 10, 20, or 30
- Maximum time-out

The bq2054 can be reset and a new charge cycle started with either the momentary on-board switch (SW1) or via the INH input on connector J2. The reset signal simulates a "Battery Absent" condition. Charging is inhibited as long as the reset signal is active; once it is released, the charge cycle re-starts at pre-charge qualification.



The user provides a DC power supply and batteries and configures the board for the number of cells, the maximum time-out period, the minimum current threshold, and the LED display mode. The board has direct connections for the battery and the provided thermistor.

Before using the DV2054S1 board, please review the bq2054 data sheet.

Feb.13,1996 Rev C Board

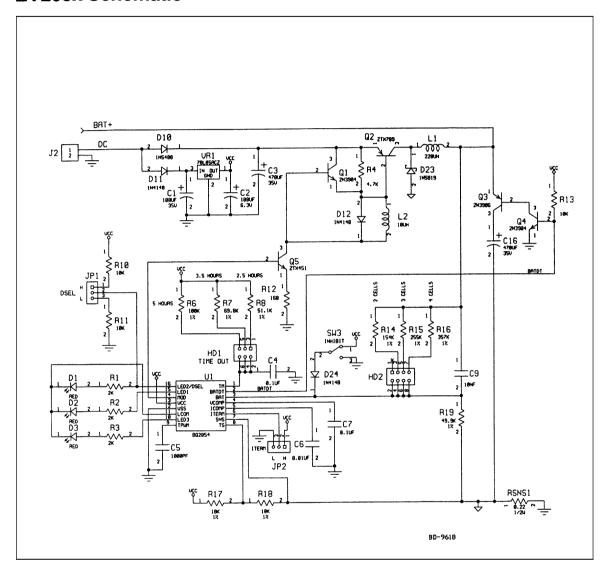
DV2054S1 Board Schematic

bq2050, bq2053, and bq2054 Li-lon Evaluation System

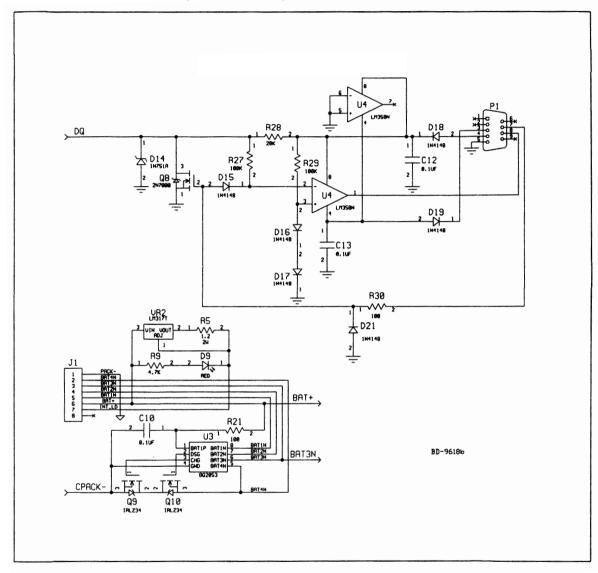
Features

- bq2050 Gas Gauge IC, bq2053 Lithium Ion Pack Supervisor, and bq2054 Fast Charge control evaluation and development system for 2 to 4 cells
- Conservative and repeatable measurement of available capacity compensated for charge/ discharge rates. Capacity and self-discharge estimation also temperature-compensated using thermal sensor internal to the bq2050
- Overvoltage, undervoltage, and short-circuit protection provided by the bq2053
- On-board frequency-modulated current regulation with Minimum Current and Maximum Time-Out fast charge termination using the bq2054 Fast Charge IC. Also features pre-charge qualification for temperature and voltage faults
- Programmable LED outputs display battery and charge status, plus on-board data logging by the bq2050

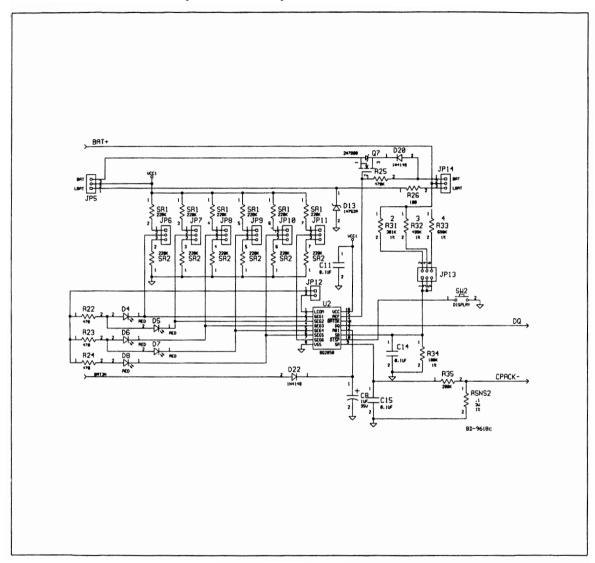
General Description


The EV205x provides a development and evaluation environment for the bq2050 Lithium Ion Power Gauge and the bq2053 Lithium Ion Pack Supervisor ICs. The bq2053 provides overvoltes, undervoltage, and short circuit protection for two to four lithium ion cells. The bq2050 reports conservative and repeatable measurement of the available capacity in those cells. The board incorporates a bq2054 Fast Charge IC to provide frequency modulated constant current regulation with minimum current and maximum time out (MTO) termination to fast charging, plus two FETs for charge and discharge control.

The V_{UV}, V_{CE}, and V_{OV} thresholds in the **bq2053** are **set** to **2.3V**, **4.15V**, and **4.25V**, respectively. Other voltage settings **are** mask programmable at **Benchmarq**. Please refer to the **bq2050**, **bq2053**, and **bq2054** data sheets for device **descriptions**.


Hardware for the RS-232 interface is included on the EV205x to provide easy access to the bq2050 data logging function. The menu-driven software accesses data logging and displays charge/discharge activity on any standard DOS PC.

The user provide% a DC power supply and batteries. The user configures the EV205x for the number of cells, battery capacity, maximum charge time, and coke or graphite anode technology.


EV205x Schematic

EV205x Schematic (Continued)

EV205x Schematic (Continued)

Lithium Ion Pack Supervisor

Features

- ➤ Protects and individually monitors three or four Lithium Ion series cells for ovewoltage, undewoltage, and overcurrent
- Designed for battery pack integration
 - Small outline package, minimal external components and space, and low cost
 - Drives external N-FET switches
- User-selectable thresholds mask programmable by Benchmarq
- ➤ Operates on <40µA
- ➤ <1.5µA standby current
- ➤ Available in 16-pin 150-mil narrow SOIC

General Description

The bq2058 Lithium Ion Pack Supervisors are designed to control the charge and discharge voltage safety limits for three or four lithium ion (Li-Ion) series cells, accommodating battery packs containing series/parallel configurations. The very low operating current does not overdischarge the cells during periods of storage and does not significantly increase the system discharge load. The bq2058 can be part of a low-cost Li-Ion charge control system within the battery pack.

The bq2058 controls two external N-FETs to limit the charge and discharge potentials. The bq2058 allows charging when each individual cell voltage is below V_{CE} (charge enable voltage). If the voltage on any cell exceeds Vov (overvoltage limit) for a user-configurable delay period (tovp), the CHG pin is driven inactive, shutting off charge to the battery pack This safety feature prevents overcharge of any cell within the battery pack

The bq2058 allows discharge when each individual cell voltage exceeds VUV (undervoltage limit). If the voltage on any cell falls below VUV for a user-configurable delay period (tUVD), the DSG output becomes inactive, shutting off the battery discharge. This safety feature prevents overdischarge of any cell within the battery pack

The bq2058 also prevents discharging upon detection of an overcurrent condition. Overcurrent occurs in either of the following instances: when the voltage between BAT4N and PACK- is greater than Vocl or when the voltage between BAT1P and PACK+ is greater than Voch.

Vov, VCE, and Vuv are trimmed during manufacturing at Benchmarq. Default values are 4.25, 4.15, and 2.25V. Six different Vov limits are available (see Table 2).

The polarities of the CTL input and the CHG and DSG outputs are programmed at Benchmarq.

Pin Connections

	
BAT _{3N} 6	16 I DSG 15 NSEL 14 UVD 13 OVD 12 OCD 11 V _{CC} 10 PACK+ 9 BAT _{1P}
16-Pin Na	arrow SOIC
	PN-113

Pin Names

CHG	Charge control output	DSG	Discharge control output
CIL	Pack disable input	NSEL	3- or 4-cell selection
V_{SS}	Low potential input	UVD	Undervoltagedelay input
PACK-	Pack negative input	OVD	Overvoltage delay input
BAT _{4N}	Banery 4 negative input	OCD	Overcurrent delay input
BAT _{3N}	Battery 3 negative input	V_{CC}	High potential input
$BAT_{2N} \\$	Battery 2 negative input	PACK+	Pack positive input
BATIN	Battery 1 negative input	BATIP	Banery 1 positive input

Sept. 1996 1/12

Pin De	scriptions	DSG	Discharge control output
CHG	Charge control output		This output controls the discharge path to the battery pack.
	This output controls the charge path to the battery pack.	NSEL	Number of cells input
CIL	Pack disable input		This input selects the number of series cells in the pack. NSEL should connect to V _{CC} for four cells and to V _{SS} for three cells.
	When active, this input allows an external source to disable the pack by making both DSG and CHG inactive.	UVD	Undervoltage delay input
$\mathbf{v_{ss}}$	Low potential input		This input uses an external capacitor to V_{CC} to set the undervoltage delay timing.
PACK-	Battery pack negative terminal sense input	OVD	Overvoltage delay input
BAT _{4N}	Battery 4 negative input		This input uses an external capacitor to Vcc
	This input is connected to the negative terminal of the cell designated BAT4 in Figure 2.	OCD.	to set the overvoltage delay timing.
	of the cell designated BA14 in Figure 2.	OCD	Overcurrent delay input
BAT _{3N}	Battery 3 negative input		This input uses an external capacitor to VCC to set the overcurrent delay timing.
	This input is connected to the negative terminal		•
	of the cell designated BAT3 in Figure 2.	$\mathbf{v}_{\mathbf{cc}}$	High potential input
BAT_{2N}	Battery 2 negative input	PACK+	Battery pack positive terminal sense input
	This input is connected to the negative terminal of the cell designated BAT2 in Figure 2.	BAT_{1P}	Battery 1 positive input
	e e		This input is connected to the positive terminal
BAT_{1N}	Battery 1 negative input		of the cell designated BAT1 in Figure 2.
	This input is connected to the negative terminal of the cell designated BAT1 in Figure 2. This input is connected to BAT1P in a 3-cell configuration.		

Table 1. Pin Configuration for 3- and 4-Series Cells

Number of Cells	Confiauration Pins	Battery Pins
		BAT _{1N} - Positive terminal of first cell
3 cells	BAT _{1N} tied to BAT _{1P}	BAT _{2N} - Negative terminal of first cell
	$NSEL = V_{SS}$	BAT _{3N} - Negative terminal of second cell
		BAT _{4N} - Negative terminal of third cell
		BAT _{1P} - Positive terminal of first cell
		BAT _{1N} - Negative terminal of first cell
4 cells	NSEL = Vcc	BAT _{2N} - Negative terminal of second cell
ı		BAT _{3N} - Negative terminal of third cell
I		BAT _{4N} - Negative terminal of fourth cell

2/12 Sept. 1996

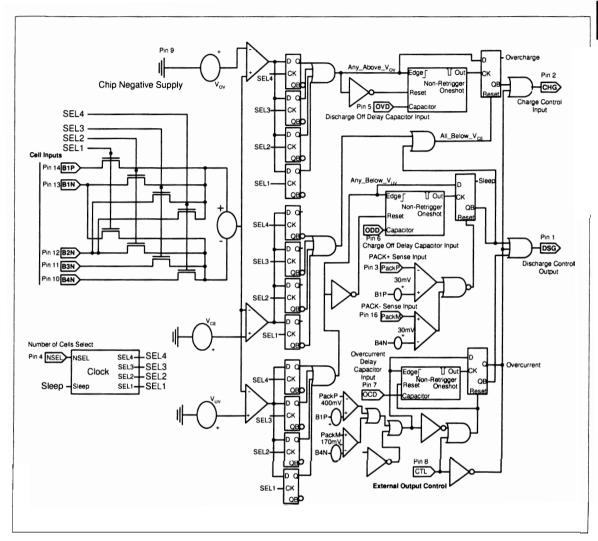


Figure 1. Block Diagram

Sept 1996 3112

Functional Description

Figure 1 is a block diagram outlining the major components of the bq2058. Figure 2 shows a typical application example. The following sections detail the various functional aspects of the bq2058.

Configuration

The bq2058 may be configured to supervise three- or four-series cell packs. For three-series cell configurations, BAT $_{1N}$ is connected to BAT $_{1P}$. See Table 1. The bq2058 controls two external N-FETs connected for low-side control of the battery pack. Please contact Benchmarq for other application examples.

Thresholds

The bq2058 monitors four thresholds for overcharge (overvoltage), charge enable, overdischarge (undervoltage), and overcurrent protection. The following are the default values.

Overvoltage (Vov) during charge:

Table 2. Overvoltage Threshold Options

Part #	Part # Vov Limit	
bq2058M	4.15V	
bq2058F	4.20V	±50mV,
bq2058K	4.225	± 42 mV, or
bq2058	4.25V	±25mV
bq2058D	4.30V	
bq2058J	4.36V	

Charge enable voltage:

 $V_{CE} = V_{OV} - 150 \text{mV} \pm 50 \text{mV}$

Undervoltage during discharge:

$$V_{UV} = 2.3V \pm 100 mV$$

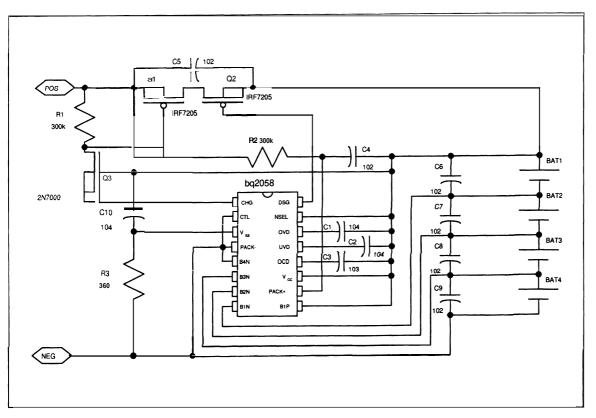


Figure 2. Typical Application Circuit

Sept. 1996

Overcurrent limit during discharge:

 $V_{OCH} = 400 \text{mV} \pm 30 \text{mV}$ (high-side detect)

 $V_{OCL} = 170 \text{mV} \pm 30 \text{mV}$ (low-side detect)

These thresholds are programmed at Benchmarq. Please contact Benchmarq for other voltage threshold and tolerance options.

The bq2058 samples a cell every 37.5ms (typical), and each measurement is fully differential. During this sample period, the bq2058 checks for a Vov, Vw, and Vcc condition. $V_{\rm OCH}$, $V_{\rm OCL}$, and $V_{\rm CD}$ (charge detect) are continuously monitored, not sampled.

Initialization

During the initial connection of the bq2058 circuit to the battery pack, the bq2058 recognizes a low voltage condition and enters the low-power mode, disabling the DSG output. A charging supply must be applied to the bq2058 circuit to enable the pack. See Low-Power Standby Mode below.

Discharge Supervision

Overdischarge protection is asserted after a user-configurable delay (tuvd) when any cell voltages fall below the Vuv threshold. If the cell voltage remains below Vuv and tuvd expires, DSG becomes inactive, disabling the discharge of the pack. The bq2058 then enters the low-power standby mode.

Low-Power Standby Mode

When the bq2058 enters the low-power mode, DSG is disabled, and the device consumes less than 1.5 μA . The differential signal between BAT4N and PACK- and PACK+ and BAT1P is then continuously monitored to determine if a valid charge condition exists. If the condition exists, the output is enabled to allow charging of the lithium ion cells. The charging supply must produce a voltage greater than VCD between BAT4N and PACK- or PACK+ and BAT1P for the bq2058 to enable the DSG output. If charging is terminated while any cell is below the Vuv limit, DSG again goes low after tuvp, and the bq2058 returns to the low-power mode.

Charge Supervision

Overvoltage protection is asserted after a user-configurable delay (tovd) when any cell voltage exceeds the Vov threshold. If the cell voltage remains above Vov and tovd expires, the CHG pin becomes inactive, disabling charge into the battery pack. Charging is disabled until all cell voltages fall below Vce. This indicates that an overcharge condition no longer exists and that the pack is ready to accept further charge.

The bq2058 can be part of a cost-effective charge control system which utilizes the pack protection circuit to limit the charge voltage to the lithium ion cells. The hysteresis between V_{OV} and V_{CE} allows the lithium ion cell voltage to fall sufficiently before re-enabling the charge current.

Overcurrent Supervision

The bq2058 monitors the voltage across the BAT4N and PACK- and PACK+ and BAT1P pins for an overcurrent condition. It detects an overcurrent condition if CHG and DSG are both active and either the voltage at PACK+ is Voch greater than BAT1P or the voltage at PACK- is Vocl less than BAT4N for the entirety of the delay period.

Once these conditions are met, the discharge FET control pin (DSG) is driven inactive after a user-configurable time delay (tocd), disconnecting the load from the pack. DSG remains inactive until both of the voltage conditions listed above are false, indicating removal of the short-circuit condition. The user can facilitate clearing these conditions by inserting the battery pack into a charger or connecting a high-value resistor directly between the high side of the battery stack to PACK+ or from the low side to PACK-. In the case of a catastrophic short, the delay period tocd may be shortened due to the collapse of the battery voltage.

CHG and DSG States

Condition	CHG pin	DSG pin
Normal operation	active	active
Overvoltage	inactive	active
I Indomnitoon	active	inactive
Overcurrent	active	inactive

Number of Cells

The user must configure the bq2058 for three- or fourseries cell operation. For a three-cell pack, NSEL should be tied directly to V_{SS}. For a four-cell pack, NSEL should be connected directly to Vcc.

In three-cell operation, BAT_{1N} is tied to BAT_{1P}.

Number of Series Cells	NSEL
3-cell	Tied to V _{SS}
4-cell	Tied to V _{CC}

Sept. 1996 5/12

Protection Delay Timers

The delay timers for all three protection parameters are reset any time the condition that started them is removed. The fault condition must therefore persist through the entire delay period, or the bq2058 will not deactivate either FET control output.

The delay time between the detection of an overcurrent, overvoltage, or undervoltage condition and the deactivation of the CHG and/or DSG outputs is user-configurable by the selection of capacitor values between the OCC, OVD, UVD pins (respectively) and Vcc. See Table 3 below.

Note that delay time versus capacitance is approximately linear around the typical points.

Mask Configurable Parameters

The parameters shown in Table 4, as well as the Vov and other voltage thresholds and tolerances (see Table 2), are selectable by Benchmarq when the parts are manufactured. Contact the factory for availability.

Figure 3 shows a step-by-step event cycle for the bg2058.

Table 3. Protection Delay Timers

Protection	Delay	Cap. from	Minimum		Typical		Maximum	
Feature	Period	VCC to:	Cap.	Time	Сар.	Time	Cap.	Time
Overcurrent	tocd	OCD	0.007μF	7ms	0.010μF	10ms	$0.013 \mu F$	13ms
Overvoltage	tovD	OVD	0.070μF	560ms	0.100μF	800ms	0.130μ F	1040ms
Undervoltage	two	UVD						

Table 4. Other Mask Configurable Parameters

Туре	Dolority					
	Polarity	Туре	Polarity	Туре	FET Location	
Push-pull	DSG	Push-pull	CTL	Push-pull	High-side	
Open drain to GND	DSG	Open drain to GND	CTL	Open drain to GND	Low-side	
Open drain to V _{CC}		Open drain to VCC		Open drain to V _{CC}		
)	pen drain to GND	pen drain DSG to GND	pen drain DSG Open drain to GND Open drain Open drain	pen drain DSG Open drain to GND Open drain pen drain Open drain Open drain	pen drain to GND Open drain to GND Open drain to GND Open drain to GND Open drain	

6/12 Sept. 1996

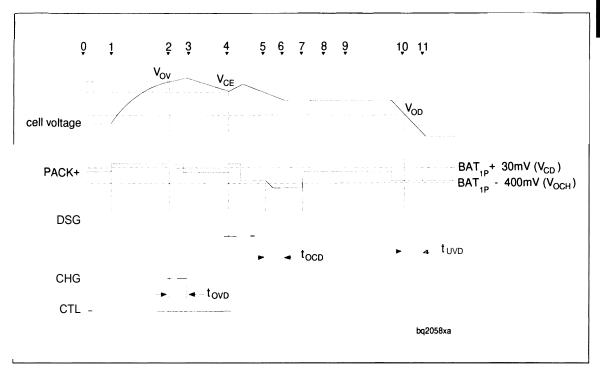


Figure 3. Example High-Side Protector Event Diagram

Event Definition:

- 0: The bq2058 is in the low-power sleep mode because one or more of the cell voltages are below V_{UV} .
- 1: A charger is applied to the pack causing the difference between PACK+ and V_{CC} to become greater than 30mV. This awakens the bq2058 and enables the discharge pin DSG.
- 2: One or more cells charge to a voltage equal to Vov initiating the overvoltage delay timer.
- 3: The overvoltage delay time expires, causing CHG to go inactive.
- 4: All cell voltages fall below VCE, re-enabling the CHG output.
- 5: **An** overcurrent condition is detected, initiating the overcurrent delay timer.
- **6:** The overcurrent delay time expires, causing DSG to go inactive.
- 7: The overcurrent condition is no longer present; DSG is re-enabled.
- 8: Pin CTL is driven high, disabling both DSG and CHG.
- 9: Pin CTL is driven low, allowing DSG and CHG to resume their normal function.
- 10: One or more cells fall below V_{UV} , initiating the overdischarge delay timer.
- 11: Once the overdischarge delay timer expires, if any of the cells are below Vuv, the bq2058 disables DSG and goes into the low-power sleep mode.

Sept. 1996 7/12

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
V_{T}	Voltage applied on any pin relative to BAT _{1P}	-18 to +0.31	V	
T_{OPR}	Operating temperature	-30 to +70	°C	
TSTG	Storage temperature	-55 to +125	°C	
TSOLDER	Soldering temperature	260	$^{\circ}\mathrm{C}$	For 10 seconds

Note:

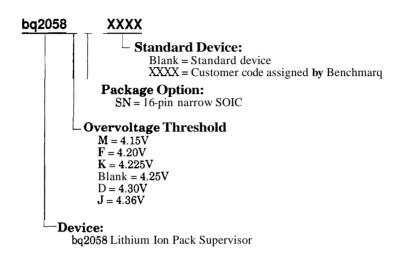
Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

8/12 Sept. 1996

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
Vон	Output high voltage	VCC - 0.5		•	V	I _{OH} = 10μA
Vol	Output low voltage			V _{SS} + 0.5	V	$I_{OL} = 10 \mu A$
VOP	Vcc · Vss	0		18	V	
V _{IL}	Input low voltage			0.5	V	Pin CTL
VIH	Input high voltage	2.0			V	Pin CTL
VIL	Input low voltage			0.5	V	Pin NSEL
VIH	Input high voltage	Vcc-0.5	•		•	Pin NSEL
ICCA	Active current	-	25	40	μA	
Iccs	Sleep current		.7	1.5	μА	
RCELL	Input impedance	-	10		ΜΩ	Pins BAT4N, BAT _{3N} , BAT _{2N} , BAT _{1N} , and BAT _{1P}

Sept. 1996


DC Thresholds (TA = TOPR)

Symbol	Parameter	Value	Unit	Tolerance	Conditions
Vov	Overvoltage threshold	4.25	V	$\pm50\mathrm{mV}$	See note
VOV	o voi voi auge am esmera		Table 2		Customer option
V _{CE}	Charge enable threshold	Vov - 150mV	V	± 1.75%	See note
V _U V	Undervoltage threshold	2.25	.V	± 100mV	See note
Voch	Overcurrent detect high-side	400	mV	± 30mV	See note
Vocl	Overcurrent detect low-side	170	mV	± 30mV	See note
V_{CD}	Charge detect threshold	30	mV	+100%, -50%	See note
tovd	Overvoltage delay threshold	800	ms	±30%	$C_{OVD} = 0.100 \mu F$ $T_A = 30$ °C
tuvD	Undervoltage delay threshold	800	ms	±30%	$C_{UVD} = 0.100 \mu F$ $T_A = 30 ^{\circ} C$
tocd	Overcurrent delay threshold	10	ms	±30%	$C_{OCD} = 0.010 \mu F$ $T_A = 30^{\circ}C$

Note: Standard device. Contact Benchmarq for different threshold options.

10112 Sept. 1996

Ordering Information

Sept. 1996 11/12

Notes

12/12 Sept. 1996

Rechargeable Alkaline Charge/Discharge

Features

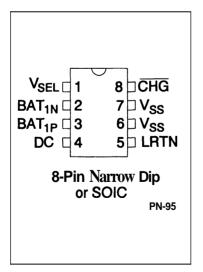
- Safely charges two rechargeable alkaline batteries such as Renewal@from Rayovac®
- Terminates pulsed charge with maximum voltage limit
- Contains LED charge status output
- ➤ Features a pin-selectable low-batterycut-off
- Pre-charge qualification indicates fault condition
- Available in **8-pin** 300-mil **DIP** or 150-mil SOIC

General Description

The bo2902 is a low-cost charger for rechargeable alkaline batteries such as Renewal@ batteries from Rayovac[®]. The bq2902 combines sensitive, full-charge detection for two rechargeable alkaline cells, with a low-battery cut-off for overdischarge protection.

Designed for system integration into a two-cell system, the bq2902 can improve the service life of the rechargeable alkaline cells by properly managing the charge and discharge. The **bq2902** requires a voltage limited current source to generate the proper charge pulses for the Renewal® cell. Each cell is individually monitored to ensure full charge without a damaging overcharge.

Charging gunnly innut


Charge completion is indicated when the average charge rate falls below approximately 3% of the fast charge rate. A statue output is provided to indicate charge in progress, charge complete, or fault indication.

The **bq2902** avoids over-depleting the battery by using the internal end-of-discharge control circuit. The **bq2902** also eliminates the external power switching transistors needed to eeparately charge individual Renewal cells.

For safety, charging is inhibited if the per-cell voltage is greater than **3.0V** during charge (closed-circuit voltage), or if the cell voltage is lees than **0.4V** (open-circuit voltage).

Dottory 2 pagetive input

Pin Connections

Pin Names

 ∇

	Charging supply input	¥ 33	IC ground
CHG	Battery status output	LRTN	System load return
BAT _{1P}	Battery 1 positive input		•
BATIN	Battery 1 negative input	VSEL	End-of-discharge voltage select input

1/8 **July** 1996

Pin Descriptions

DC DC supply input

This input is used to charge the rechargeable alkaline cells and power the bq2902 during charge. To charge the batteries, this input should be connected to a current-source limited to 300 mA. If the DC input current is greater than 300mA, the power dissipation limits of the package may be exceeded. The DC input should also be capable of supplying a minimum of 3.3V and should not exceed 5.5V.

CHG Charge status

This open-drain output is used to signify the battery charging status and is valid only when DC is applied.

V_{SEL} End-f-discharge select input

This three-level input selects the desired endof-discharge cut-off voltage for the bq2902. V_{SEL} = BAT_{1P} selects an EDV of 1.10V. V_{SEL} floating selects EDV = 1.0V. V_{SEL} = BAT_{2N} selects EDV = 0.9.V

BATIP Battery 1 positive input

This input **connects** to the positive terminal of the battery designated **BAT**₁ (see Figure 3). **This** pin also provides power to the bq2902 when DC is not **present**.

BATIN Battery 1 negative input

This input connects to the negative terminal of the battery designated BAT1 (see Figure 3).

Vss Battery 2 negative input/IC ground

This input **connects** to the negative **terminal** of the battery **designated BAT2** (see Figure 3).

LRTN Load return

This input is the system load return.

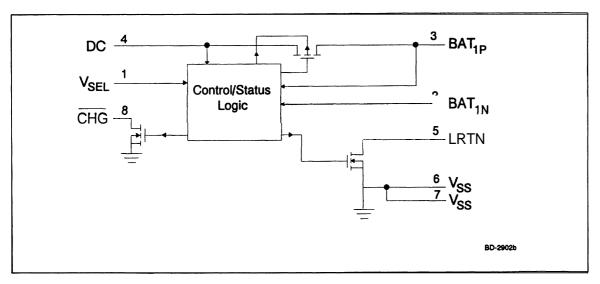


Figure 1. Functional Block Diagram

2/8 July lees

Functional Description

Figure 2 illustrates the charge control and **display status** during a **bq2902** cycle. Table 1 outlines the various operational **states** and their associated **conditions** which are **described** in detail in the following section.

Charge Initiation

The **bq2902** always initiates and **performs** a charge cycle whenever a valid DC input is applied. A charge cycle consists of pulse charging the battery and then checking for a termination condition. The charging section **explains** charging in greater detail.

Charge Pre-Qualification

After DC is applied, the **bq2902** checks the open-circuit voltage (Vocv) of each cell for an undervoltage condition (VMIN 0.4V) and begins a charge cycle when the **Vocv** of all cells is above **VMIN**. If Vocv of any cell is below **VMIN**, the **bq2902** enters a charge-pending mode and indicates a fault condition (see Table 1). The **bq2902** remains in a charge-pending mode until Vocv of each cell is above **VMIN**.

Charge Termination

Once a charge cycle begins, the **bq2902** terminates charge when the average charge rate falls below 3% of the maximum charge rate. The **bq2902** also terminates charge when the closed-circuit voltage (Vccv) of any cell

exceeds 3.0V (VFLT) during charge and **indicates** a fault condition on the CHG output(see Table 1).

Charge Re-Initiation

If DC remains valid, the **bq2902** will suspend all charge activity after full-charge **termination**. A charge **cycle** is re-initiated when all cell **potentials** fall below 1.4V. The rechargeable alkaline cells, unlike other rechargeable **chemistries**, do not require a maintenance charge to keep the **cells** in a fully charged **state**. The **self-discharge** rate for the **Renewal** cells is typically 4% per year at room temperature.

Charge Status Indication

Table 1 and Figure 2 outline the various charge action states and the associated BAT1p, and CHG output states. The charge status output is designed to work with an LED indicator. In all cases, if DC is not present at the DC pin, or if the DC supply is less than the voltage at the BAT1p pin, the CHG output is held in a high-impedance condition.

Charging

The **bq2902** controls charging by periodically connecting the DC current-source to the battery stack, not to the individual battery cells. The charge current is **pulsed** from the **internal** clock at approximately a **100Hz** rate on the **BAT1P** pin.

Table 1. bq29	02 Operation	al Summary
---------------	---------------------	------------

Charge Action State	Conditions	BAT _{1P} Input	CHG Output
DC absent	V _{DC} < V _{BAT1P}	Low battery detection per VSEL	Z
Charge initiation	DC applied		
Charge pending/ fault	$V_{OCV} < 0.4V^1 \text{ or } V_{CCV} > 3.0V^2$		² ⁄ ₃ sec = Low ² ⁄ ₃ sec = Z
Charge pulse	Vocv ≤ 1.63V before pulse	Charge pulsed @ 100Hz per Figure 2	1/6 sec = Low 1/6 sec = Z
Pulse skip	Vocv > 1.63V before pulse	Pulse skipped per Figure 2	¹ ⁄ ₆ sec = Low ¹ ∕ ₆ sec = Z
Charge complete	Average charge rate falls below 3% of the fast charge rate	Charge complete	Low

Notes:

- 1. **Vocv =** Open-circuit voltage of each cell between positive and negative leads.
- 2. Vccv = Closed-circuit voltage.

July 1996 3/8

The bq2902 pulse charges the battery for approximately 7.5ms of every 10ms, when conditions warrant. The bq2902 measures the open-circuit voltage (Vocv) of each battery cell during the idle period. If a single-cell potential of any battery is above the maximum open-circuit voltage (VMAX = 1.63V ±3%), the following pulses are skipped until all cell potentials fall below the VMAX limit. Charging is terminated when the average charge rate falls below approximately 3% of the maximum charge rate. Once charging is terminated, the internal charging FET remains off, and the CHG output becomes active per Table 1 and Figure 2. With DC applied, the internal discharge FET will always remain on.

End-of-Discharge Control

When DC is not present or less than the voltage present on the **BAT1P** pin, the **bq2902** power is supplied by the voltage present at the **BAT1P** pin. In this state, the batteries **discharge** down to the level determined by the **Vsel**, pin. The **bq2902** monitors the cell voltage of the rechargeable alkaline cells.

If the voltage across any cell is below the voltage specified by the VSEL input, the bq2902 disconnects the battery stack from the load by turning the internal dis-

charge FET off. The **discharge** FET remains off until either the batteries are **replaced** or DC is reapplied, initiating a new charge cycle. After **disconnecting** the battery stack from the load, the standby current in the **bq2902** is reduced to **less** than $1\mu A$. The end-of-discharge voltage **(VEDV)** is selectable by **connecting** the **VSEL** pin as outlined in Table 2. After disconnecting the battery stack from the load, the standby current in the **bq2902** is reduced to less than $1\mu A$. Typically, higher discharge **loads** (>200mA) should use a lower discharge voltage cut-off to **maximize** battery capacity.

Table 2. bq2902 EDV Selections

End-of-Discharge Voltage	Pin Connection
1.10V	V _{SEL} = BAT _{1P}
1. 00V	V _{SEL} = Z
0.90V	V _{SEL} = BAT _{2N}

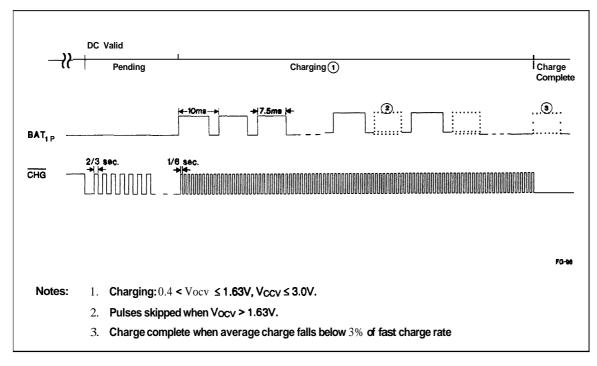


Figure 2. bq2902 Application Diagram

4/8 July 1996

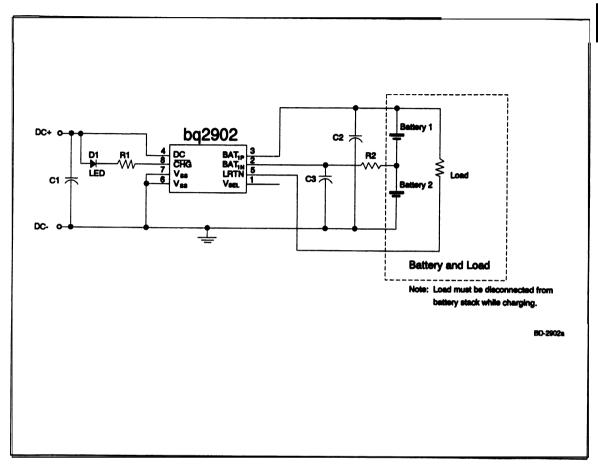


Figure 3. bq2902 Application Example, 1.0V EDV

July 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
DCIN	V _{DC} relative to GND	-0.3	7.0	V	
VT	DC threshold voltage applied on any pin, excluding the DC pin, relative to GND	-0.3	7.0	V	
		0	+70	°C	Commercial
Topr	Operating ambient temperature	-40	+85	°C	Industrial
TstG	Storage temperature	-40	+85	°C	
TSOLDER	Solderingtemperature		+260	°C	10 sec max.
I _{DC}	DC charging current		400	mA	
ILOAD	Dischargecurrent		500	mA	
IoL	Output current			mA	CHG

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the **Recommended** DC Operating **Conditions** detailed in this data **sheet.** Exposure to **conditions** beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds (TA = 25°C; VDC = 5.5V)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
V _{MAX}	Maximum open-circuit voltage	1.63	±3%	v	Vocv > VMAX inhibits/terminates charge pulses
		0.90	±5%	V	V _{SEL} = BAT _{2N}
V_{EDV}	End-of-discharge voltage	1.00	±5%	v	V _{SEL} = Z
		1.10	±5%	V	V _{SEL} = BAT _{1P}
VFLT	Maximum open-circuit voltage	3.00	±5%	v	Vccv > VFLT terminates charge, indicates fault
V _{MIN}	Minimum battery voltage	0.40	±5%	V	Vocv < V _{MIN} inhibits charge
VCE	Charge enable	1.40	±5%	v	Vocv < VCE on both cells reinitiates charge

Note:

Each DC threshold parameter above **has** a temperature coefficient associated with it. To determine the coefficient for each parameter, **use** the following formula:

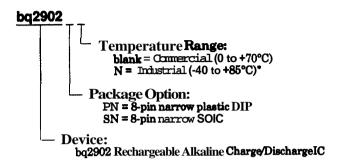
Tempco =
$$\frac{\text{ParameterRating}}{1.63}$$
 * -0.5mV/°C

The tolerance for these temperature **coefficients** is **10%**.

July 1996

Timing FA - TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tp	Pulse period		10		me	See Figure 2
tpw	Pulse width		7.5		me	See Figure 2


Note: Typical is at $T_A = 25$ °C.

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	inimum	Typical	Maximum	Unit	Notes
VIH	Logic input high	V _{BAT1P} • 0.1		VBAT1P	V	V _{SEL}
VIL	Logic input low	Vss		V ₈₈ + 0.1	V	V _{SEL}
Vol	Logic output low			0.8	V	I _{OL} = 10mA
IoL	Output current	10			mA	$@V_{OL} = V_{SS} + 0.8V$
Icc	Supply current			250	μА	Outputs unloaded, $V_{DC} = 5.5V$
I _{SB1}	Standby current			25	μA	$V_{DC} = OV, V_{OCV} > V_{EDV}$
I _{SB2}	End-of-discharge standby current			1	μА	VDC = 0V
I_L	Input leakage			±1	μА	V _{SEL}
Ioz	Output leakage in high-Z state	-5			μА	CHG
R _{DSON}	On resistance		0.5		Ω	Discharge FET; VBAT1P = 1.8V
I _{IL}	Logic input low	-	-	70	μА	VSEL
I _{IH}	Logic input high	-70	-	•	μА	VSEL
I _{IZ}	Logic input float	-2	-	2	μА	VSEL
I _{DC}	DC charging current	•	-	300	mA	
V_{DC}	DC charging voltage	3.3V		5.5	v	
ILOAD	Discharge current			400	mA	
Vop	Operating voltage				v	DC, BAT _{1P}

July 1998 7/8

Ordering Information

• Contact factory for availability.

July 1996

Rechargeable Alkaline Charge/Discharge

Features

- Safe charge of three or four. rechargeable alkaline batteries such as Renewal® from Rayovac®
- Pulsed charge terminated with maximum voltage limit
- LED outputs indicate charge status
- Selectable end-of-discharge voltage prevents overdischarge and improves cycle life
- Optional external FET drive allows high current loads
- Pre-charge qualification indicates fault conditions
- Automatic charge control simplifies charger design
- Available in 14-pin 300-mil DIP or 150-mil SOIC

General Description

The bo2903 is a cost-effective charge controller for rechargeable alkaline batteries such as Renewal batteries from Rayovac. The bq2903 combines sensitive, full-charge detection for three to four rechargeable alkaline cells, with a low-battery cut-off for over-discharge protection.

Designed for integration into a three or four-cell system, the bg2903 can improve the service life of the rechargeable alkaline cells by properly managing the charge and discharge. The bg2903 requires a voltage-limited current source to generate the proper charge pulses for the Renewal cell. Each cell is individually monitored to ensure full charge without a damaging overcharge.

Charge completion is indicated when the average charge rate falls below approximately 6% of the fast charge rate. Statue outputs are provided to indicate charge in progress, charge complete, or fault condition.

The **bq2903** avoids over-depleting the battery by using the internal end-of-discharge control circuitry. The **bq2903** also eliminates the external power switching transistors needed to separately charge individual Renewal cells.

To reduce external component count, the discharge and charge control FET's are internal to the bq2903; however, if the discharge load is greater than 400mA, a DRV pin is provided to drive an external N FET, reducing the effective discharge path resistance for the system.

For safety, charging is inhibited if the voltage of any cell is greater than 3.0V during charge or if the voltage of any cell is leas than 0.4V when not charg*ing* (open-circuit voltage).

Pin Connections

BAT_{1N} ☐ 1 14 BAT_{1D} BAT_{2N} 2 13 DC BAT_{3N} 3 12 LRTN NSEL ☐4 11 Vss VSEL 5 10 USS DONE 6 9 LRTN 8 DRV CHG 07 14-Pin Narrow DIP or SOIC PN-116

Pin Names

DC	Charging supply input	BATIN	Battery 1 negative input
CHG	Battery status output 1	BAT _{2N}	Battery 2 negative input
DONE	Battery status output 2	BAT _{3N}	Battery 3 negative input
NSEL	Number of cells input	V_{SS}	Battery 4 negative input/ IC ground
VSEL	End of discharge voltage select input	LRTN	System load return
BATip	Battery 1 positive input	DRV	External FET drive output

July 1996 1/10

Pin Descriptions

DC DC supply input

This input is used to recharge the rechargeable alkaline cells and power the bq2903 during charge. This input must be connected to a voltage-limited current source.

CHG Charge status

This open-drain output is used to signify the battery charging status and is valid only when DC is applied. See Figure 4 and Table 1.

DONE Charge done

This open-drain output is used to signify charge completion and is valid only when DC is applied.

Nsel Number of cells input

This input selects whether the **bq2903** charges 3 or 4 cells. NSEL = BAT_{1P} selects 4 cells, and NSEL = Vss selects 3 cells.

V_{SEL} End-of-discharge select input

This three-level input selects the desired **end-of**-discharge cut-off **voltage** for **the bq2903**. **VSEL** =

 BAT_{1P} selects an EDV of 1.10V, V_{SEL} floating selects EDV = 1.0V, V_{SEL} =V $_{SS}$ selects EDV = 0.9V.

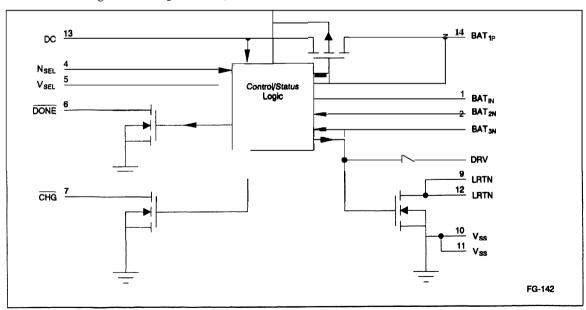
BAT1P Battery 1 positive input

This input connects to the positive terminal of the battery designated BAT₁ (see Figure 3). This pin also provides power to the bq2903 when DC is not present.

BATIN Battery **1** negative input

This input connects to the negative terminal of the battery **designated BAT1** (see Figure 3).

BAT2N Battery 2 negative input


This input connects to the negative terminal of the battery designated BAT2 (see Figure 3.

BAT3N Battery 3 negative input

This input connects to the negative terminal of the battery designated **BAT**₃ (see Figure 3).

Battery 4 negative input/IC ground

This input connects to the negative terminal of the battery designated BAT4 (see Figure 3).

Vss

Figure 1. Functional Block Diagram

2/10

3/10

LRTN Load return

This input is the **system** load return.

DRV External FET drive output

This push-pull output drives an optional **external N-FET (see** Figure 4). **The DRV pin** should not be connected if the external **FET** is not used. **See** page 5 for a full **description**.

Functional Description

Figure 2 illustrates the _{Charge} control and display status during a bq2903 cycle. Table 1 outlines the various operational states and their associated conditions which are described in detail in the following section.

DC Input

This input is used to charge the rechargeable alkaline cells and power the bq2903 during a charge. To charge the batteries, this input should be connected to a current source limited to 300mA. If the DC input current is greater than 300mA, the power dissipation limits of the package will be exceeded. The DC input should also be capable of supplying a minimum of 2.0V*N, where N is the number of cells to be charged. The DC input should not exceed 10V.

Charge Pre-Qualification

After DC is applied, the bq2903 checks the open-circuit voltage (Vocv) of each cell for an undervoltage condition (Vocv<0.4V). If the Vocv of any cell is below VMIN, the

bq2903 enters a charge-pending mode and **indicates** a fault(see Table 1).

If all cells are above VMIN and the minimum operating voltage VOP(min)=2.7V at the DC pin is met, the bq2903 will initiate a charge cycle. A charge cycle consists of pulse charging the battery and then checking for a nation condition.

Charge Termination

Once a charge cycle begins, the bq2903 terminates charge when the average charge rate falls below 696 of the maximum charge rate. The bq2903 also terminates charge when the closed-circuit voltage (Vccv) of any cell exceeds 3.0V (Vrl.) during charge and mucates a fault condition on the CHG output (see Table 1).

Charge Re-Initiation

If DC remains valid, the bq2903 will suspend all charge activity after full-charge termination. A charge cycle is re-initiated when all cell potentials fall below 1.4V. The rechargeable alkaline cells, unlike other rechargeable chemistries, do not require a maintenance charge to keep the cells in a fully charged state. The self-discharge rate for the Renewal cells is typically 4% per year at room temperature.

Charge Status Indication

Table 1 and Figure 2 outline the various charge action states and the associated BAT_{1P}, CHG, and DONE output states. The charge status outputs are designed work with individual or tri-color LED indicators. In cases, if the voltage at the DC-pin-is less than the voltage at the BAT_{1P} pin, CHG and DONE outputs are held in a high-impedance condition.

Table 1. bq2903 Operational Summary

		1		
Charge Action State	Conditions	BAT _{1P} Input	CHG Output	DONE Output
DC absent	V _{DC} < V _{BAT1P}		Z	Z
Charge initiation	DC applied			
Charge pending/ fault	$V_{\rm OCV} < 0.4 V^1 \text{ or } V_{\rm CCV} > 3.0 V^2$		1/6 sec = Low 1/6 sec = Z	Z
Charge pulse	Vocv ≤ 1.63V before pulse	Charge pulsed @ 100Hz per Figure 1	Low	Z
Pulse skip	Vocv > 1.63V before pulse	Pulse skipped per Figure 1	Low	Z
Charge complete	Average charge rate falls below 6% of the fast charge rate	Charge complete	Z	Low

Notes:

- 1. Vocy = Open-circuit voltage of each cell between positive and negative leads.
- 2. Vccv = Closed-circuit voltage.

July 1996

Charging

The **bq2903** controls charging by periodically connecting the DC current **source** to the battery stack, not to the individua! battery cells. The charge current is pulsed from the **internal clock** at approximately a 100 Hz rate on the **BAT1P** pin.

The bq2903 pulse charges the battery for approximately 7.5ms of every 10ms, when conditions warrant. The bq2903 measures the open circuit voltage (Vocv) of each battery cell during the idle period. If a single-cell potential of any battery is above the maximum open-circuit voltage (VMAX = 1.63V ±3%), the following pulses are skipped until all cell potentials fall below the VMAX limit. Charging is terminated when the average charge rate falls below approximately 6% of the maximum charge rate. Once charging is terminated, the internal charging FET remains off, and the DONE output becomes active per Table 1 and Figure 2. With DC applied, the internal discharge FET will always remain on, and the DRV output will remain high.

Endof-Discharge Control

When DC is **less** than the voltage on **BAT1P**, the bq2903 is powered by the battery at **BAT1P**. In this state, the **batteries** discharge down to the level determined by the **VSEL** pin The **end-of-discharge** voltage (**VEDV**) is selectable by connecting the **VSEL** pin as outlined in Table 2. If the voltage **across** any cell is below the voltage specified by the **VSEL** input, the **bq2903 disconnects** the battery **stack** from the load by turning the internal discharge **FET** off. The DRV output is also driven low, disabling the external FET. After **disconnecting** power (the battery stack) to the load, the standby current in the bq2903 is reduced to **less** than 1µA. Typically, higher discharge loads (**>200mA**) should **use** a lower discharge voltage cutoff to maximize battery capacity.

After disconnecting the **battery** stack **from** the load, the internal **discharge** FET remains off, and the DRV output remains low until the batteries **are** replaced or DC is reapplied, initiating a new charge cycle.

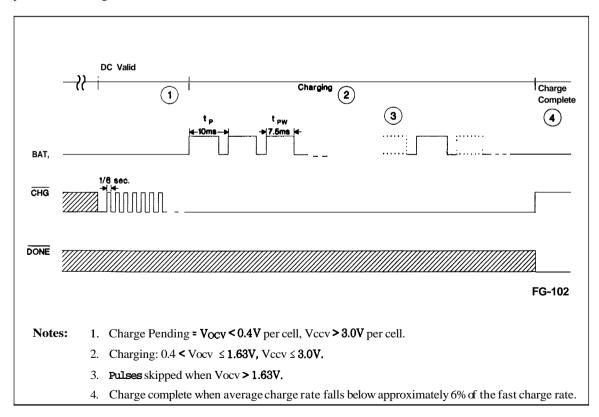


Figure 2. bq2903 Example of Charge Action Events

4/10 July 1996

5/10

Table 2. bq2903 EDV Selections

End-of-Discharge Voltage	Pin Connection
1.10V	$V_{SEL} = BAT_{1P}$
1,00V	V _{SEL} = Z
0.90V	Vsel = Vss

Number of - Cell Selection

July 1996

NSEL is used to select whether the bq2903 will charge 3 or 4 cells. Figure 3 shows the proper connection for a 3-or 4-cell system. For 4 cell operation, NSEL = BAT1P. For 3 cell operation, NSEL = VSS and the BAT2N pin should be connected to the BAT3N pin.

DRV Pin

The bq2903 controls battery discharge with an internal FET between LRTN and Vss. The current through this switch should be limited to 400mA. To reduce the effective discharge switch resistance, or for high current loads, the DRV pin can control an external N-FET, as shown in Figure 4. DRV is "high" when a valid charging voltage is applied to the DC pin and remains "high" during discharge. DRV goes "low" during discharge to turn off the external FET when an end-of-discharge condition is met. This pin should not be connected if the external FET option is not used.

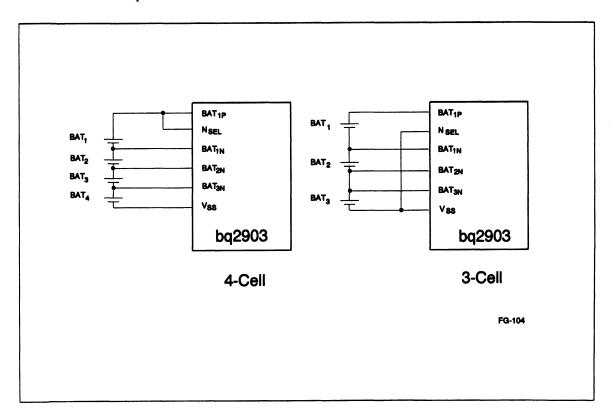


Figure 3. Nsel Connection Diagram

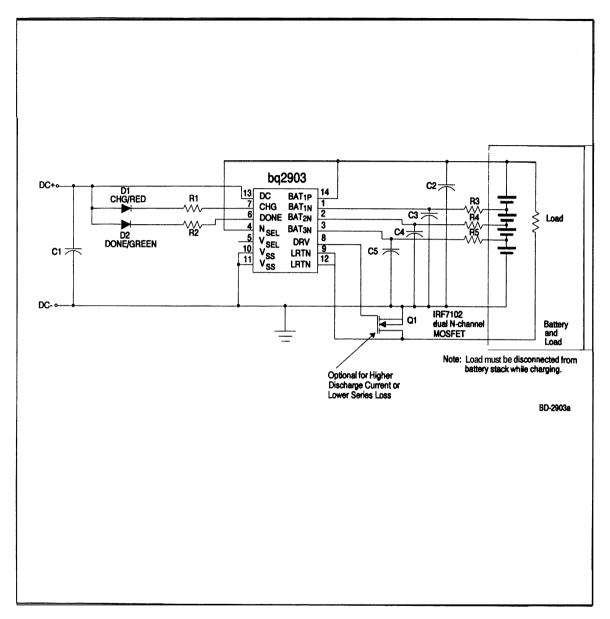


Figure 4. bq2903 Application Example, 4–Cell and 1.0V EDV

6/10

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
DC _{IN}	V _{DC}	-0.3	11.0	٧	
Vт	DC threshold voltage applied on any pin, excluding DC pin	-0.3	11.0	v	
Topr	OPR Operating ambient temperature		+70	°C	Commercial
Operating amoient temperature	Operating ambient temperature	-4 0	+86	°C	Industrial
Tstg	Storage temperature	-40	+85	°C	
T _{SOLDER}	Soldering temperature		+260	•℃	10 sec max.
I_{DC}	DC charging current		400	mA	
ILOAD	Discharge current		500	mA	No external FET
IoL	Output current		20	mA	CHG, DONE

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be <u>limited</u> to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

July 1696 7/10

DC Thresholds (TA = 25°C; VDC =10V)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
VMAX	Maximum open-circuit voltage	1.63	±3%	v	Vocv > VMAX inhibits or terminates charge pulses
		0.90	±5%	v	V _{SEL} = V _{SS}
VEDV	End-of-discharge voltage	1.00	±5%	v	V _{SEL} = Z
		1.10	±5%	v	V _{SEL} = BAT _{1P}
VFLT	Maximum closed-circuit voltage	3.00	±5%	v	Vccv > VFLT terminates charge, indicates fault
VMIN	Minimumbattery voltage	0.40	±5%	V	Vocv < V _{MIN} inhibits charge
VCE	Charge enable	1.40	±5%	v	Vocv < VcE on all cells re-initiates charge

Note:

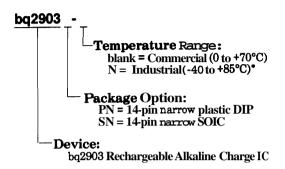
Each parameter above has a temperature coefficient associated with it. To **determine** the coefficient for each parameter, use the following formula:

The tolerance for these temperature coefficients is 10%.

Timing (TA = 25℃)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tP	Pulse period	-	10	-	ms	See Figure 2
tpw	Pulse width		7.5		ms	See Figure 2

8/10 July 1996


DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vm	Logic input high	V BAT1P • 0.1		V _{BAT1P}	V	Vsel, Nsel
VIL	Logic input low	V_{SS}		Vss + 0.1	V	Vsel. Nsel
Vol	Logic output low			1.0	v	DONE, CHG, I _{OL} = 5mA
AOT	Logic output low			0.4	V	I _{OL} = 1.0mA, DRV
Vон	Gate drive output	(Greater of VBAT1P or VDC) - 1.0			v	DRV, I _{OH} = -1.0mA
I_{OL}	Output current	5			mA	$\frac{V_{OL} = V_{SS} + 1.0V}{CHG, \overline{DONE}}$
		1			mA	DRV = Vss + 1.0V
I_{DC}	Supply current		35	250	μА	Outputs unloaded. VDC = 10.0V
I _{SB1}	Standby current		25	40	μА	$V_{DC} = 0$, $V_{OCV} > V_{EDV}$, BAT _{1P-3N}
I _{SB2}	End-of-discharge standby current			1	μА	$\mathbf{V}_{\mathbf{DRV}} = \mathbf{OV}, \mathbf{V}_{\mathbf{DC}} = \mathbf{O}$
IL	Input leakage			±1	μA	NSEL
Ioz	Output leakage in high-Z state			±5	μА	CHG, DONE
RDSON	Discharge on resistance		0.5		Ω	Discharge FET; VBATIP=2.7V
ILOAD	Discharge current without external N-FET			400	mA	No external FET
IIL	Logic input low			70	μА	V= GND to GND + 0.5V, Vsel.
I _{IH}	Logic input high	-70			μA	$V = V_{DC}$ -0.5 to V_{DC} , V_{SEL}
I _{IZ}	Logic input float	-2		2	μA	Vsel
I_{DC}	DC charging current			300	mA	
Vop	Operating voltage	2.7		10	V	

Note: All voltages relative **to Vss**.

July 1996 8/10

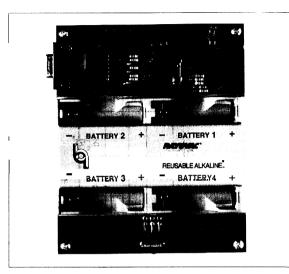
Ordering Information

• Contact factory for availability

10/10 July 1996

bq2903 Evaluation System

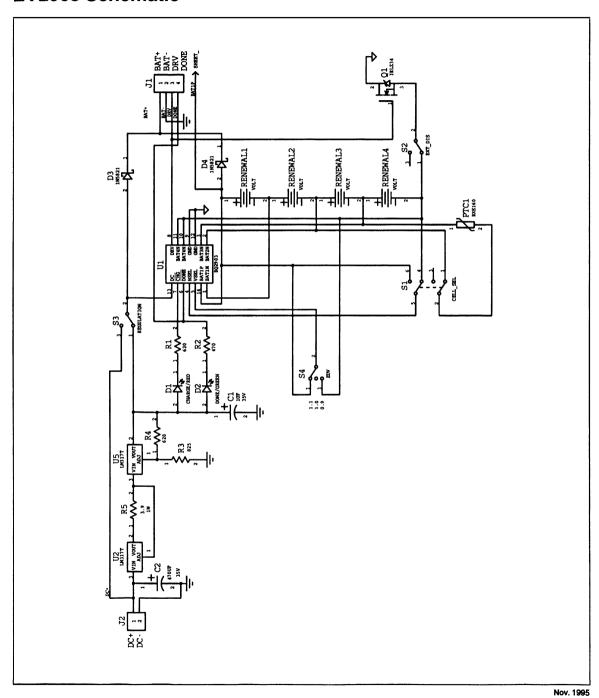
n 🔲

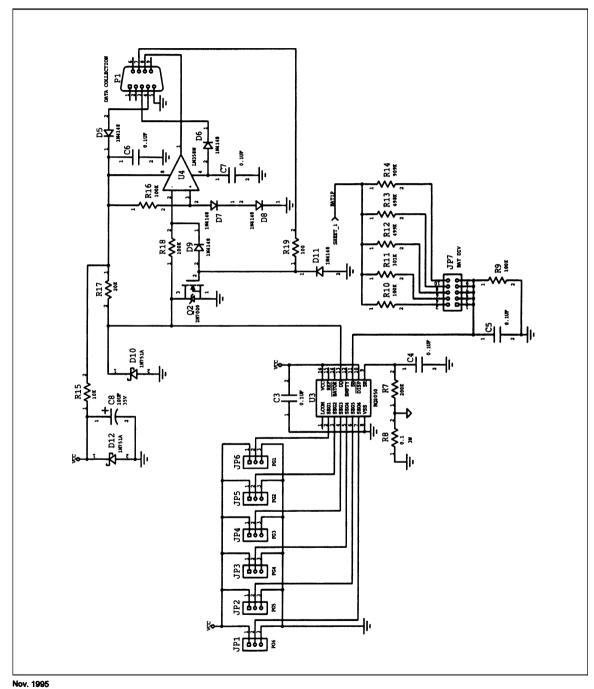

Features

- ➤ bq2903 fast charge control evaluation and development system for rechargeable alkaline batteries such as Renewal® from Rayovac®
- Optional on-board 300mA current-limited charge supply
- Fast charge of three or four alkaline cells
- Pulsed charge terminated by minimum current and backed up by a maximum voltage safety termination
- Selectable end-of-discharge voltage
- Charge status indicator LEDs
- Datalog capability for charge and discharge currents through an RS-232 port to a PC

General Description

The EV2903 Evaluation System provides a development and evaluation environment for the bq2903 Rechargeable Alkaline Charge/Discharge Controller IC. The EV2903 incorporates a bq2903, a bq2014 Gas Gauge IC, an onboard discharge N-FET, and all other hardware needed to charge three or four rechargeable alkaline batteries, such as Renewal from Rayovac.


Fast charge is terminated when the average charge rate falls below approximately 3% of the fast charge rate. For safety, charging is inhibited if the voltage of any cell is greater than 3.0V during charge or if the voltage of any cell is less than 0.4V when not charging (open-circuit voltage).


The user provides batteries and DC power supply. The user configures the EV2903 for the number of cells (three or four), end-of-discharge voltage, and on-board or off-board current regulation.

A full data sheet of this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

EV2903 Schematic

EV2903 Schematic (Continued)

1407. 1885

Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

bq2010

Gas Gauge IC

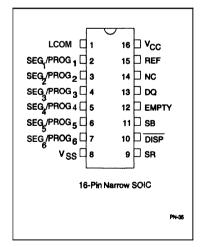
Features

- Conservative and repeatable measurement of available charge in rechargeable batteries
- Designed for battery pack integration
 - 120μA typical standby current
 - Small size enables implementations in as little as ½ square inch of PCB
- Integrate within a system or as a stand-alone device
 - Display capacity via singlewire aerial communication port or direct drive of LEDs
- Measurements compensated for current and temperature
- Self-discharge compensation using internal temperature sensor
- Accurate measurements across a wide range of current (> 500:1)
- 16-pin narrow SOIC

General Description

The bq2010 Gas Gauge IC is intended for battery-pack or in-system installation to maintain an accurate record of a battery's available charge. The IC monitors a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery.

NiMH and NiCd battery self-discharge is estimated based on an internal timer and temperature sensor. Compensations for battery temperature and rate of charge or discharge are applied to the charge, discharge, and self-discharge calculations to provide available charge information across a wide range of operating conditions. Battery capacity is automatically recalibrated, or "learned," in the course of a discharge cycle from full to empty.


Nominal available charge may be directly indicated using a five- or six-segment LED display. Theae segments are used to indicate graphically the nominal available charge.

The bq2010 supports a simple singleline bidirectional aerial link to an external processor (common ground). The bq2010 outputs battery information in response to external commands over the serial link.

The **bq2010** may operate directly from 3 or 4 cells. With the REF output and an external **transistor**, a simple, **inexpensive** regulator can be built to provide Vcc across a greater number of cells.

Internal registers include available charge, temperature, capacity, battery ID, battery status, and programming pin settings. To support subassembly testing, the outputs may also be controlled. The external processor may also overwrite some of the bq2010 gas gauge data registers.

Pin Connections

Pin Names

LCOM	LED common output	REF	Voltage reference output
SEG ₁ /PROG ₁	LED segment 1/ program 1 input	NC	No connect
SEG ₂ /PROG ₂	LED segment 2/	DQ	Serial communications input/output
ara mpoa	program 2 input	EMPTY	Empty battery indicator output
SEG ₃ /PROG ₃	LED segment 3/ program 3 input	SB	Battery sense input
SEG ₄ /PROG ₄	LED segment 4/ program 4 input	DISP	Display control input
SEG5/PROG5	LED segment 5/ program 5 input	SR	Sense resistor input
SEG ₆ /PROG ₆	LED segment 6/	Vcc	3.0-6.5V
PEGGI KOG6	program 6 input	V_{SS}	System ground

Apr. 1995 D

1/18

Pin De	Pin Descriptions		Sense resistor input
LCOM	LED common output		The voltage drop (VsR) across the sense resistor R ₃ is monitored and integrated over time to interpret charge and discharge activity.
	Open-drain output switches Vcc to source current for the LEDs . The switch is off during initialization to allow reading of the soft pull-up or pull-down program resistors . LCOM is also high impedance when the display is off.		The SR input is tied to the high side of the sense resistor. VSR < Vss indicates discharge, and VsR > Vss indicates charge. The effective voltage drop, VsRo, as seen by the bq2010 is VsR + Vos (see Table 4).
SEG ₁ - SEG ₆	LED display segment outputs (dual function with PROG ₁ -PROG ₆)	DISP	Display control input DISP high disables the LED display. DISP
	Each output may activate an LED to sink the current sourced from LCOM.		tied to Vcc allows PROGx to connect directly to Vcc or Vss instead of through a pull-up or pull-down resistor. DISP floating allows the
PROG ₁ - PROG ₂	Programmed fill count selection inputs (dualfunction with SEG₁-SEG₂)		LED display to be active during discharge or charge if the NAC registers update at a rate equivalent to VsRo ≥ 4mV. DISP low
	These three-level input pins define the programmed full count (PFC) thresholds described in Table 2.	SB	activates the display. See Table 1. Secondary battery input
PROG ₃ - PROG ₄	Gas gauge rate selection inputs (dual function with SEG3-SEG4)		This input monitors the single-cell voltage potential through a high-impedance resistive divider network for end-of-discharge voltage
	These three-level input pins defiie the scale factor described in Table 2.		(EDV) thresholds, maximum charge voltage (MCV), and battery removed.
PROG ₅	Self-discharge rate selection (dual function with SEG5)	EMPTY	Battery empty output
	This three-level input pin defines the selfdis -charge compensation rate shown in Table 1.		This open-drain output becomes high-impedance on detection of a valid end-of-discharge voltage (VEDYF) and is low following the next application of a valid charge.
PROG ₆	Display mode selection (dual function with $\mathbf{SEG_6}$)	DQ	Serial 1/0 pin
	This three-level pin defines the display		This is an open-drain bidirectional pin.
NG	operation shown in Table 1.	REF	Voltage reference output for regulator
NC	No connect		REF provides a voltage reference output for an optional micro-regulator.
		$\mathbf{v_{cc}}$	Supply voltage input
		$\mathbf{v_{ss}}$	Ground

2/18 Apr. 1995 D

Functional Description General Operation

The **bq2010 determines** battery capacity by monitoring the amount of charge input to or removed from a rechargeable battery. The **bq2010 measures** discharge and charge currents, estimates self-discharge, **monitors** the battery for low-battery voltage **thresholds**, and **compensates** for temperature and **charge/discharge rates**. The charge **measurement** derives from **monitoring** the voltage acmes a small-value **series** sense **resistor** between the negative battery terminal and ground. The available **battery charge** is **determined** by monitoring this voltage over time and **correcting** the measurement for the environmental and operating **conditions**.

Figure 1 shows a typical battery pack application of the bq2010 using the LED display capability as a charge-state indicator. The bq2010 can be configured to display capacity in either a relative or an absolute display mode. The relative display mode uses the last measured discharge capacity of the battery as the battery 'full' reference. The absolute display mode uses the programmed full count (PFC) as the full reference, forcing each segment of the display to represent a fixed amount of charge. A push-button display feature is available for momentarily enabling the LED display.

The bq2010 monitors the charge and discharge currents as a voltage across a sense resistor (see Rs in Figure 1). A filter between the negative battery terminal and the SR pin may be required if the rate of change of the battery current is too great.

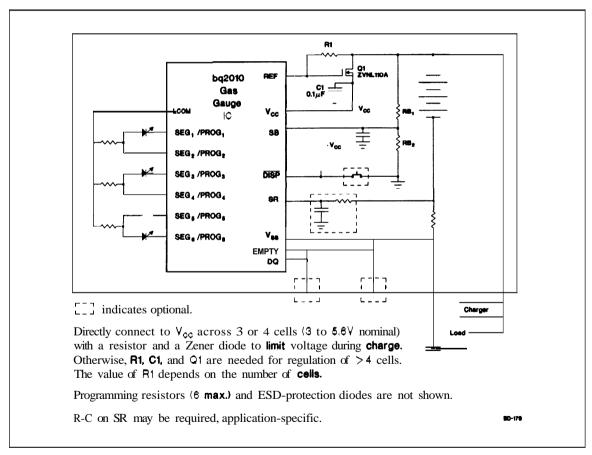


Figure 1. Battery Pack Application Diagram—LED Display

Apr. 1995 D 3/18

Voltage Thresholds

In conjunction with monitoring Vsn for charge/discharge currents, the bq2010 monitors the single-cell battery potential through the SB pin. The single-cell voltage potential is determined through a resistor/divider network according to the following equation:

$$\frac{RB_1}{RB_2} = N - 1$$

where N is the number of cells, RB₁ is connected to the positive battery terminal, and RB₂ is connected to the negative battery terminal. The single-cell battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV). EDV threshold levels are used to determine when the battery has reached an 'empty" state, and the MCV threshold is used for fault detection during charging.

Two EDV thresholds for the bq2010 are fixed at:

VEDV1 (early warning) = 1.05V

 V_{EDVF} (empty) = 0.95V

If **VsB** is below either of the two EDV thresholds, the associated flag is latched and remains latched, independent of VsB, until the next valid charge. EDV monitoring may be disabled under certain conditions as described in the next paragraph.

During discharge and charge, the **bq2010 monitors Vsn** for various thresholds. These thresholds **are** used to compensate the charge and discharge rates. Refer to the count compensation section for details. EDV monitoring is disabled if Vsn ≤ -250mV typical and resumes ½ second after Vsn > -250mV.

EMPTY Output

The EMPTY output switches to high impedance when V_{SB} < V_{EDVF} and remains latched until a valid charge occurs. The bq2010 also monitors V_{SB} relative to V_{MCV}, 2.25V. V_{SB} fallingfrom above V_{MCV} resets the device.

Reset

The bq2010 recognizes a valid battery whenever VsB is greater than 0.1V typical. Vse rising from below 0.25V or falling from above 2.25V resets the device. Reset can also be accomplished with a command over the serial port as described in the Reset Register section.

Temperature

The **bq2010** internally determines the temperature in 10°C steps centered from -35°C to **+85°C**. The temperature steps are **used** to adapt charge and discharge rate compensations, self-discharge counting, and

available charge **display translation**. The temperature range **is** available over the aerial **port** in **10°C increments** as shown below:

TMPGG (hex)	Temperature Range
0x	<-30°C
1x	-30°C to -20°C
2 x	-20°C to -10°C
3x	-10°C to 0°C
4x	0°C to 10°C
5 x	10°C to 20°C
6x	20°C to 30°C
7x	30°C to 40°C
8x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Bx	70°C to 80°C
Cx	> 80°C

Layout Considerations

The **bq2010** measures the voltage differential between the SR and Vss pins. **Vos** (the offset voltage at the SR pin) **is** greatly affected by PC board layout. For optimal **results**, the PC board layout should follow the strict rule of a singlepoint ground return. Sharing high-current ground with small signal ground causes undesirable **noise** on the **small** signal nodes. Additionally:

- The capacitors (SB and Vcc) should be placed as close as possible to the SB and Vcc pins, respectively, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1µf is recommended for Vcc.
- The sense resistor capacitor should be placed as close as possible to the SR pin.
- The sense resistor (Rsns) should be as close as possible to the bq2010.

4/18 Apr. 1995 D

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the bq2010. The bq2010 accumulates a measure of charge and discharge currents, as well as an estimation of sell-discharge. Charge and discharge currents are temperature and rate compensated, whereas self-discharge is only temperature compensated.

The main counter, Nominal Available Charge (NAC), represents the available battery capacity at any given time. Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC register and increment the DCR (Discharge Count Register).

The Discharge Count Register (DCR) is used to update the Last Measured Discharge (LMD) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2010 adapts its capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the Programmed Full Count **(PFC)** shown in Table 2. Until LMD is updated, NAC counts up to but not beyond this threshold during subsequent charges. This approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.

Last Measured Discharge (LMD) or learned battery capacity:

LMD is the last measured discharge capacity of the battery. On initialization (application of Vcc or battery replacement), LMD = PFC. During subsequent discharges, the LMD is updated with the latest measured capacity in the Discharge Count Register (DCR) representing a discharge from full to below EDV1. A qualified discharge is necessary for a capacity transfer from the DCR to the LMD register. The LMD also serves as the 100% reference threshold used by the relative display mode.

2 Programmed Full Count (PFC) or initial battery capacity:

The initial LMD and gas gauge rate values are programmed by using PROG1-PROG4. The PFC also **provides** the 100% reference for the absolute display mode. The **bq2010** is **configured** for a given application by selecting a PFC value from Table 2. The correct PFC may be determined by multiplying the rated battery capacity in mAh by the sense resistor value:

Battery capacity (mAh) • sense resistor (Ω) =

PFC (mVh)

Selecting a PFC **slightly less than** the rated capacity for **absolute** mode provides capacity above the full **reference** for **much** of the battery's life.

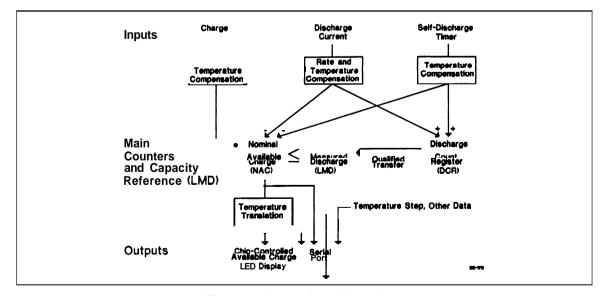


Figure 2. Operational Overview

Apr. 1995 D 5/18

Example: Selecting a PFC Value

 $2200 \text{mAh} \cdot 0.1 \Omega = 220 \text{mVh}$

Select:

Given:

Sense resistor = 0.1Ω Number of cells = 6

Capacity = 2200mAh, NiCd battery Current range = 50mA to 2A Absolute display mode Serial port only Self-discharge = 6/64

Voltage drop over sense resistor = 5mV to 200mV

Therefore:

PFC = 33792 counts or **211mVh**

PROG₁ = float PROG₂ = float PROG₃ = float PROG₄ = low PROG₅ = float PROG₆ = float

The initial full battery capacity is 211mVh (2110mAh) until the bq2010 "learns" a new capacity with a qualified discharge from full to EDV1.

Table 1. bq2010 Programming

Pin Connection	PROG₅ Self-Discharge Rate	PROG ₆ Display Mode	DISP Display State
Н	Disabled	Absolute NAC = PFC on reset	LED disabled
Z	NAC/ ₆₄	Absolute NAC = 0 on reset	LED-enabled on discharge or charge when equivalent {Vsro} ≥ 4mV
L	NAC/47	Relative NAC = 0 on reset	LED on

Note: PROG₅ and PROG₆ states are independent.

Table 2. bq2010 Programmed Full Count mVh Selections

PR	OG _x	Pro- grammed Full		PROG ₄ = L			PROG ₄ = Z		
1	2	Count (PFC)	PROG3 = H	PROG3 = Z	PROG3 - L	PROG3 = H	PROG3 - Z	PROG3 = L	Units
-	-	-	Scale = 1/80	Scale = 1/160	Scale = 1/320	Scale = 1/640	Scale = 1/1280	Scale = 1/2560	mVh/ count
Н	н	49152	614	307	154	76.8	38.4	19.2	mVh
Н	Z	45056	563	282	141	70.4	35.2	17.6	mVh
Н	L	40960	512	256	128	64.0	32.0	16.0	mVh
Z	Н	36864	461	230	115	57.6	28.8	14.4	mVh
Z	Z	33792	422	211	106	53.0	26.4	13.2	mVh
Z	L	30720	384	192	96.0	48.0	24.0	12.0	mVh
L	Н	27648	346	173	86.4	43.2	21.6	10.8	mVh
L	Z	25600	320	160	80.0	40.0	20.0	10.0	mVh
L	L	22528	282	141	70.4	35.2	17.6	8.8	mVh
		ivalent to 2 sec. (nom.)	90	45	22.5	11.25	5.6	2.8	mV

6/18 Apr. 1995 D

3. Nominal Available Charge (NAC):

NAC counts up during charge to a maximum value of LMD and down during discharge and **self-dis**-charge to **0**. NAC is reset to **0** on initialization (PROG₈ = Z or low) and on the first valid charge following discharge to **EDV1**. NAC is set to PFC on initialization if PROG₈ = high. To prevent overstatement of charge during **periods** of overcharge, NAC stops incrementing when NAC = LMD.

4. Discharge Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing **after** NAC has decremented to **0**. Prior to NAC = **0** (empty battery), both discharge and self-discharge increment the DCR. After NAC = **0**, only discharge increments the DCR The DCR resets to **0** when NAC = LMD. The DCR does not roll over but stops counting when it reaches FFFFh.

The DCR value becomes the new LMD value on the **first** charge after a valid discharge to **VEDV1** if:

No valid charge initiations (charges greater than 256 NAC counts, where **VsRo > VsRo**) occurred during the period between NAC = LMD and EDV1 detected.

The self-discharge count is not more than 4096 counts (8% to 18% of PFC, specific percentage threshold determined by PFC).

The temperature is \geq 0°C when the EDV1 level is reached during discharge.

The valid discharge flag **(VDQ)** indicates whether the present **discharge** is valid for LMD update.

Charge Counting

Charge activity is detected based on a positive voltage on the VsR input. If charge activity is detected, the bq2010 increments NAC at a rate proportional to VsRo and, if enabled, activates an LED display if the rate is equivalent to VsRo > 4mV. Charge actions increment the NAC after compensation for charge rate and temperature.

The bq2010 determines charge activity sustained at a continuous rate equivalent to Vsro > Vsrq. A valid charge equates to sustained charge activity greater than 256 NAC counts. Once a valid charge is detected, charge counting continues until Vsro (Vsr + Vos) falls below Vsrq. Vsrq is a programmable threshold as described in the Digital Magnitude Filter section. The default value for Vsrq is 375µV.

Discharge Counting

All discharge counts where $V_{SRO} < V_{SRD}$ cause the NAC register to decrement and the DCR to increment. Apr. 1995 D

Exceeding the fast discharge threshold (FDQ) if the rate is equivalent to Vsro < -4mV activates the display, if enabled. The display becomes inactive after Vsro rises above -4mV. Vsro is a programmable threshold as described in the Digital Magnitude Filter section. The default value for Vsro is -300µV.

Self-Discharge Estimation

The bq2010 continuously decrements NAC and increment8 DCR for self-discharge based on time and temperature. The self-discharge count rate is programmed to be a nominal 1/64 • NAC, 1/47 • NAC per day, or disabled as selected by PROGs. This is the rate for a battery whose temperature is between 20°-30°C. The NAC register cannot be decremented below 0.

Count Compensations

The **bq2010** determines fast charge when the NAC updates at a rate of 2 2 **counts/sec**. Charge and discharge activity is **compensated** for temperature and **charge/discharge** rate before updating the NAC **and/or DCR**. **self-discharge** estimation **is compensated** for temperature before updating the NAC or DCR.

Charge Compensation

Two charge **efficiency** compensation factors **are** used for trickle **charge** and **fast** charge. Fast charge is **defined** as a rate of **charge resulting** in ≥ 2 **NAC counts/sec** (≥ 0.15 C to **0.32C** depending on PFC **selections**; see Table 2). The compensation default8 **to** the fast charge factor until the actual **charge** rate **is** determined.

Temperature **adapts** the charge rate **compensation** factors over three ranges between nominal, warm, and hot temperatures. The compensation factors are shown below.

Charge Temperature	Trickle Charge Compensation	Fast Charge Compensation
<30°C	0.80	0.96
30-40°C	0.75	0.90
>40°C	0.65	0.80

Discharge Compensation

Corrections for the rate of discharge are made by adjusting an internal discharge compensation factor. The discharge compensation factor is based on the **dynamically measured** VSR.

The compensation factors during discharge are:

Approximate Vsa Threshold	Discharge Compensation Factor	Efficknc y
V _{SR} > -150 mV	1.00	100%
V _{SR} < -150 mV	1.05	95%

Temperature compensation during discharge **also takes** place. At lower temperatures, the compensation factor increases by 0.05 for each 10°C temperature step below 10°C.

Comp. factor = $1.0 + (0.05 \cdot N)$

Where N = Number of 10° C steps below 10° C and -150mV < V_{SR} < 0.

For example:

 $T > 10^{\circ}C$: Nominal compensation, N = 0

 $O^{\circ}C < T < 10^{\circ}C$: N = 1 (i.e., 1.0 becomes 1.05)

 -10° C < T < 0° C: N = 2 (i.e., 1.0 becomes 1.10)

 -20° C < T < -10° C: N = 3 (i.e., 1.0 becomes 1.15)

 -20° C < T < -30° C: N = 4 (i.e., 1.0 becomes 1.20)

Self-Discharge Compensation

The **self-discharge** compensation is programmed for a nominal rate of ${}^{1}\!\!/64$ • NAC, ${}^{1}\!\!/47$ • NAC per day, or disabled. This is the rate for a battery within the **20–30°C** temperature range (TMPGG = **6x**). **This** rate varies **across** 8 ranges from **<10°C** to **>70°C**, doubling with each higher temperature step (10°C). See Table 3.

Table 3. Self-Discharge Compensation

	Typical Rate			
Temperature Range	PROG5 = 7	PROG ₅ = L		
< 10°C	NAC/256	NAC/ ₁₈₈		
10-20°C	NAC/128	NAC/94		
20-30°C	NAC/64	NAC/47		
30-40°C	NAC/32	NAC/ ₅		
40-50°C	NAC/16	NAC/11.8		
50-60°C	NAC/8	NAC/5.88		
60-70°C	NAC/4	NAC/2 04		
> 70°C	NAC/2	NAC/1.47		

Digital Magnitude Filter

The bq2010 has a programmable digital filter to eliminate charge and discharge counting below a set threshold. The default setting is -0.30mV for VsrD and 8/18

+0.38mV for **Vsrq.** The proper digital filter setting can be calculated using the following equation. Table 4 shows typical digital filter settings.

$$V_{SRD}(mV) = -45/DMF$$

 $V_{SRQ}(mV) = -1.25 \cdot V_{SRD}$

Table 4. Typical Digital Filter Settings

DMF	DMF Hex.	Vsad (mV)	Vsrq (mV)
75	4B	-0.60	0.75
100	64	-0.45	0.56
150 (default)	96	-0.30	0.38
175	AF	-0.26	0.32
200	C8	-0.23	0.28

Error Summary

Capacity Inaccurate

The LMD is susceptible to error on initialization or if no updates occur. On initialization, the LMD value includes the error between the programmed full capacity and the actual capacity. This error is present util a valid discharge occurs and LMD is updated (see the DCR description on page 7). The other cause of LMD error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

A Capacity Inaccurate counter (CPI) is maintained and incremented each time a valid charge occurs (qualified by NAC; see the CPI register description) and is reset whenever LMD is updated from the DCR. The counter does not wrap around but stops counting at 255. The capacity inaccurate flag (CI) is set if LMD has not been updated following 64 valid charges.

Current-Sensing Error

Table 5 illustrates the current-sensing error as a function of Vsn. A digital filter eliminates charge and discharge counts to the NAC register when Vsno (Vsn + Vos) is between Vsno and Vsno.

Communicating With the bq2010

The **bq2010** includes a simple single-pin (DQ plus return) serial data interface. A **host processor uses** the interface to access various **bq2010** registers. Battery characteristics may be **easily monitored** by adding a **single contact** to the battery pack. The open-drain DQ pin on the **bq2010** should be pulled up by the **host system** or may be left floating if the serial interface is not used.

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offset referred to VsR	± 50	± 150	μV	$\overline{\text{DISP}}$ = Vcc.
INL	Integrated non-linearity error	± 2	±4	%	Add 0.1% per °C above or below 25°C and 1%per volt above or below 4.25 V.
INR	Integrated non -repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

Table 5. bq2010 Current-Sensing Errors

The interface **uses** a command-based protocol, where the host **processor** sends a command byte to the **bq2010**. The command directs the **bq2010** either to store the next eight bits of data received to a register specified by the command byte or to output the eight bits of data specified by the command byte.

The communication protocol is asynchronous return-toone. Command and data bytes consist of a stream of eight bits that have a maximum transmission rate of 333 bits/sec. The least-significant bit of a command or data byte is transmitted first. The protocol is simple enough that it can be implemented by most host processors using either polled or interrupt processing. Data input from the bq2010 may be sampled using the pulse-width capture timers available on some microcontrollers.

Communication is normally initiated by the **host processor** sending a BREAK command to the **bq2010**. A BREAK is detected when the DQ pin is driven to a logic-low state for a time, **tB** or greater. The DQ pin should then be **returned** to **its normal** ready-high logic state for a time, **tBR**. The **bq2010** is now ready to receive a command from the host **processor**.

The return-bone data bit frame **consists** of three **distinct** sections. **The first** section is used to *start* the **transmission** by either the host or the **bq2010** taking the **DQ** pin to a logic-low state for a period, **tstrh.b.** The next **section** is the actual data **transmission**, where the data should be valid by a period, **tpsu**, **after** the negative **edge** used to start communication The data should be held for a period, **tpv**, to allow the host or **bq2010** to sample the data bit.

The final section is used to stop the transmission by returning the DQ pin to a logic high state by at least a period, tssu, after the negative edge used to start communication. The final logic-high state should be held until a period, tsv, to allow time to ensure that the bit transmission was stopped properly. The timings for data and break communication are given in the serial communication timing specification and illustration sections.

Communication with the **bq2010** is always performed with the least-significant bit being transmitted **first. Figure 3** shows an example of a communication **sequence** to read the **bq2010** NAC **register.**

bq2010 Registers

The bq2010 command and status registers are listed in Table 6 and described below.

Command Register (CMDR)

The **write-only** CMDR register is **accessed** when eight valid command **bits** have been received by the **bq2010**. The CMDR **register** contains two fields:

- W/R bit
- Command address

The \overline{WR} bit of the command register is used to **select** whether the received command is for a read or a write function.

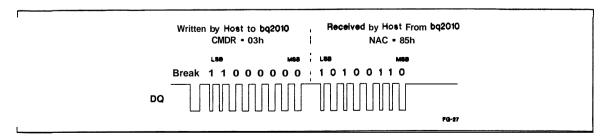


Figure 3. Typical Communication With the bq2010

Apr. 1995 D 9/18

Table 6. bq2010 Command and Status Registers

							Contro	ol Field			
Symbol	Register Name	Loc. (hex)	Read/ Write	7(MSB)	6	5	4	3	2	1	0(LSB)
CMDR	Command register	00h	Write	W/R	AD6	AD5	AD4	AD3	AD2	AD1	AD0
FLGS1	Primary status flags register	Olh	Read	CHGS	BRP	BRM	CI	VDQ	n/u	EDV1	EDVF
TMPGG	Temperature and gas gauge register	02h	Read	тмрз	TMP2	TMP1	TMP0	GG3	GG2	GG1	GG0
NACH	Nominal available charge high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACHO
NACL	Nominal available charge low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATID0
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
FLGS2	Secondary status flags register	06h	Read	CR	DR2	DR1	DRO	n/u	n/u	n/u	OVLD
PPD	Program pin pull-down register	07h	Read	n/u	n/u	PPD6	PPD5	PPD4	PPD3	PPD2	PPD1
PPU	Program pin pull-up register	08h	Read		n/u	PPU6	PPU5	PPU4	PPU3	PPU2	PPU1
СРІ	Capacity inaccurate count register	09h	Read	CP17	CPI6	CP15	CP14	CP13	CP12	CPI1	CPIO
DMF	Digital magnitude filter register	0ah	R/W	DMF7	DMF6	DMF5	DMF4	DMF3	DMF2	DMF1	DMF0
RST	Reset register	39h	Write	RST	0	0	0	0	0	0	0

Note:

n/u = not used

10/18 Apr. 1995 D

The W/\overline{R} values are:

	CMDR Bits									
7	6	5	4	3	2	1	0			
W/R	-	-	-	•	•	-	-			

Where W/\overline{R} is:

- The bq2010 outputs the requested register contents specified by the address portion of CMDR.
- The following eight bits should be written to the register specified by the address portion of CMDR.

The lower seven-bit field of **CMDR contains** the address portion of the register to be **accessed**. Attempts to write to invalid addresses are ignored.

	CMDR Bits								
7	6	5	4	3	2	1	0		
•	AD6	AD5	AD4	AD3	AD2	AD1	AD0 (LSB)		

Primary Status Flags Register (FLGS1)

The read-only FLGSI register (address=01h) contains the primary bq2010 flags.

The charge **status** flag (CHGS) is asserted when a valid **charge** rate is **detected**. **Charge** rate is deemed valid **when Vsro > Vsro**. A **Vsro of less than Vsro or discharge** activity clears CHGS.

The CHGS values are:

FLGSI Bits									
7	6	5	4	3	2	1	0		
CHGS	-	-	-		•	-			

Where CHGS is:

- 0 Either discharge activity detected or Vsro
- 1 Vsro > Vsrq

The **battery** replaced flag **(BRP)** is **asserted** whenever the potential on the SB pin (relative to **V**_{SS}), **V**_{SB}, falls from above the maximum cell voltage, MCV **(2.25V)**, or **rises** above **0.1V**. The BRP flag is also **set** when the **bq2010** is **reset** (see the RST register description). BRP is reset when either a valid charge action increments NAC to be equal to LMD, or a valid charge action is

detected after the EDVI flag is asserted. BRP = 1 signifies that the device has been reset.

The BRP values are:

	FLGSI Bits									
7	6	5	4	3	2	1	0			
•	BRP	•				-	-			

Where BRP is:

- O Battery is charged until NAC = LMD or discharged until the EDV1 flag is asserted
- 1 VsB dropping from above MCV, VsB rising from below 0.1V, or a serial part initiated reset has occurred

The **battery removed** flag (BRM) is **asserted** whenever the potential **on** the **SB** pin (relative to **Vss**) rises above MCV or falls below **0.1V**. The **BRM** flag is **asserted** until the condition causing **BRM** is removed.

The BRM values are:

FLGSI Bits									
7	6	5	4	3	2	1	0		
	-	BRM	-						

Where **BRM** is:

- $0 0.1 \text{V} < \text{V}_{\text{SB}} < 2.25 \text{V}$
- $1 0.1 \text{ V} > \text{V}_{\text{SB}} \text{ or V}_{\text{SB}} > 2.25 \text{ V}$

The **capacity inaccurate** flag **(CI)** is used to warn the user that the battery has been charged a substantial number of **times** since LMD has been updated. **The** CI flag is asserted on the 64th charge after the last LMD update or when the **bq2010** is **reset**. The flag is cleared after an LMD update.

The CI values are:

	FLGSI Bits								
7	6	1			2	1	0		
-	-		CI		•		-		

Where CI is:

- When LMD is updated with a valid full discharge
- 1 After the 64th valid charge action with no LMD updates or the bq2010 is reset

Ap. 1995 D 11/18

The valid **discharge** flag (VDQ) is **asserted** when the **bq2010** is discharged from **NAC=LMD**. The flag remains set until either LMD is updated or one of three actions that can clear VDQ occurs:

- The self-discharge count register (SDCR) has exceeded the maximum acceptable value (4096 counts) for an LMD update.
- A valid charge action sustained at Vsro > Vsro for at least 256 NAC counts.
- The EDVI flag was set at a temperature below **0°C**

The VDQ values are:

	FLGS1 Bits								
7	6	5	4	3	2	1	0		
•	-	-	-	VDQ	•	-	-		

Where VDQ is:

- 0 SDCR ≥ 4096, subsequent valid charge action detected, or EDV1 is asserted with the temperature less than 0°C
- 1 On first discharge after NAC = LMD

The firet **end-of-discharge warning** flag (EDVI) warns the user that the battery is almost empty. The first segment pin, SEG₁, is modulated at a 4Hz rate if the display is enabled once EDVI is asserted, which should warn the user that loss of battery power is imminent. The EDVI flag is latched until a valid charge has been detected.

The EDV1 values are:

	FLGS1 Bits							
7	6	5	4	3	2	1	0	
-	-	•	-	-	-	EDV1	•	

Where EDV1 is:

- Valid charge action detected, V_{SB} ≥ 1.05V
- 1 VSB < 1.05V providing that OVLD=0 (see FLGS2 register description)

The final **end-of-discharge warning** flag (**EDVF**) is used to warn that battery power is at a failure **condition**. All segment drivers are turned off. The EDVF flag is latched until a valid charge has been detected. The **EMPTY** pin is also forced to a high-impedance state on assertion of EDVF. The host system **may** pull **EMPTY** high, which may be **used** to disable circuitry to prevent deep-discharge of the battery.

The EDVF values are:

	FLGSI Bits							
7	6	5	·					
-	-	•	- EDVF					

Where EDVF is:

- 0 Valid charge action detected, VsB ≥ 0.95V
- 1 VsB < 0.95V providing that OVLD=0 (see FLGS2 regieter description)</p>

Temperature and Gas Gauge Register (TMPGG)

The read-only TMPGG register (address=02h) contains two data fields. The first field contains the battery temperature. The second field contains the available charge from the battery.

TMPGG Temperature Bits									
7	6	5	4	3	2	1	0		
TMP3	TMP2	TMP1	TMP0		-	-			

The **bq2010** contains an internal temperature sensor. The temperature is used to **set** charge and discharge efficiency factors as well **as** to adjust the **self-discharge** coefficient.

The temperature register contents may be translated **as** shown below.

TMP3	TMP2	TMP1	TMPO	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
_1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

12/18 Apr. 1995 D

The bq2010 calculates the available charge as a function of NAC, temperature, and a full reference, either LMD or PFC. The results of the calculation are available via the display port or the gas gauge field of the TMPGG register. The register is used to give available capacity in $\frac{1}{16}$ increments from 0 to $\frac{15}{16}$.

TMPGG Gas Gauge Bits									
7	6	5	4	3	2	1	0		
		•		GG3	GG2	GG1	GG0		

The gas gauge display and the gas gauge portion of the TMPGG register are adjusted for cold temperature dependencies. A piece-wise correction is performed as follows:

Temperature	Available Capacity Calculation
> 0°C	NAC/"Full Reference"
-20°C < T < 0°C	0.75 • NAC/ "Full Reference"
< -20°C	0.5 • NAC/"Full Reference"

The adjustment between $> 0^{\circ}$ C and -20° C $< T < 0^{\circ}$ C has a 10° C hysteresis.

Nominal Available Charge Registers (NACH/NACL)

The read/write NACH high-byte register (address=03h) and the read-only NACL low-byte register (address=17h) are the main gas gauging register for the bq2010. The NAC registers are incremented during charge actions and decremented during discharge and self-discharge actions. The correction factors for charge/discharge efficiency are applied automatically to NAC.

On reset, if PROG₆ = Z or low, NACH and NACL are cleared to 0; if PROG₆ = high, NACH = PFC and NACL = 0. When the bq2010 detects a valid charge, NACL resets to 0. Writing to the NAC registers affects the available charge counts and, therefore, affects the bq2010 gas gauge operation. Do not write the NAC registers to a value greater than LMD.

Battery Identification Register (BATID)

The read/write BATID register (address=04h) is available for use by the system to determine the type of battery pack. The BATID contents are retained as long as VCC is greater than 2V. The contents of BATID have no effect on the operation of the bq2010. There is no default setting for this register.

Last Measured Discharge Register (LMD)

LMD is a read/write register (address=05h) that the bq2010 uses as a measured full reference. The bq2010 adjusts LMD based on the measured discharge capacity of the battery from full to empty. In this way the bq2010

updates the capacity of the battery. LMD is set to PFC during a bo2010 reset.

Secondary Status Flags Register (FLGS2)

The read-only FLGS2 register (address=06h) contains the secondary bq2010 flags.

The charge rate flag (CR) is used to denote the fast charge regime. Fast charge is assumed whenever a charge action is initiated. The CR flag remains asserted if the charge rate does not fall below 2 counts/sec.

The CR values are:

FLGS2 Bits										
7	6	5	4	3	2	1	0			
CR	-			-	•	-				

Where CR is:

- 0 When charge rate falls below 2 counts/sec
- 1 When charge rate is above 2 counts/sec

The fast charge regime efficiency factors are used when CR = 1. When CR = 0, the trickle charge efficiency factors are used. The time to change CR varies due to the user-selectable count rates.

The discharge rate flags, DR2-0, are bits 6-4.

	FLGS2 Bits									
7	6	5	4	3	2	1	0			
	DR2	DR1	DR0	-	-	-				

They are used to determine the current discharge regime as follows:

	DR2	DR1 DR0		V _{SR} (V)
1	0	0	0	$V_{SR} > -150 \text{mV}$
	0	0	1	$V_{SR} < -150 \text{mV}$

The overload flag (OVLD) is asserted when a discharge overload is detected, Vsr < -250mV. OVLD remains asserted as long as the condition persists and is cleared 0.5 seconds after Vsr > -250mV. The overload condition is used to stop sampling of the battery terminal characteristics for end-of-discharge determination. Sampling is re-enabled 0.5 secs after the overload condition is removed.

	FLGS2 Bits									
7	6	5	4	3	2	1	0			
	-				-		OVLD			

DR2-0 and **OVLD** are **set** based on the **measurement** of the voltage at the SR pin relative to **Vss.** The rate at which this measurement is made varies with device activity.

Program Pin Pull-Down Register (PPD)

The read-only PPD register (address=07h) contains some of the programming pin information for the bq2010. The segment drivers, SEG1-6, have a corresponding PPD register location, PPD1-6. A given location is eat if a pull-down resistor has been detected on its corresponding segment driver. For example, if SEG1 and SEG4 have pull-down resistors, the contents of PPD are xx001001.

PPD/PPU Bits									
7 6 5 4 3 2					2	1	0		
	-	PPU ₆	PPU ₅	PPU4	PPU ₃	PPU ₂	PPU ₁		
	-	PPD ₆	PPD ₅	PPD4	PPD3	PPD ₂	PPD ₁		

Program Pin Pull-Up Register (PPU)

The read-only PPU register (address=08h) contains the rest of the programming pin information for the bq2010. The segment drivers, SEG₁₋₆, have a corresponding PPU register location, PPU₁₋₈. A given location is set if a pull-up resistor has been detected on its corresponding segment driver. For example, if SEG₃ and SEG₆ have pull-up resistors, the contents of PPU are xx100100.

Capacity Inaccurate Count Register (CPI)

The read-only CPI register (address=09h) is used to indicate the number of times a battery has been charged without an LMD update. Because the capacity of a rechargeable battery varies with age and operating conditions, the bq2010 adapts to the changing capacity over time. A complete discharge from full (NAC=LMD) to empty (EDV1=1) is required to perform an LMD update assuming there have been no intervening valid charges, the temperature is greater than or equal to 0°C, and the self-dischargecounter is leas than 4096 counts.

The CPI register is incremented every time a valid charge is detected. When NAC > 0.94 • LMD, however, the CPI register increments on the f i i valid charge; CPI does not increment again for a valid charge until NAC < 0.94 • LMD. This prevents continuous trickle charging from incrementing CPI if self-discharge decrements NAC. The CPI register increments to 255 without rolling over. When the contents of CPI are incremented to 64, the capacity inaccurate flag, CI, is asserted in the FLGS1 register. The CPI register is reset whenever an update of the LMD register is performed, and the CI flag is also cleared.

Digital Magnitude Filter (DMF)

The read-write DMF register (address = 0ah) provides the system with a means to change the default settings of the digital magnitude filter. By writing different values into this register, the limits of VsrD and VsrQ can be adjusted.

Note: Care should be taken when writing to this register. A **VsRD** and **VsRQ** below the specified **Vos** may adversely affect the accuracy of the **bq2010**. Refer to Table 4 for **recommended** settings for the DMF register.

Reset Register (RST)

The reset **register (address=39h)** provides the means to perform a software-controlled **reset** of the device. By writing the RST register **contents** from **00h** to **80h**, a **bq2010** reset is performed. Setting any bit other than the most-significant bit of the RST register **is not allowed**, and results in improper opentwn of the **bq2010**.

Resetting the **bq2010 sets** the following:

■ LMD = PFC

CPI, VDQ, NACH, and NACL = 0

■ CI and BRP = 1

Note: NACH = **PFC** when **PROG**₆ = H. Self-discharge is disabled when **PROG**₅ = H

Display

The **bq2010** can directly display capacity information using low-power **LEDs**. If **LEDs** are **used**, the program pins should be resistively tied to **Vcc** or **Vss** for a program high or program low, respectively.

The **bq2010** displays the battery charge state in either absolute or relative mode. In relative mode, the battery charge is represented **as** a percentage **of** the LMD. Each LED segment represents 20% of the LMD. The sixth segment, **SEG6**, is not used.

In absolute mode, each segment represents a **fixed** amount of charge, based on the initial PFC. In absolute mode, each segment represents 20% of the PFC, with SEG6 representing "overfull" (charge above the PFC). As the battery wears out over time, it is possible for the LMD to be below the initial PFC. In **this** case, all of the LEDs may not turn on in absolute mode, representing the reduction in the actual battery capacity.

The capacity display is **also** adjusted for the present battery temperature. The temperature adjustment reflects the available capacity at a given **temperature** but **does** not **affect** the NAC register. The temperature **adjustments** are detailed in the TMPGG register **description**.

14/18 Apr. 1995 D

When \overline{DISP} is tied to V_{CC} , the SEG1-s outputs are inactive. When \overline{DISP} is left floating, the display becomes active whenever the NAC registers are counting at a rate equivalent to $|V_{SRO}| \ge 4$ mV. When pulled low, the segment outputs become active immediately. A capacitor tied to \overline{DISP} allows the display to remain active for a short period of time after activation by a push-button switch.

The segment outputs are modulated as two banks of three, with segments 1, 3, and 5 alternating with segments 2, 4, and 6. The segment outputs are modulated at approximately 100Hz with each segment bank active for 30% of the period.

SEG₁ blinks at a **4Hz** rate whenever VSB has been **detected** to be below **VEDV1** (**EDV1 = 1**), indicating a low-battery condition. **VSB** below **VEDVF** (**EDVF = 1**) disables the display output.

Microregulator

The bq2010 can operate directly from 3 or 4 cells. To facilitate the power supply requirements of the bq2010, an REF output is provided to regulate an external low-threshold n-FET. A micropower source for the bq2010 can be inexpensively built using the FET and an external resistor; see Figure 1.

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	v	Current limited by R1 (see Figure 1)
Vsr	Relative to Vss	-0.3	+7.0	v	Minimum 100Ω series resistor should be used to protect SR in case of a shorted battery (see the bq2010 application note for details).
	Operating	0	+70	°C	Commercial
Topr	temperature	-40	+85	°C	Industrial

Note: Permanent device damage may occur if **Absolute** Maximum Ratings are exceeded. Functional operation

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning	0.93	0.95	0.97	V	SB
V _{EDV1}	First empty warning	1.03	1.05	1.07	V	SB
V_{SR1}	Discharge compensation threshold	-120	-150	-180	mV	SR, V _{SR} + V _{OS}
Vsro	SR sense range	-300	•	+2000	mV	$SR, V_{SR} + V_{OS}$
VSRQ	Valid charge	375	•	•	μV	V _{SR} + V _{OS} (see note)
V_{SRD}	Valid discharge			-300	μV	Vsr + Vos (see note)
V _{MCV}	Maximum single-cell voltage	2.20	2.25	2.30	V	SB
			0.1	0.25	V	SB pulled low
V_{BR}	Battery removed/replaced	2.20	2.25	2.30	V	SB pulled high

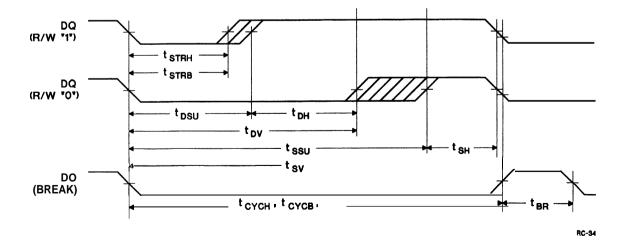
Note: Default value; value set in **DMF** register. **Vos** is affected by PC board layout. **Proper** layout guidelines should be followed for optimal **performance**. See "LayoutConsiderations."

Apr. 1995 D 15/18

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5	v	V _{CC} excursion from < 2.0V to ≥ 3.0V initializes the unit.
.,	Reference at 25°C	5.7	6.0	6.3	V	Iref = 5µA
VREF	Reference at -40°C to +85°C	4.5		7.6	V	Iref = 5µA
Rref	Reference input impedance	2.0	5.0		MΩ	V _{REF} = 3V
			90	136	μA	$V_{CC} = 3.0V, DQ = 0$
Icc	Normal operation		120	180	μA	V _{CC} = 4.25V, DQ = 0
			170	250	μA	Vcc = 6.5V , DQ = 0
V _{SB}	Battery input	0		Vcc	V	
RsBmax	SB input impedance	10			MR	$0 < V_{SB} < V_{CC}$
IDISP	DISP input leakage			5	μA	$V_{\text{DISP}} = V_{\text{SS}}$
ILCOM	LCOM input leakage	-0.2		0.2	μA	$\overline{\text{DISP}} = V_{CC}$
R_{DQ}	Internal pulldown	500			ΚΩ	
V_{SR}	Sense resistor input	-0.3		2.0	v	V _{SR} < V _{SS} = discharge; V _{SR} > V _{SS} = charge
R_{SR}	SR input impedance	10			ΜΩ	-200mV < V _{SR} < V _{CC}
VIH	Logic input high	Vcc • 0.2	•		V	PROG ₁ -PROG ₆
V_{IL}	Logic input low		-	V _{SS} + 0.2	V	PROG ₁ -PROG ₆
Viz	Logic input Z	float		float	V	PROG ₁ -PROG ₆
Volsl	SEG _X output low, low V _{CC}		0.1		v	Vcc = 3V, IoLs ≤ 1.75mA SEG ₁ -SEG ₆
Volsh	SEGx output low, high Vcc		0.4		v	$V_{CC} = 6.5V$, $I_{OLS} \le 11.0$ mA SEG_1 - SEG_6
Vohlcl	LCOM output high, low Vcc	Vcc · 0.3	•		V	$V_{CC} = 3V$, $I_{OHI,COM} = -5.25$ mA
Vohlch	LCOM output high, high Vcc	Vcc • 0.6	-		V	Vcc = 6.5V, I _{OHLCOM} = -33.0mA
I _{IH}	PROG ₁₋₆ input high current		1.2		μA	V _{PROG} = V _{CQ} /2
I_{IL}	PROG _{1.6} input low current		1.2		μA	V _{PROG} = V _{CC} /2
Іоньсом	LCOM source current	-33			mA	At Vohlch = $Vcc \cdot 0.6V$
Iols	SEG _X sink current			11.0	mA	At Volsh = 0.4V
Iol	Open-drain sink current			5.0	mA	At Vol = Vss + 0.3V DQ, EMPTY
V_{OL}	Open-drain output low			0.5	V	Iol 55mA, DQ, EMPTY
V _{IHDQ}	DQ input high	2.5			V	DQ
VILDQ	DQ input low			0.8	V	DQ
RPROG	Soft pull-up or pull-down resistor value (for programming)			200	ΚΩ	PROG ₁ -PROG ₆
RFLOAT	Float state external impedance	_	5	•	ΜΩ	PROG ₁ -PROG ₆

Note: All voltages relative to Vss.


18/18 Apr. 1995 D

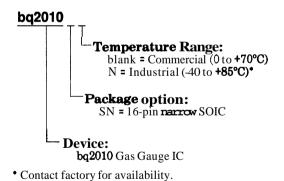
Serial Communication Timing Specification (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcych	Cycle time, host to bq2010	3			ms	See note
tcycb	Cycle time, bq2010 to host	3		6	me	
tstrh	Start hold, host to bq2010	5			ns	
tstrb	Start hold, bq2010 to host	500			μв	
tosu	Data setup			750	μs	
ton	Data hold	750			μs	
tDV	Data valid	1.50			me	
tssu	Stop setup			2.26	me	
tsH	Stop hold	700			μs	
tsv	Stop valid	2.95			me	
tB	Break	3			me	
tBR	Break recovery	1			me	

Note: The open-drain DQ pin should be pulled to at least Vcc by **the host system** for proper **DQ** operation. DQ may be left floating if the serial interface **is** not used.

Serial Communication Timing Illustration

Apr. 1995 D 17/18


Data Sheet Revision History

Chanae No.	Page No.	Description	Nature of Change
3	4	EDV monitoring	Was: EDV monitoring is disabled if V _{SR} ≤ -150mV; Is: EDV monitoring is disabled if V _{SR} ≤ -250mV
3	6	Table 1, PROG ₅	Was: PROG ₅ = H = Reserved; Is: PROG ₅ = H = Disable self-discharge
3	7,8	Self-discharge	Add: or disabled as selected by PROG ₅
3	11	Capacity inaccurate	Correction: CI is asserted on the 64th charge after the last LMD update or when the bq2010 is reset
3	13	Nominal available charge register	NACL stops counting when NACH reaches zero
3	13	Overload flag	Was: V _{SR} < -150mV Is: V _{SR} < -250mV

Note:

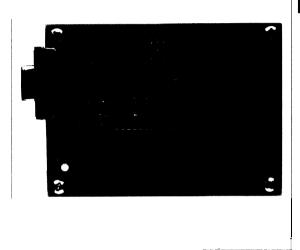
Changes 1 and 2; please refer to the 1995 Data Book. Change 3 = Apr. 1995 D changes from Mar. 1994 C.

Ordering Information

18/18 Apr. 1995 D

bq2010/H Evaluation System

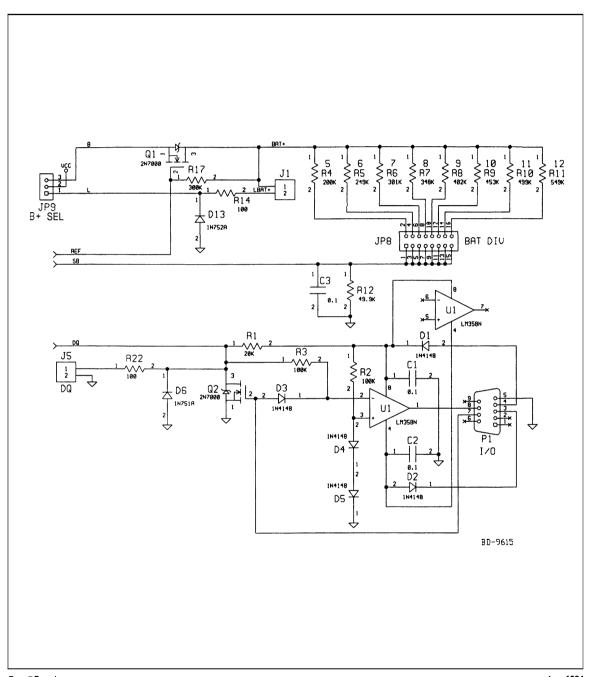
Features


- bq2010/H Gas Gauge IC evaluation and development system
- ➤ RS-232 interface hardware for easy access to state-of-charge information via the serial port.
- ➤ Alternative terminal block for direct connection to the serial port
- ➤ Battery state-of-charge monitoring for 5- to 10-cell (series) applications (2 user-selectable options for 3, 4, or greater than 10 cells)
- ➤ On-board regulator for greater than 4-cell applications
- State-of-charge information displayed on bank of 6 LEDs
- Nominal capacity jumper-configurable
- Cell chemistry jumper-configurable
- Display mode jumper-configurable

General Description

The EV2010/H Evaluation System provides a development and evaluation environment for the bq2010/H Gas Gauge IC. The EV2010/H incorporates a bq2010/H, a

sense resistor, and all other hardware necessary to provide a capacity monitoring function for 3 to 12 series NiCd or NiMH cells.


Hardware for an RS-232 interface is included on the EV2010/H so that easy access to the state-of-charge information can be achieved via the serial port of the bq2010/H. Direct connection to the serial port of the bq2010/H is also made available for check-out of the final hardware/software implementation.

The menu-driven software provided with the EV2010/H displays charge/discharge activity and allows user interface to the bq2010/H from any $_{standard}\,DOS\,PC.$

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

EV2010 Board Schematic

Rev. C Board June 1994

Using the bq2010

A Tutorial for Gas Gauging

Introduction

This tutorial introduces the **bq2010** Gas Gauge IC (secondary battery available charge monitor). The tutorial is intended to be used with the **bq2010** data sheet by engineera and managers designing with or evaluating the **bq2010**.

The **bq2010** Gas Gauge IC is a complete battery **monitoring** product for N-i and Nid batteries. The **bq2010** 16-pin SOIC provides significant advantages:

- A complete single-chip system solution for in-thepack monitoring of a battery's available charge
- No battery technology expertise required; the bq2010 is already optimized for NiMH or NiCd use, based on Benchmarq's extensive research on battery characteristics
- Minimal : ser 1 required, a single PCB layout specific to the application
- No software required for stand-alone battery-pack applications
- Single-wire serial interface for communication with an external processor to implement a customized display
- Direct LED display drive

This tutorial describes capacity monitoring, compares Benchmarq's gas gauge solutions to microprocessor-based implementations, describes device operation in general terms, and addressee implementation issues.

Available Charge Monitoring

Rechargeable batteries are used in many different applications, from cellular phones, portable computers, and medical equipment to power tools. The operating environment of these batteries covers a wide range of temperatures; therefore, battery efficiency changes due to battery temperature and rate of charge or discharge. The bq2010 compensates for both temperature and charge/discharge rate continuously.

The battery available charge can be **displayed** on **LEDs** and is also available via the serial port. The calculated available charge of the battery is **also** compensated according to **battery temperature** because the actual available charge is reduced at lower **temperatures**. For example, if the **bq2010** indicates that the battery is 60% full at a **temperature** of **25°C**, then the bq2010 indicates 40% fill when **cooled** to **0°C**, which is the predicted **available** charge at that temperature. When the temperature returns to 25°C, the displayed capacity **returns** to 60%. This **ensures** that the indicated capacity is **always** conservatively **representative** of the charge available for **use** under the given conditions.

The **bq2010** also **adjusts** the available charge for the approximate internal self-diecharge that occurs in NiCd or NiMH batteries. The self-discharge adjustment is **based** on the selected rate, elapsed time, battery charge level, and temperature. **This** adjustment provides a conservative estimate of self-discharge that occurs naturally and that is a **significant** source of discharge in **systems** that are not charged often or are stored at elevated **temperatures**.

Comparing bq2010 Solution With MCU-Based Implementations

Low-power, single-chip **microprocessors such as** those available from Motorola, **Toshiba**, NEC, and **others** have been **used** to implement **gas gauges** in battery-powered equipment, notably camcorders and laptop computers. Although adequate, these implementations require extensive development **efforts** to be suitable for **use** in a battery pack, and **even** then, require significant space in the pack **because** of the high component count.

The **bq2010** by comparison offers **efficiency**, ease of **use**, simplicity of **design**, and low component count. With careful PCB layout, the **bq2010** system can fit in the space between AA batteries. Table 1 compares the **bq2010** and a typical MCU gas gauge implementation.

Dec. 1993

bq2010 Operation

Gas gauging is accomplished by measuring the charge input to and **subsequently** removed from a battery. This is done by monitoring the voltage drop **across** a low-value resistor (typically 20 to $100m\Omega$) during charge and **discharge**. **This** voltage is integrated over time, scaled, and used to drive two 16-bit internal counters:

- Nominal Available Charge (NAC) counter-represents the amount of charge available from the battery.
- Discharge Count Register (DCR)—represents the amount of charge removed from the battery since it was last full.

Also, the Last Measured Discharge (LMD) register is an eight-bit register used to store the most recent count value representing "battery full."

In a typical situation, the **Benchmarq** Gas Gauge **ICs** are installed in a battery pack containing unconditioned batteries with an unknown charge state.

On application of power to the **bq2010**, the following **assumptions** are made:

- The battery is empty; therefore, the NAC is zero.
- The battery's **storage** capacity is the Programmed Full Count (PFC) **as** specified by the programming **inputs**, which are loaded into the LMD.

The actual **storage** capacity of the battery has yet to be determined. The battery capacity can be learned by charging the battery until NAC = LMD (LMD = PFC on initialization) and then discharging the battery until the cell voltage reaches the End-of-Discharge Voltage (EDV1) threshold (1.05V for the bq2010). As discharge occurs, the bq2010 tracks the amount of charge removed from the battery in the DCR. The new battery capacity (DCR) is transferred to the LMD if no partial charges have occurred, the temperature is above 10°C, and self-discharge accounts for less than 8 to 18% of the DCR when EDV1 was reached. The valid discharge flag (VDQ) in the bq2010 indicates whether the present discharge is valid for LMD update.

Table 1. Comparing **bq2010** and MCU Implementations

Feature	MCU Implementation	bq2010 Solution
Small size	>> 1 square inch; requires extra battery pack space	≤1 square inch; fits between batteries
Operating current (not including LEDs)	Typically ≥ 1mA awake; as low as 10µA asleep	125µA typical
LED display	Yea	Yes
Serial I/O	Depends on programming	Yes
Programmable capacity	Depends on programming	Yes
Self-discharge	Generally not implemented	Yes, with temperature compensations
Charge, discharge rate compensations	Generally not available but depends on programming	Yes
Charge, discharge temperature compensations	Generally not available but depends on programming; requirea a thermistor	Yes, uses internal temperature sensor
Programming requirements	Extensive MCU programming required for gas gauge functions; possible host programming, algorithm development, and software testing	No programming for stand-alone applications; small host code for serial I/O applications
Hardware design requirements	Extensive low-power-design, op amp, analog switch, MCU, resonator, low-power regulator, LEDs, sense resistor; component count = 56 typical	No engineeringrequired; component count = 23 typical: bq2010, nFET, LEDs, sense resistor, programming resistors and capacitors

2/8 Dec. 1983

Discharging Before the First Charge

Most battery pack manufacturers will assemble their **packs** with the **bq2010** and ship them without charging. When the customer receives a new pack, the pack indicates EMPTY, and the customer then **charges** the pack until it indicates full. Because chargers **terminate** fast charge on voltage (-AV) or temperature ($\Delta T/\Delta t$) conditions, it is **possible** that fast charge will terminate before the gas gauge shows full because the available capacity of the battery was not zero.

The battery pack manufacturer may want to **instruct** the user to discharge the battery to **EDVF** before **charging**. Once this condition is reached, the battery can be **fast**-charged until termination—allowing NAC to count up to LMD. Now, the **gas** gauge is synchronized with the battery and **learns** the true battery capacity on the next valid discharge cycle.

For applications with **LED** displays, the complete discharge of the battery pack is indicated by all **LEDs** going off. For applications using the serial **VO** port, complete **discharge** is indicated when the **final** end-of-discharge voltage(**EDVF**) flag is set.

To ensure that the bq2010 accurately predicts the amount of available charge, battery pack manufacturers should instruct their end-users to completely discharge a new battery pack and then charge it until the charger terminates.

Alternatively, the NAC can be written with an estimated battery capacity during pack **assembly** or testing. While this may alleviate the problem of fast **charge terminating** before NAC = LMD, it may **give** the **user** a false indication of **battery** capacity if the value written **was** inaccurate. Under this scenario, users should fully **charge** a new battery pack. The actual capacity is 'learned' on the **next** valid discharge.

Using the bg2010

The **bq2010** IC is simple to use and implement **into** a system. Figure 1 shows the **bq2010** configured for full functionality. Almost all of the external **connections** and components are *optional*, as indicated by the dotted lines. For example, most stand-alone applications do not need the **EMPTY** pin connection or the DQ port (except p s i bly for testing).

All the external components except perhaps the sense resistor can be surface-mounted. The sense resistor could fit in the space between **most** battery cells, and the populated PCB may also fit in that space with the **correct** layout. A **bq2010** Gas Gauge IC could, therefore, be added to existing product battery packs with little re-tooling of **plastics**.

Monitoring the Battery

To determine and track the charge state of the **battery**, the **bq2010** monitors both the divided battery voltage and the voltage drop **across** the sense resistor.

The divided battery voltage (VsB) is provided by a resistor-divider that divides the battery pack voltage down to a single-cell voltage. VsB is primarily used to determine when the battery has reached the EDV1 threshold so that the new battery capacity determined during diecharge may be saved in the LMD. VsB is also used for EDVF determination, battery-removed indication, and battery-replacedindication.

The battery current is monitored using a low-value sense resistor attached to the negative terminal of the battery. The current through the **resistor** generates a proportional voltage drop, **Vsr**, which is provided to the SR input of the **bq2010**.

Picking a Sense Resistor

The sense resistor is used to measure the current flowing into or out of the battery. The sense resistor value depends on the currents being measured. The bq2010 specification for Vsn ranges from a maximum of 2.0V for charging to -300mV for discharging. The offset error for the bq2010 relative to Vsn is ± 150µV.

In general, a sense **resistor should** be selected so that: (a) the voltage drop **across** that **resistor** exceeds 5 to 7mV for the **lowest** current **representing** the majority of the battery drain, and (b) the **lowest** practical **Vsn** voltage **drop** is achieved to maximize the useful **voltage** available from the battery pack.

For example, Table 2 summarizes the approximate current requirements for a laptop computer application. The majority of the battery capacity is **used** in **run** (no disks) mode. The **next** largest amount of battery capacity is used in run (with disks) mode, with suspend mode consuming the least amount of battery capacity, even though it makes up the **largest** block of time.

If a 0.1Ω sense resistor is used, the voltage input to SR is as shown. This means that for both run modes, the integrator repeatability error is a maximum of 2% because |Vsr| is well above 30mV. Although the repeatability error associated with suspend mode is approximately 5%, its total error contribution is only 0.5% because suspend mode is responsible for only 10% of the total consumption.

Dec. 1993 3/6

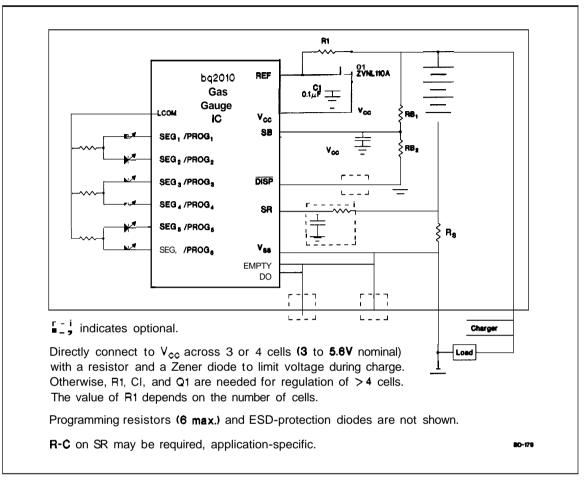


Figure 1. bq2010 Application Diagram—LED Display

Table 2. Approximate Laptop Computer Current Requirements

Mode	Current (A)	0.1Ω Voltage Drop (mV)	Time (min.)	% of Battery Usage
Run (with disks)	1	100.0	20	16.7
Run (no disks)	0.5	50.0	175	72.9
Suspend	0.05	5	250	10.4

B Dec. 1993

Selecting PFCs

When the **bq2010** is **first** connected to the **battery pack.** a **Programmed** Full Count **(PFC)** representing **the** initial full battery capacity is loaded into the LMD. To select this PFC, determine the initial full battery capacity value in **mVh** by multiplying the manufacturer's battery capacity rating in **mAh** by the sense resistor value:

mVh = mAh * Rsns

Find the nearest corresponding value in Table 3 that is less than the calculated **mVh** value, and then **set** the programming pin levels to select the Programmed Full Count (PFC), scale, and scale multiplier associated with that value.

Nine PFC settings are available using PROG₁ and PROG₂, which together with scale (PROG₃ and PROG₄) settings provide a wide range of initial full battery values. (PROG₅ is used to select the self-discharge compensations for either NiMH or NiCd batteries; PROG₆ is used to determine the display mode of the bq2010 as described on page 6.)

For example, if a 0.1Ω sense resistor is being used, and the battery is rated at 1100mAh, then the **initial fill** battery value is 110mVh. The nearest available value that is leas than 110mVh from Table 3 is 106mVh, which **corresponds** to $PROG_1 = Z$, $PROG_2 = Z$, $PROG_3 = L$, and $PROG_4 = L$.

Note that some cells in Table 3 have identical initial fill battery values. For example, **141mVh** can be found two **places**:

- Example 1: PROG₁ = L, PROG₂ = L, PROG₃ = Z, PROG₄ = L = 141mVh
- Example 2: PROG₁ = H, PROG₂ = Z, PROG₃ = L, PROG₄ = L = 141mVh

Example 1 corresponds to a PFC of 22528 of 65535 **possible** counts (34.4%). This means that, in all likelihood, a **majority** of the counter range will remain unused. Counter resolution could be increased by using the settings in example 2. In this case, the PFC is 45056 of 65535 counts (68.8% of range). In general, when faced with a *choice*, it is better to pick the **finer** resolution (that is, a larger **PFC**).

PROG₃ and PROG₄ inputs determine the scale to be used by the bq2010. Together these two pins determine the mVh value of a single NAC count. Thus, for any given PFC selected by PROG₁ and PROG₂, the capacity represented by that PFC (in mVh) is given by:

PFC • scale

Note that the **scale** value is given for a **PROG3**, **PROG4** pair at the top of each column in Table 3.

Table 3. bq2010 Programmed Full Count mVh Selections

PRO	OG _x	Pro- gremmed Full		PROG4 = L			PROG4 = Z		
1	2	Count (PFC)	PROG ₃ = H	PROG ₃ = Z	PROG ₃ = L	PROG ₃ = H	PROG ₃ = Z	PROG ₃ = L	Units
-			Scale = 1/80	Scale = 1/160	Scale = 1/320	Scale = 1/640	Scale = 1/1280	Scale= 1/2560	mVh/ count
Н	н	49152	614	307	154	76.8	38.4	19.2-	mVh
H	Z	45056	563	282	141	70.4	35.2	17.6	mVh
Н	L	40960	512	256	128	64.0	32.0	16.0	mVh
Z	Н	36864	461	230	115	57.6	28.8	14.4	mVh
Z	Z	33792	422	211	106	53.0	26.4	13.2	mVh
Z	L	30720	384	192	96.0	48.0	24.0	12.0	mVh
L	Н	27648	346	173	86.4	43.2	21.6	10.8	mVh
L	Z	25600	320	160	80.0	40.0	20.0	10.0	mVh
L	L	22528	282	141	70.4	35.2	17.6	8.8	mVh
		ivalent to 2 sec. (nom.)	90	45	22.5	11.25	5.6	2.8	mV

Dec. 1993

Using the Programming Pins

The **bq2010** is programmed through the LED display pins during a special programming cycle that occurs during power-up or during a device reset.

Programming Without LED Display

In applications where the LED display is not used. programming is very simple. The **bq2010** may be programmed by tying each programming pin directly to the appropriate level:

 $H = V_{CC}$

Z = open

 $L = V_{SS}$

LED outputs must be disabled by tying DISP to Vcc. LCOM may remain open.

Programming With LED Display

When the LED display is used, it is necessary to provide programming information with either a pull-up resistor to V_{CC} , a pull-down resistor to V_{SS} (200K Ω value in either case), or no resistor at all. The logic states are set as follows:

 $H \le 200K$ to V_{CC}

Z = no resistor

 $L \le 200K$ to V_{SS}

LCOM must be used to provide power to the **LEDs** so that they may be disabled during reading of the programmingresistors (see Figure 1).

Selecting Battery Chemistry

PROG₅ is used during power-up to select self-discharge compensations for either NiMH or NiCd batteries. PROG₅ = \mathbb{Z} for NiCd and L for NiMH batteries.

Using the LED Display

The **bq2010** supports 6 **LEDs** that display a gauge of available battery charge. **LEDs** 1 through 5 provide **20%** step indication of charge, while the sixth **LED** indicates 'overfull' when the display is operating in absolute mode (PROG₆ = **Z**).

Selecting Display Mode

PROG₆ is used **during** power-up to determine the display mode of the **bq2010**. The **bq2010** uses either absolute or relative **battery** charge state as described below (**PROG**₆ = **Z** or L, respectively).

The display indicates available battery charge as a percentage of "battery full.' This is based on the current LMD value ("relative" mode) or on the PFC value (the initial battery capacity value programmed, "absolute" mode). Relative mode is for applications where the customer does not want to see on the display the decline in battery capacity following many charge/discharge cycles. Absolute mode ie for applications when the customer wanta each segment to represent a fiied amount of charge.

Dispiay Activation

The LED display is normally maintained in the OFF state to conserve battery power. It is activated during a high rate of battery charge and discharge if DISP is floating, or continuously if the DISP pin is pulled to Vss. When the display is not used, the DISP pin can be tied to Vcc to disable the display and allow the pins to be used strictly as programming pins.

LED Supply

The **current** source for the LEDs is provided through the LCOM pin in all applications, **because** the programming inputs and the LED outputs share common pins. When the **bq2010** is initially powered-up, the **LCOM** output is disabled, thus allowing the pins to be sensed for the presence of programming **resistors** tied to **Vcc** or **Vss** (see Figure 1).

Standard **LEDs** such **as** the Sharp PR series should provide adequate performance at low cost. For better **results**, customers could **use** a high-brightness LED (low current) such **as** the more expensive Sharp LR or UR series. The suitability of any particular LED depends not only on its luminosity at rated current, but **also** the packaging and lensing technique **used** (very important in concentrating viewable energy, eepecially for high-ambient-light conditions).

6/8 Dec. 1993

Using the DQ Serial Port

The **bq2010** is also equipped with a bidirectional singleline serial **VO** port (DQ) that allows it to conveniently communicate with a hoet processor.

Data Interface

The **DQ** serial port allows the implementation of gas gauge functions without the need for the LED display. For example, in cellular telephone and laptop computer applications, the **LED** display is not needed because an LCD is available. The host processor in **these cases** can **simply** obtain the **gas** gauge display step and the temperature over the serial port and use these to indicate available charge. The **gas** gauge step data is a 4-bit value that **represents** 1 of 16 possible **steps** (6.25% of full per **step**), giving a greater possible display accuracy than is possible with the LED display.

In a more **sophisticated** approach, the hoet may obtain the NAC, LMD, temperature, and operational status flags, and then use these to customize and display functions and features.

Battery Pack Testing

The DQ serial port is also useful for final **testing** of **assembled** battery packs. The **bq2010** can be exercised from a hoet **processor** over the DQ serial port—allowing the **host** to directly control the state of the LED output pins and the EMPTY pin. The state of the programming pins may also be checked. A battery ID byte (stored in on-chip RAM) allows the manufacturer to identify battery **types**.

Using the EMPTY Pin

The EMPTY pin provides external control for automatic load **disconnection** on low battery, preventing deep discharge. It activates when **VsB** drops below the **EDVF** threshold.

Supplying Power to the Part

The **Vcc** specification for the **bg2010** is:

3.0V ≤ Vcc ≤ 6.5V

This may be achieved in several **ways** under various battery configurations.

Direct Battery Power

The **bq2010** may be powered diitly from the batteries in **configurations** of 3 or 4 cells. When using unregulated direct battery power, ensure that the battery voltage does not exceed the maximum of **6.5V** or fall below the minimum operational value of **3.0V**.

Direct unregulated power supply **should** be limited to situations where varying or pulsed load conditions during discharge or **charge** do not **cause** battery voltage spikes. Such **spikes** typically **result** when **batteries** drive **switching** power **supplies** that use inductive **storage**, **cr** when **start-up transients** in motors produce si cant voltage **spikes** on the battery,

Low-Cost nFET Regulator

Most applications require some kind of voltage regulator to supply Vcc within specifications over a broad range of battery voltage conditions. The bq2010 provides support for a low-cost regulator circuit consisting of an nFET and the on-chip reference voltage VREF.

Across temperature, VREF ranges from 4.5V to 7.5V, given an IREF of 5µA, where:

$V_{CC} = V_{REF} - V_{GS}$

where Vcs is the gate-source voltage of the nFET, Q1. When the battery voltage drops below VREF, the R1/RREF divider determines Vcc. A low-threshold nFET exhibiting a maximum Vcs of 0.8 to 1.5V may be adequate for this circuit. An example is the BSS138ZX from Zetex. The correct choice for R1 is a function of the number of cells in the battery pack. Table 4 lists different values for Various battery packs.

Table 4. Reference **Bias** Resistor **R**₁ Selection

Assuming a Nominal Q1 V_{GS} = 1.5V

Number of Cells	R1 (Ω)
5	33K
6	100K
7	180K
8	240K
9	300K
10	390K
11	430K
12	510K

Split Battery Configurations

When a battery pack contains a large number of cells, the **bq2010** may be operated from a **small** number of cells **inside** the larger pack. This is **possible as** long as the current required for LED operation **does** not significantly reduce the available charge of the small cell cluster relative to the available charge of the other cells in the pack. Generally, it is best not to **use** the **bq2010** display in this configuration.

Dec. 1993

Notes

8/8 Dec. 1993

Gas Gauge IC

Features

- Conservative and repeatable measurement of available charge in rechargeablebatteries
- Designed for portable equipment such ae power tools with high discharge rates
- Designed for battery pack integration
 - 120µA typical standby current (self-discharge estimation mode)
 - Small size enables implementations in as little as ½ square inch of PCB
- Direct drive of LEDs for capacity display
- Self-discharge compensation using internal temperature sensor
- Simple single-wire serial communications port for subassembly testing
- 16-pinnarrow SOIC

General Descriptton

The bq2011 Gas Gauge IC is intended for battery-pack installation to maintain an accurate of available battery charge. The IC monitors a voltage drop across a sense resistor connected in eerice between the negative battery terminal and ground to determine charge and discharge activity of the battery. The bq2011 is designed for systems such as power tools with very high discharge rates.

Battery self-discharge is estimated based on an internal timer and temperature sensor. Compensations for battery temperature and rate of charge or discharge are applied to the charge, discharge, and selfdiecharge calculations to provide available charge information across a wide range of operating conditions. Initial battery capacity is set using the PFC and MODE pine. Actual battery capacity is automatically 'learned' in the course of a discharge cycle from full to empty and may be displayed depending on the display mode.

Nominal available charge may be directly indicated using a five-segment LED display. These segments are used to indicate graphically the nominal available charge.

The bq2011 supports a simple single-line bidirectional serial link to an external processor (common ground). The bq2011 outputs battery information in response to external commands over the aerial link. To support subassembly testing, the outputs may also be controlled by command. The external processor may also overwrite some of the bq2011 gas gauge data registers.

The bq2011 may operate directly from four cells. With the REF output and an external transistor, a simple, inexpensive regulator can be built to provide Vcc from a greater number of cells.

Internal **registers** include available *charge*, **temperature**, **capacity**, battery ID, and battery status.

Pin Connections

MODE 1 16 1 Vcc SEG, ☐2 15 🗆 REF SEG, □3 14 D NC SEG₃ ☐ 4 13 DQ SEG₄ □ 5 12 🗆 RBI SEG₅ ☐ 6 11 D SB PFC 07 10 DISP 9 D SR V_{ss} □ 8 16-Pin Narrow SOIC PN-49

Pin Names

MODE	Display mode output	NC	No connect
SEG ₁	LFD segment 1	DQ	Serial communications input/output
SEG ₂	LED segment 2	RBI	• ′ •
SEG ₃	LED segment 3	KBI	Register backup input
SEG ₄	LED segment 4	SB	Battery sense input
	Ü	DISP	Display control input
SEG ₅	LED segment 5	SR	Sense resistor input
PFC	Programmed full count selection input	Vcc	3.0-6.5V
REF	Voltage reference output	v_{ss}	Negative battery terminal

Feb. 1996 C 1/18

Pin De	Pin Descriptions		Display control input
MODE	Display mode output When left floating, this output selects relative mode for capacity display. If connected to the anode of the LEDs to source current, absolute mode is selected for	SB	DISP floating allows the LED display to be active during charge and discharge if VsRo < -1mV (charge) or VsRo > 2mV (discharge). Transitioning DISP low activates the display for 4 ± 0.5 seconds. Secondary battery input
SEG ₁ - SEG ₅	capacity display. See Table 1. LED display segment outputs Each output may activate an LED to sink the current sourced from MODE, the battery, or vcc.		This input monitors the single-cell voltage potential through a high-impedance resistive divider network for the end-of-discharge voltage (EDV) threshold and maximum cell voltage (MCV),
PFC	Programmed full count selection input This three-level input pin defines the programmed full count (PFC) thresholds and scale selections described in Table 1. The state of the PFC pin is only read immediately after a reset condition.	RBI DQ	Register backup input This input is used to provide backup potential to the bq2011 registers during periods when Vcc ≤ 3V. A storage capacitor should be connected to RBI. Serial I/O pin
SR	Sense resistor input The voltage drop (VsR) across the sense resistor Rs is monitored and integrated over time to interpret charge and discharge activity. The SR input is tied to the low side of the sense resistor. VsR > Vss indicates discharge, and VsR < Vss indicates charge. The effective voltage drop, VsRo, as seen by the bq2011 is VsR + Vos (see Table 3).	REF Vcc vss	This is an open-drain bidirectional pin. Voltage reference output for regulator REF provides a voltage reference output for an optional micro-regulator. Supply voltage input Ground
NC	Noconnect		

Feb. 1996 C

Functional Description General Operation

The **bq2011 determines** battery capacity by **monitoring** the amount of charge input to or removed **from** a rechargeable battery. The **bq2011 measures discharge** and charge **currents**, estimates sell-discharge, **monitors** the battery for low-battery voltage thresholds, and compensates for temperature and **charge/discharge** rates. The charge measurement is made by monitoring the voltage across a small-value series sense resistor **between** the negative battery terminal and **ground**. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2011 using the LED display with absolute mode as a charge-state indicator. The bq2011 can be configured to display capacity in either a relative or an absolute display mode. The relative display mode uses the last measured discharge capacity of the battery as the battery full' reference. The absolute display mode uses the programmed full count (PFC) as the full reference, forcing each segment of the display to represent a fixed amount of charge. A push-button display feature is available for momentarily enabling the LED display.

The **bq2011 monitors** the charge and **discharge currents** as a voltage **across** a **sense** resistor (**see** Rs in Figure 1). A filter between the negative **battery** terminal and the SR pin may be required if the rate of change of the battery current is too great.

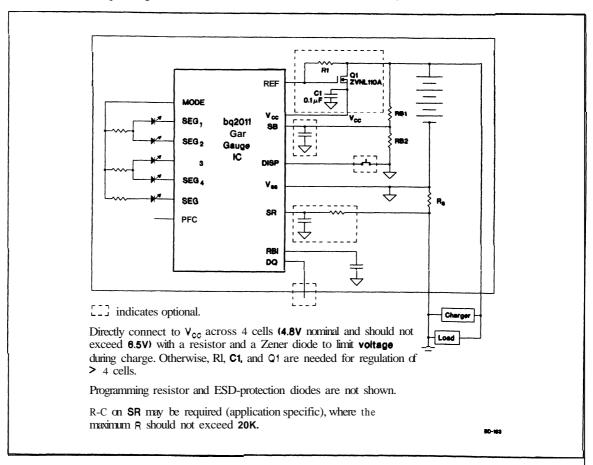


Figure 1. Battery Pack Application Diagram—LED Display,
Absolute Mode

Feb. 1996 C

Register Backup

The **bq2011 RBI** input pin **is** intended to be used with a storage capacitor to provide backup potential to the internal **bq2011** registers when **Vcc** momentarily **drops** below **3.0V. Vcc** is output on **RBI** when **Vcc** is above **3.0V.**

After Vcc rises above 3.0V, the bq2011 checks the internal registers for data loss or corruption. If data has changed, then the NAC and FULCNT registers are cleared, and the LMD register is loaded with the initial PFC.

Voltage Thresholds

In conjunction with monitoring VSR for **charge/discharge** currents, the **bq2011** monitors the single-cell battery potential through the SB pin. The single-cell voltage potential is determined through a resistor-divider network per the following equation:

$$\frac{RB_1}{RB_2} = N - 1$$

where N is the number of cells, **RB1** is connected to the positive battery terminal, and **RB2** is connected to the negative battery terminal. The eingle-cell battery voltage is monitored for the end-of-diacharge voltage (EDV) and for maximum cell voltage (MCV). The EDV threshold level is used to determine when the battery has reached an 'empty" state, and the MCV threshold is used for fault detection during charging. The EDV and MCV thresholds for the bq2011 are fixed at:

$$V_{EDV} = 0.90V$$

 $V_{MCV} = 2.00V$

During discharge and charge, the **bq2011 monitors** VSR for various thresholds, V_{SR1} – V_{SR4} . These **thresholds** are used to compensate the charge and discharge rates. Refer to the diacharge **compensation** section for details. EDV monitoring **is** disabled if $V_{SR} \ge V_{SR1}$ (50mV typical) and **resumes** 1 second after V_{SR} drops back below V_{SR1} .

Reset

The bq2011 recognizes a valid battery whenever VSB is greater than 0.1V typical. VSB rising from below 0.25V resets the device. Reset can also be accomplished with a command over the serial part as described in the Reset Register section.

Temperature

The **bq2011** internally determines the temperature in 10°C steps centered from -35°C to +85°C. The temperature steps are used to adapt charge and discharge rate compensations, **self-discharge** counting, and

available charge display **translation**. The temperature **range** is available over the serial port in **10°C** increments as shown below:

TMPGG (hex)	Temperature Range
0x	<-30°C
1x	-30°C to -20°C
2x	-20°C to -10°C
3x	-10°C to 0°C
4x	0°C to 10°C
5 x	10°C to 20°C
6x	20°C to 30°C
7x	30°C to 40°C
8x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Bx	70°C to 80°C
Cx	> 80°C

Layout Considerations

The **bq2011 measures** the voltage differential **between** the SR and **Vss** pins. **Vos** (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the strict rule of a single-point ground return. Sharing high-current ground with small signal ground caueea undesirable **noise** on the small signal nodes. Additionally:

- The capacitors (SB and Vcc) should be placed as close as possible to the SB and Vcc pins, respectively, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1μf is recommended for Vcc.
- The sense resistor (Rs) should be as close as possible to the bq2011.
- The R-C on the SR pin should be located as close as possible to the SR pin. The maximum R should not exceed 20K.

4/18

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the **bq2011**. The **bq2011** accumulates a measure of charge and discharge currents, as well as an **estimation** of **self-discharge**. Charge and **discharge** currents are temperature and rate compensated, whereas sell-diecharge is only temperature compensated.

The main counter, Nominal Available Charge (NAC), represents the available battery capacity at any given time. Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC regieter and increment the DCR (Discharge Count Register).

The Discharge Count Register (DCR) is used to update the Last Measured Discharge (LMD) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2011 adapts its capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the Programmed Full Count (PFC) shown in Table 1. Until LMD is updated, NAC counts up to but not beyond this threshold during subsequent charges. **This** approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.

Last Measured Discharge (LMD) or learned battery capacity:

LMD is the last measured discharge capacity of the battery. On initialization (application of Vcc or battery replacement), LMD = PFC. During subsequent discharges, the LMD is updated with the latest measured capacity in the Discharge Count Register (DCR) representing a discharge from full to below EDV. A qualified discharge is necessary for a capacity transfer from the DCR to the LMD register. The LMD also serves as the 100% reference threshold used by the relative display mode.

Programmed Full Count (PFC) or initial battery capacity

The initial LMD and gas gauge rate values are programmed by using PFC. The PFC also provides the 100% reference for the absolute display mode. The bq2011 is configured for a given application by selecting a PFC value from Table 1. The correct PFC may be determined by multiplying the rated battery capacity in mAh by the sense resistor value:

Battery capacity (mAh) • sense resistor (Ω) =

PFC (mVh)

Selecting a PFC slightly less than the rated capacity for absolute mode **provides** capacity **above** the full reference for much of the **battery's** life.

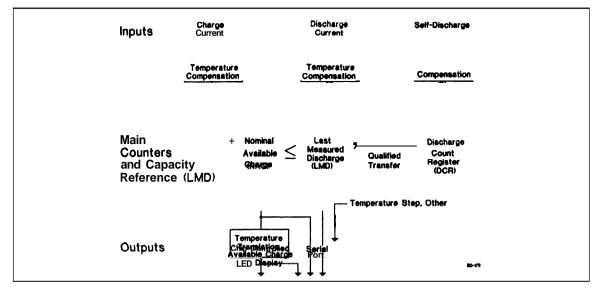


Figure 2. Operational Overview

Feb. 1996 C

5/18

Example: Selecting a PFC Value

Given:

Sense resistor = 0.005Ω Number of cells = 6Capacity = 1300mAh, NiCd cells Current range = 1A to 80A Relative display mode Self-discharge = C/64

Voltage drop over sense resistor = 5mV to 400mV

Therefore:

 $1300 \text{mAh} \cdot 0.00512 = 6.5 \text{mVh}$

Select:

$$\label{eq:pfc} \begin{split} & \text{PFC} = 34304 \, \text{counts or} \, \, 6.5 \text{mVh} \\ & \text{PFC} = Z \, (\text{float}) \end{split}$$
MODE = not connected

The initial full battery capacity is 6.5mVh (1300mAh) until the bq2011 learns' a new capacity with a qualified discharge from full to EDV.

Table 1. bq2011 Programmed Full Count mVh Selections

PFC	Programmed Full Count (PFC)	mVh	Scale	MODE Pin	Display Mode	
Н	27648	10.5	1/2640			
Z	34304	6.5	1/5280	Floating	Relative	
L	44800	8.5	1/5280			
Н	42240	8.0	1/5280			
Z	31744	6.0	1/5280	Connected to LEDs	Absolute	
L	23808	4.5	1/5280			

3. Nominal Available Charge (NAC):

NAC **counts** up during charge to a maximum value of LMD and down during discharge and **selfdis**-charge to **0**. NAC is reset to **0** on initialization and on the first valid charge following **discharge** to EDV. To prevent overstatement of charge during periods of overcharge, NAC stops incrementing when NAC = LMD.

Note: NAC is **set** to the value in LMD when SEG_δ is pulled low during a **reset**.

4. Discharge Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to 0. Prior to NAC = 0 (empty battery), both discharge and self-discharge increment the DCR After NAC = 0, only discharge increments the DCR. The DCR resets to 0 when NAC = LMD. The DCR does not roll wer but stops counting when it reaches FFFFh.

The DCR value becomes the new LMD value on the f i t charge after a valid discharge to V EDV if:

- m No valid charge initiations (charges greater than 256 NAC counts; or 0.006 - 0.01C) occurred during the period between NAC = LMD and EDV detected.
- The self-discharge count is not more than 4096 counts (8% to 18% of PFC, specific percentage threshold determined by PFC).
- The temperature is ≥ 0°C when the EDV level is reached during discharge.

The valid discharge flag **(VDQ)** indicates whether the present **discharge** is valid for LMD update.

Charge Counting

Charge activity is detected based on a negative voltage on the **Vsr** input. If charge activity is detected, the **bq2011** increments NAC at a rate proportional to Vsm (**Vsr + Vos**) and, if enabled, activates an LED display if **Vsro < -1mV**. Charge actions increment the NAC after compensation for charge rate and temperature.

The **bq2011** determines a valid *charge* activity sustained at a continuous rate equivalent to $V_{SRO} < -400\mu V$. A valid charge equates to a sustained charge activity greater than 256 NAC counts. Once a valid charge is detected, charge counting **continues** until Vsm rises above $-400\mu V$.

Discharge Counting

All discharge counts where Vsro > 500µV cause the NAC register to decrement and the DCR to increment. Exceeding the fast discharge threshold (FDQ) if the rate is equivalent to Vsro > 2mV activates the display, if enabled. The display becomes inactive after Vsro falls below 2mV.

Self-Discharge Estimation

The **bq2011** continuously **decrements** NAC and **increments** DCR fa: **self-discharge** based an time and **temperature**. The **self-discharge** count rate is programmed to be a nominal ½0 • NAC rate per day. This is the rate for a battery whose temperature is between 20°-30°C. The NAC register cannot be decremented below 0.

Count Compensations

The **bq2011 determines** fast charge when the NAC updates at a rate of **>2 counts/sec**. Charge and **discharge activity** is **compensated** for **temperature** and **charge/discharge rate before** updating the NAC **and/or DCR**. Self-discharge **estimation** is **compensated** for temperature before updating the NAC or DCR.

Charge Compensation

Two charge efficiency factors are used for trickle charge and fast charge. Fast charge is defined as a rate of charge resulting in ≥ 2 NAC counts/sec ($\geq 0.15C$ to 0.32C depending on PFC selections; see Table 2). The compensation defaults to the fast charge factor until the actual charge rate is determined.

Temperature adapts the charge rate **compensation** factors over three **ranges between** nominal, warm, and **lock** temperatures. The **compensation** factors are shown below.

Charge Temperature	Trickle Charge Compensation	Fast Charge Compensation
<40°C	0.80	0.95
≥ 40°C	0.75	0.90

Feb. 1996 C

Discharge Compensation

Corrections for the rate of discharge are made by adjusting an internal discharge compensation factor. The discharge factor is based on the dynamically measured **Vsr.** The compensation **factors** during die-

charge are:

Approximate VsR Threshold	Discharge Compensation Factor	Effici <u>en</u> cy
V _{SR} < 50 mV	1.00	100%
$V_{SR1} > 50 \text{ mV}$	1.05	95%
$V_{SR2} > 100 \text{ mV}$	1.15	85%
V _{SR3} > 150 mV	1.25	75%
$V_{SR4} > 253 \text{mV}$	1.25	75%

Temperature compensation during discharge also takes place. At lower temperatures, the compensation factor increases by 0.05 for each 10°C temperature step below 10°C.

Comp. factor = $1.00 + (0.05 \cdot N)$

Where N = number of 10° C steps below 10° C and $V_{SR} < 50$ mV.

For example:

T > 10°C: Nominal compensation, N = 0

 0° C < T < 10°C: N = 1 (i.e., 1.00 becomes 1.05)

 -10° C < T < 0° C: N = 2 (i.e., 1.00 becomes 1.10)

 -20° C < T < -10° C: N = 3 (i.e., 1.00 becomes 1.15)

 -20° C < T < -30° C: N = 4 (i.e., 1.00 becomes 1.20)

Self-Discharge Compensation

The self-discharge compensation is programmed for a nominal rate of \(\frac{1}{80} \cdot \) NAC per day. This is the rate for a battery within the 20-30°C temperature range (TMPGG = 6x). This rate varies across 8 ranges from <10°C to >70°C, doubling with each higher temperature step (10°C). See Table 2.

Table 2. Self-Discharge Compensation

Temperature Range	Self-Discharge Compensation Typical Rate/Day
< 10°C	NAC/320
10-20°C	NAC/ ₁₆₀
20-30°C	NAC/80
30-40°C	NAC/40
40–50°C	NAC/20
50-60°C	NAC/10
60-70°C	NAC/5
> 70°C	NAC/ _{2.5}

Error Summary

Capacity Inaccurate

The LMD is susceptible to error on initialization or if no updates occur. On initialization, the LMD value includes the error between the programmed full capacity and the actual capacity. This error is present until a valid discharge occurs and LMD is updated (see the DCR description on page 7). The other cause of LMD error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

A Capacity Inaccurate counter (CPI) is maintained and incremented each time a valid charge occurs and is reset whenever LMD is updated from the DCR. The counter does not wrap around but stops counting at 255. The capacity inaccurate flag (CI) is set if LMD has not been updated following 64 valid charges.

Current-Sensing Error

Table 3 illustrates the current-sensing error as a function of Vsn. A digital filter eliminates charge and discharge counts to the NAC register when Vsno (Vsn + Vos) is between $\cdot 400 \mu$ V and 500μ V.

Table 3. bq2011 Current-Sensing Errors

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offsetreferred to VsR	± 50	± 150	μV	$\overline{\text{DISP}} = V_{\text{CC}}.$
INL	Integrated non-linearity error	± 2	± 4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25V .
INR	Integrated non- repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

8/18 Feb. 1996 C

Communicating With the bq2011

The **bq2011 includes** a simple single-pin (DQ plus **return**) serial data interface. A hoet **processor uses** the **interface** to access various **bq2011** registers. Battery **characteristics** may be easily monitored by adding a **single** contact to the battery pack. The open-drain DQ **pin** on the **bq2011** should be pulled up by the hoet system, or may be left floating if the serial **interface** is not **used**.

The interface uses a command-based protocol, where the host processor sends a command byte to the bq2011. The command directs the bq2011 to either store the next eight bite of data received to a register specified by the command byte or output the eight bits of data specified by the command byte.

The communication protocol is asynchronous return-toone. Command and data bytes consist of a stream of eight bits that have a maximum transmission rate of 333 bits/sec. The least-significant bit of a command or data byte is transmitted first. The protocol is simple enough that it can be implemented by most host processors using either polled or interrupt processing. Data input from the bq2011 may be sampled using the pulse-width capture timera available on some microcontrollers.

Communication is normally initiated by the hoet processor sending a BREAK command to the **bq2011**. A BREAK is detected when the DQ pin is driven to a logic-low state for a time, **tB** or greater. The DQ pin should then be returned to its normal ready-high logic **state** for a time, **tBR**. The **bq2011** is now ready to **receive** a command from the host processor.

The return-to-one data bit frame consists of three distinct sections. The first section is used to start the transmission by either the host or the bq2011 taking the DQ pin to a

logic low state for a period, tetrene. The next section is the actual data transmission, where the data should be valid by a period, theu, after the negative edge used to start communication. The data should be held for a period, theu, to allow the host or bq2011 to sample the data bit.

The final section is used to stop the transmission by returning the DQ pin to a logic-high state by at least a period, tssu, after the negative edge used to start communication. The final logic-high state should be held urtil a period, tsv, to allow time to ensure that the bit transmission was stopped properly. The timings for data and break communication are given in the serial communication timing specification and illustration sections.

Communication with the **bq2011** is always performed with the least-significant bit being transmitted first. Figure 3 shows an example of a communication sequence to read the **bq2011** NAC register.

bq2011 Registers

The **bq2011** command and statue registers are **listed** in Table 4 and **described** below.

Command Register (CMDR)

The write-only CMDR register is accessed when eight valid command bite have been received by the bq2011. The CMDR register contains two fields:

- W/R bit
- Command address

The $\mathbf{W}\overline{\mathbf{R}}$ bit of the command **register** is used to **select** whether the received command is for a **read** or a write **function**.

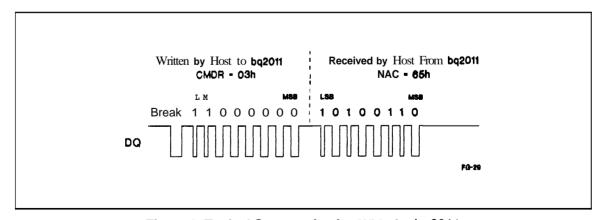


Figure 3. Typical Communication With the bq2011

Feb. 1996 C

9/18

Table 4. bq2011 Command and Status Registers

	D		Dandi				Contro	l Field			
Symbol	Register Name	Loc. (hex)	Read/ Write	7(MSB)	6	5	4	3	2	1	0(LSB)
CMDR	Command register	00h	White	w	AD6	AD5	AD4	AD3	AD2	AD1	AD0
FLGS1	Primary status flags register	Olh	Read	CHGS	BRP	MCV	CI	VDQ	n/u	EDV	n/u
TMPGG	Temperature and gas gauge register	02h	Read	тмрз	TMP2	TMP1	тмро	GG3	GG2	GG1	GG0
NACH	Nominal available charge high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACHO
NACL	Nominal available charge low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATID0
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
FLGS2	Secondary status flags register	06h	Read	CR	DR2	DR1	DR0	n/u	n/u	n/u	OVLD
СРІ	Capacity inaccurate count register	09h	Read	CPI7	CPI6	CPIS	CPI4	СРІЗ	CPI2	CPI1	CPIO
OCTL	Output control register	Oah	White	1	0C5	0C4	0C3	OC2	OC1	n/u	OCE
FULCNT	Full count register	Obh	Read	FUL7	FUL6	FUL5	FUL4	FUL3	FUL2	FUL1	FULO
RST	Resetregister	39h	White	RST	0	0	0	0	0	0	0

Note: n/u = not used

10/18

The $\overline{W/R}$ values are:

CMDR Bits										
7	7 6 5 4 3 2 1 0									
W/R	-	-	•							

Where W/R is:

- The bq2011 outputs the requested register contents specified by the address portion of CMDR
- 1 The following eight bits should be written to the register specified by the address portion of CMDR.

The lower eeven-bit field of CMDR contains the **address** portion of the register to be accessed. Attempts to write to invalid **addresses** are ignored.

	CMDR Bits									
7	7 6 5 4 3 2 1 0									
•	AD6	AD5	AD4	AD3	AD2	AD1	AD0 (LSB)			

Primary Status Flags Register (FLGS1)

The read-only FLGS1 register (address=01h) contains the primary bq2011 flags.

The charge status flag (CHGS) is asserted when a valid charge rate is **detected**. Charge rate ia **deemed** valid when Vsro < ·400μV. A Vsro of greater than-400μV or discharge activity clears CHGS.

The CHGS values are:

		FLG	SIBib			
				2	1	0
CHGS					-	

Where CHGS is:

- 0 Either discharge activity detected or $V_{SRO} > \cdot$ 400 μV
- 1 $V_{SRO} < -400 \mu V$

The battery replaced flag (BRP) is asserted whenever the potential on the SB pin (relative to Vss), VsB, rises above 0.1V and determines the internal registers have been corrupted. The BRP flag is also set when the bq2011 is reset (see the RST register description). BRP is latched until either the bq2011 is charged until NAC = LMD or discharged until EDV is reached. BRP = 1 signifies that the device has been reset.

The BRP values are:

	FLGS1 Bib									
7 6 5 4 9 2 1 0										
•	BRP	-								

Where BRP ::

- bq2011 is charged until NAC = LMD or discharged until the EDV flag is asserted
- SB rising from below 0.1V, or a serial port initiated reset has occurred

The maximum all voltage flag (MCV) is asserted whenever the potential on the SB pin (relative to Vss) is above 2.0V. The MCV flag is asserted until the condition causing MCV is removed.

The MCV values are:

	RGSIBib										
7 6 5 4 3 2 1 0											
-		MCV			-	•	-				

Where MCV is:

- $0 V_{SB} < 2.0V$
- 1 V_{SB} > 2.0V

The capacity inaccurate flag (CI) is used to warn the user that the battery has been charged a substantial number of times since LMD has been updated. The CI flag is asserted on the 64th charge after the last LMD update or when the bq2011 is reset. The flag is cleared after an LMD update.

The CI values are:

	R.G.S.I Bib									
7 6 5 4 3 2 1 0										
•	-	-	CI	•	-	-	•			

Where CI is:

- When **LMD** is updated with a valid full discharge or the **bq2011** is reset
- After the 64th valid charge action with no LMD updates

Feb. 1996 C

The *valid discharge* flag (VDQ) is asserted when the **bq2011** is discharged from NAC=LMD. The flag remains set until either LMD is updated or one of three actions that can clear VDQ occurs:

- The self-discharge count register (SDCR) has exceeded the maximum acceptable value (4096 counts) for an LMD update.
- A valid charge action equal to 256 NAC counts with V_{SRO} < -400 μ V.
- The EDV flag was set at a temperature below 0°C

The VDQ values are:

FLGS1 Bits								
7	6	5	4	3	2	1	0	
-	-	•		VDQ			-	

Where VDQ is:

- O SDCR ≥ 4096, subsequent valid charge action detected, or EDV is asserted with the temperature less than OCC
- 1 On first discharge after NAC = LMD

The end-of-discharge warning flag (EDV) warns the user that the battery is empty. SEG1 blinks at a 4Hz rate. EDV detection is disabled if Vsr > Vsr1. The EDV flag is latched until a valid charge has been detected.

The EDV values are:

FLGS1 Bits								
7	6	5	4	3	2	1	0	
					•	EDV	-	

Where EDV is:

- Valid charge action detected and V_{SB} ≥ 0.90V
- 1 VsB < 0.90V providing that VsR < VsR1

Temperature and Gas Gauge Register (TMPGG)

The read-only TMPGG register (address=02h) contains two data fields. The first field contains the battery temperature. The second field contains the available charge from the battery.

	TMPGG Temperature Bits							
7	7 6 5 4 3 2 1 0							
TMP3	TMP3 TMP2 TMP1 TMP0							

The bq2011 contains an internal temperature sensor. The temperature is used to set charge and discharge efficiency factors as well as to adjust the sell-diecharge codficient. The temperature register contents may be translated as shown below.

TMP3	TMP2	TMP1	TMP0	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

The bq2011 calculates the available charge as a function of NAC, temperature, and a full reference, either LMD or PFC. The results of the calculation are available via the display port or the gas gauge field of the TMPGG registary. The register is used to give available capacity in \$\frac{1}{16}\$ increments from 0 to \$15/16\$.

	TMPGG Gas Gauge Bits									
7	6	5	4	3	2	1	0			
	-		-	GG3	GG2	GG1	GG0			

The gas gauge diaplay and the **gas** gauge portion of the **TMPGG** register are adjusted for cold temperature dependencies. A piece-wise correction is performed **as** follows:

Temperature	Available Capacity Calculation
> 0 _o C	NAC/ "Full Reference"
-20°C < T < 0°C	0.75 • NAC/"Full Reference"
< -20°C	0.5 • NAC/"Full Reference"

The adjustment between > 0°C and -20°C < T < 0°C has a 4°C hysteresis.

Nominal Available Charge Register (NAC)

The read/write NACH register (address=03h) and the read-only NACL register (address=17h) are the main gas gauging registers for the bq2011. The NAC registers are incremented during charge actions and decremented during discharge and self-discharge actions. The correction factors for charge/discharge efficiency are applied automatically to NAC.

If $SEG_5 = 0$ on reset, then NACH = PFC and NACL = 0. If $SEG_5 = Z$ or H, the NACH and NACL registers are cleared to zero, NACL stops counting when NACL reaches zero. When the bq2011 detects a valid charge. NACL resets to zero; writing to the NAC register affects the available charge counts and, therefore, affects the bq2011 gas gauge operation.

Battery Identification Register (BATID)

The read/write BATID register (address=04h) is available for use by the system to determine the type of battery pack. The BATID contents are retained as long as Vcc is greater than 2V. The contents of BATID have no effect on the operation of the bq2011. There is no default setting for this register.

Last Measured Discharge Register (LMD)

LMD is a read/write register (address=05h) that the bq2011 uses as a measured full reference. The bq2011 adjusts LMD based on the measured discharge capacity of the battery from full to empty. In this way the bq2011 updates the capacity of the battery. LMD is set to PFC during a bq2011 reset.

Secondary Status Flags Register (FLGS2)

The read-only FLGS2 register (address=06h) contains the secondary bq2011 flags.

The charge **rate** flag **(CR)** is used to denote the fast charge regime. Fast charge is assumed whenever a

charge action is initiated. The CR flag remains asserted if the charge rate **does** not fall below 2 **counts/sec.**

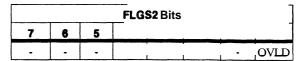
The CR values are:

	FLGS2 Bits							
7	6	5	4	3	2	1	0	
CR	•							

Where CR is:

- When charge rate falls below 2 counts/sec
- 1 When charge rate is above 2 counts/sec

The fast charge regime efficiency **factors** are **used** when CR = 1. When CR = 0, the trickle *charge* efficiency **factors** are **used**. The time to change CR varies due to the **user-selectable** count rates.


The discharge rate flags, DR2-0, are bits 6-4.

	FLG\$2 Bits								
7	6	5	4	3	2	1	0		
-	DR2	DR1	DR0	•					

They are used to determine the present discharge regime as follows:

DR2	DR1	DRO	V _{SR} (V)
0	0	0	V _{SR} < 50mV
0	0	1	50mV < V _{SR} < 100mV (overload, OVLD=1)
0	1	0	100mV < VSR < 150mV
0	1	1	150mV < V _{SR} < 253mV
1	0	0	V _{SRD} > 253mV

The *overload* flag (OVLD) is **asserted** when a discharge overload is detected, **Vsrd > 50mV**. OVLD remains asserted as long as the condition persists and ia cleared when **Vsrd < 50mV**.

DR2-0 and OVLD are set based on the measurement of the voltage at the SR pin relative to Vss. The rate at which this measurement is made varies with device activity.

Feb. 1996 C 13/18

Full Count Register (FULCNT)

The read-only FULCNT register (address=0bh) provides the system with a diagnostic of the number of times the battery has been fully charged (NAC = LMD). The number of full occurrences can be determined by multiplying the value in the FULCNT register by 16. Any discharge action other than self-discharge allows detection of another full occurrenceduring the next valid charge action

Capacity Inaccurate Count Register (CPI)

The read-only CPI register (address=09h) is used to indicate the number of times a battery has been charged without an LMD update. Because the capacity of a rechargeable battery varies with age and operating conditions, the bq2011 adapts to the changing capacity over time. A complete discharge from full (NAC=LMD) to empty (EDV=1) is required to perform an LMD update assuming there have been no intervening valid charges, the temperature is greater than or equal to 0°C, and the self-discharge counter is less than 4096 counts.

The CPI register is incremented every time a valid charge is detected. The register increments to 255 without rolling over. When the contente of CPI are incremented to 64, the capacity inaccurate flag, CI, is asserted in the FLGS1 register. CPI is reset whenever an update of the LMD register is performed, and the CI flag is also cleared.

Output Control Register (OCTL)

The write-only **OCTL** register (address=0ah) provides the system with a means to check the display connections for the **bq2011**. The segment drivers may be overwritten by data from OCTL when the least-significant bit of OCTL, OCE, is set. The data in bits OC5-1 of the OCTL register (see Table 4 on page 10 for details) is output onto the segment pine, **SEG5-1**, respectively if **OCE=1**. Whenever OCE is written to 1, the MSB of OCTL should be **set** to a 1. The **OCE register** location must be cleared to return the **bq2011** to **normal** operation. OCE may be cleared by either writing the bit to a logic zero via the serial port or by resetting the **bq2011** as explained below. **Note:** Whenever the **OCTL** register is written, the MSB of OCTL should be written to a logic one.

Reset Register (RST)

The reset register (address=39h) provides the means to perform a software-controlled reset of the device. A full device reset may be accomplished by first writing LMD (address = 05h) to 00h and then writing the RST register contents from 00h to 80h. Setting any bit other than the most-significant bit of the RST register is **not** allowed, and results in *improper operation* of the bq 2011.

Resetting the **bq2011** sets the following:

- LMD = PFC
- CPI, VDQ, NAC, and OCE = 0 or NAC = LMD when SEG5 = L
- CI and BRP = 1

Display

The **bq2011** can directly display capacity information using low-power **LEDs**. If **LEDs** are used, the segment pins should be tied to **Vcc**, the battery, or the MODE pin for programming the **bq2011**.

The **bq2011** displays the battery charge **state** in either absolute or relative mode. In relative mode, the battery charge is represented as a percentage of the LMD. Each **LED** segment **represents** 20% of the LMD.

In absolute mode, each segment represents a fixed amount of charge, based on the initial PFC. In absolute mode, each segment **represents** 20% of the PFC. As the battery wears out over time, it **is possible** for the LMD to be **below** the initial PFC. In this case, all of the **LEDs** may not turn on, representing the reduction in the actual battery capacity.

The capacity display is also adjusted for the present battery temperature. The temperature adjustment reflects the available capacity at a given temperature but does not affect the NAC register. The temperature adjustments are detailed in the TMPGG register description.

When DISP is tied to Vcc, the SEG₁₋₅ outputs are inactive. When DISP is left floating, the display becomes active during charge if the NAC registers are counting at a rate equivalent to Vsro < -1mV or fast discharge if the NAC registers are counting at a rate equivalent to Vsro > 2mV. When pulled low, the segment output becomes active for 4 seconds, ±0.5 seconds.

The segment outputs **are** modulated **as** two **banks**, with segments **1**, **3**, and 5 alternating with segments 2 and 4. The segment outputs **are** modulated at approximately **320Hz**, with each bank active for 30% of the period.

SEG₁ blinks at a **4Hz** rate whenever **VsB** has been detected to be below **VEDV** to indicate a low-battery **condi**tion or NAC **is less** than **10%** of the LMD or PFC, depending on the display mode.

Microregulator

The **bq2011** can operate **directly from 4 cells.** To **facilitate** the power supply **requirements** of the **bq2011**, an REF **output** is provided to regulate an **external** low-threshold n-FET. A **micropower** source for the **bq2011** can be inexpensively built using the FET and an **external resistor**.

14/18 Feb. 1996 C

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
Vsr	Relative to Vss	-0.3	+7.0	v	Minimum 100Ω series resistor should be used to protect SR in case of a shorted battery (see the bq2011 application note for details).
_		0	+70	°C	Commercial
Topr	Operating temperature	-40	+85	°C	Industrial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating **Conditions** detailed in **this** data sheet. Exposure to conditions beyond the operational **limits** for extended periods of time may **affect** device reliability.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Note8
VEDV	End-of-dischargewarning	0.87	0.90	0.93	٧	SB
V _{SR1}	Discharge compensation threshold	20	50	75	mV	SR (see note)
V _{SR2}	Discharge compensation threshold	70	100	125	mV	SR (see note)
V _{SR3}	Discharge compensation threshold	120	150	175	mV	SR (see note)
Vsr4	Discharge compensation threshold	220	253	275	mV	SR (see note)
Vsrq	Valid charge	•	-	-400	μV	V _{SR} + V _{OS}
$V_{ m SRD}$	Valid discharge	500			μV	V _{SR} + V _{OS}
V _{MCV}	Maximum single-cell voltage	1.95	2.0	2.05	V	SB
V _{BR}	Battery removed/replaced		0.1	0.25	V	SB

Note:

For proper operation of the threshold detection circuit, \mathbf{Vcc} must be at least 1.5V greater than the voltage being measured.

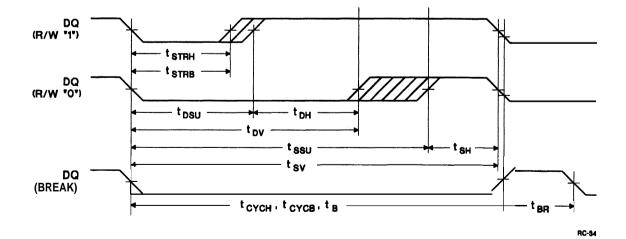
Feb. 1996 C

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5	v	V _{CC} excursion from < 2.0V to ≥ 3.0V initializes the unit.
	Reference at 25°C	5.7	6.0	6.3	V	IREF = 5µA
VREF	Reference at -40°C to +85°C	4.5		7.5	v	Iref = 5µA
RREF	Reference input impedance	2.0	5.0	•	ΜΩ	$V_{REF} = 3V$
			90	135	μА	$V_{CC} = 3.0V, DQ = 0$
Icc	Normal operation		120	180	μА	$V_{CC} = 4.25V, DQ = 0$
		-	170	250	μA	$V_{CC} = 6.5V, DQ = 0$
V_{SB}	Battery input	0	•	Vcc	V	
RsBmax	SB input impedance	10	-	-	ΜΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage		-	5	μA	$V_{\rm DISP} = V_{\rm SS}$
IMODE	MODE input leakage	-0.2	•	0.2	μA	$\overline{\text{DISP}} = V_{\text{CC}}$
I _{RBI}	RBI data-retention current		•	100	nA	V _{RBI} > V _{CC} < 3V
RDQ	Internal pulldown	500	-	-	ΚΩ	
Vsr	Sense resistor input	-0.3	-	2.0	v	V _{SR} > V _{SS} = discharge; V _{SR} < V _{SS} = charge
RsR	SR input impedance	10	-	-	MΩ	-200mV < V _{SR} < V _{CC}
VIHPFC	PFC logic input high	V _{CC} - 0.2	•	-	V	PFC
VILPFC	PFC logic input low		-	Vss + 0.2	v	PFC
Vizpec	PFC logic input Z	float	-	float	V	PFC
I _{IHPFC}	PFC input high current	-	1.2	•	μA	$V_{PFC} = V_{CC}/2$
Іпрес	PFC input low current		1.2	•	μA	V _{PFC} = V _{CC} /2
Volsl	SEGx output low, low Vcc	•	0.1	-	v	$V_{CC} = 3V$, $I_{OLS} \le 1.75$ mA SEG ₁ -SEG ₅
Volsh	SEGx output low, high Vcc	•	0.4	-	v	$V_{CC} = 6.5V$, $I_{OLS} \le 11.0$ mA SEG ₁ -SEG ₅
VOHML	MODE output high, low Vcc	V _{CC} - 0.3	-	•	V	$V_{CC} = 3V$, $I_{OHMODE} = -5.25$ mA
V _{OHMH}	MODE output high, high VCC	V _{CC} - 0.6		-	V	$V_{CC} = 6.5V$, $I_{OHMODE} = -33.0mA$
IOHMODE	MODE source current	-33	-	•	mA	At V _{OHMODE} = V _{CC} - 0.6V
Iols	SEGx sink current	11.0	-	-	mA	At $V_{OLSH} = 0.4V$, $V_{CC} = 6.5V$
IoL	Open-drain sink current	5.0	-	-	mA	At $V_{OL} = V_{SS} + 0.3V$, DQ
v_{ol}	Open-drain output low	•	-	0.5	V	I _{OL} ≤ 5mA, DQ
VIHDQ	DQ input high	2.5	-	-	v	DQ
V_{ILDQ}	DQ input low		-	0.8	v	DQ
R _{FLOAT}	Float state external impedance	-	5	•	MΩ	PFC

Note: All voltages relative to V_{SS} .

18/18 Feb. 1996 C


Serial Communication Timing Specification (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcych	Cycle time, host to bq2011	3			ma	See note
tcycB	Cycle time, bq2011 to host	3		6	ma	
tstrh	Start hold, host to bq2011	5			ns	
tstrb	Start hold, bq2011 to host	500			μв	
tosu	Data setup			750	μs	
tDH	Data hold	750			μв	
tDV	Data valid	1.60			ma	
tssu	Stop setup			2.26	ma	
tsH	Stop hold	700			μв	
tsv	Stop valid	2.96			ms	
tB	Break	3			ms	
tBR	Break recovery	1			ma	

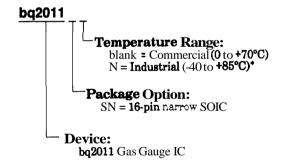
Note:

The open-drain DQ pin should be pulled to at least V_{CC} by the host system for proper DQ operation DQ may be left floating if the serial interface is not used.

Serial Communication Timing Illustration

Feb. 1996 C

17/18


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change	
3	7	Self-discharge count rate	Wae: 1/64 * NAC rate per day Is: 1/80 * NAC rate per day	
3	7	Compeneation factor 30–40°C	Was: 0.90 Is: 0.96	
3	7	Compensation factor >40°C	Was: 0.80 Is: 0.90	
4	7	Charge compensation	(Changedcompensation factor variation with temperature	
4	8	Self-discharge compensation	Changed self-discharge compensation rate variation with temperature	

Note:

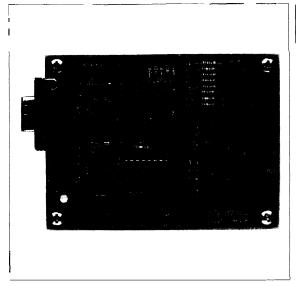
Changes 1 and 2 = See the 1995 *Data* Book. Change 3 = Jan. 1996 C **changes** from July 1994 C. Change 4 = Feb. 1996 C changes from Jan. 1996 C.

Ordering Information

• Contact factory for availability.

Feb. 1996 C

bq2011 Evaluation System

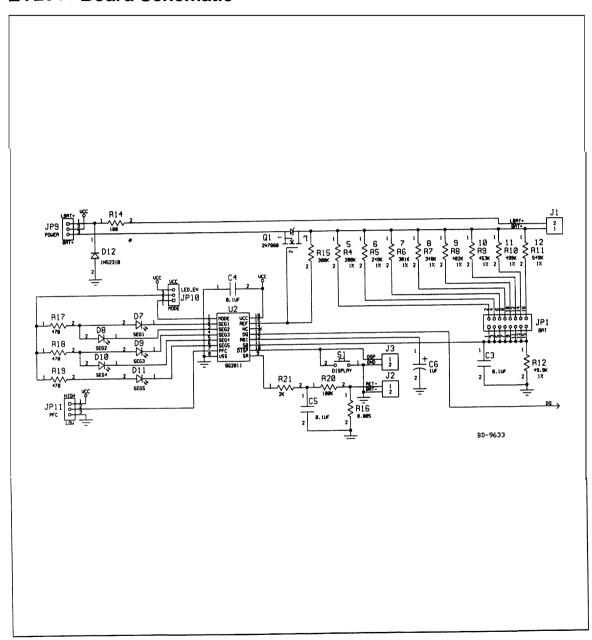

Features

- bq2011 Gas Gauge IC evaluation and development system
- ➤ RS-232 interface hardware for easy access to state-of-charge information via the serial port
- ➤ Alternative terminal block for direct connection to the serial port
- ➤ Battery state-of-charge monitoring for 5- to 10-cell (series) applications (2 user-selectable options for 3, 4, or greater than 10 cells)
- On-board regulator for greater than 4-cell applications
- State-of-charge information displayed on bank of 5 LEDs
- Nominal capacity jumper-configurable
- Display mode jumper-configurable

General Description

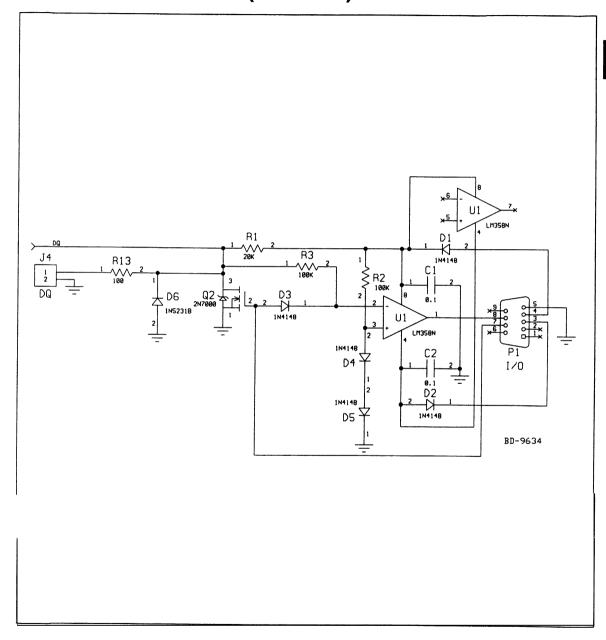
The EV2011 Evaluation System provides a development and evaluation environment for the bq2011 Gas Gauge IC. The EV2011 incorporates a bq2011, a sense resistor, and all other hardware necessary to provide a capacity monitoring function for 3 to 12 series NiCd cells.

Hardware for an RS-232 interface is included on the EV2011 so that easy access to the state-of-charge information can be achieved via the serial port of the bq2011. Direct connection to the serial port of the bq2011 is also made available for check-out of the final hardware1 software implementation.



The menu-driven software provided with the EV2011 displays charge/discharge activity and allows user interface to the bq2011 from any standard DOS PC.

A full data sheet for this product is available on our web site (http:llwww.benchmarq.com), or you may contact the factory for one.


Aug. 1994 Rev C Board

EV2011 Board Schematic

Rev. C Board Aug. 1994

EV2011 Board Schematic (Continued)

Aug. 1994

Notes

Rev. C Board Aug. 1994

1/18

<u>bq2011J</u>

Gas Gauge IC

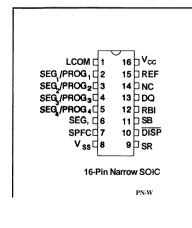
Features

- Conservative and repeatable measurement of available charge in rechargeable batteries
- Designed for portable equipment such as power tools with high discharge rates
- Designed for battery pack integration
 - 120μA typical standby current (self-discharge estimation mode)
 - Small size enables implementations in as little as ½ square inch of PCB
- Direct drive of LEDs for capacity display
- Self-discharge compensation using internal temperature sensor
- Simple single-wire serial communicationsport for subassembly testing
- 16-pin narrow SOIC

General Description

The bq2011J Gas Gauge IC is interded for battery-pack installation to maintain an accurate record of available battery charge. The IC monitors a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery. The bq2011J is designed for systems such as power tools with very high discharge rates.

Battery self-discharge is estimated based on an internal timer and temperature sensor. Compensations for battery temperature and rate of charge or discharge are applied to the charge, discharge, and selfdischarge calculatione to provide available charge information across a wide range of operating conditions. Initial battery capacity is set using the PROG14 and SPFC pine. Actual battery capacity is automatically 'learned' in the course of a discharge cycle from full to empty and may be displayed depending on the display mode.


Nominal available charge may be directly indicated using a five-segment LED display. These segments are used to graphically indicate nominal available charge.

The bq2011J supports a simple single-line bidirectional serial link to an external processor (common ground). The bq2011J outputs battery information m response to external commands over the serial link. To support subassembly testing, the outputs may also be controlled by command. The external processor may also overwrite some of the bq2011J gas gauge data registers.

The **bq2011J** may operate directly from four cells. With the **REF** output and an external transistor, a simple, **inexpensive** regulator can be built to provide Vcc from a greater number of cells.

Internal **registers** include available charge, **temperature**, **capacity**, **battery** ID, and battery **status**.

Pin Connections

Pin Names

LCOM	LED common output	REF	Voltage reference output
SEG ₁ /PROG ₁	LFD segment 1/ Program	NC	No connect
SEG ₂ /PROG ₂	1 input LED segment 2 / Program 2 input	DQ	Serial communications input/output
SEG ₃ /PROG ₃	1	RBI	Register backup input
SEUJPKOU3	LED segment 3/ Program 3 input	SB	Battery sense input
SEG ₄ /PROG ₄	LED segment 4/ Program 4 input	$\overline{\text{DISP}}$	Display control input
SEG ₅	1	SR	Sense resistor input
	LED segment 5	Vcc	3.0-6.5V
SPFC	PFC Programmed full count selection input		Negative battery terminal

June 1995

Pin Descriptions

LCOM LED common

Open-drain output switches Vcc to source current for the LEDs. The switch is off during initialization to allow reading of PROG14 pullup or pull-down program resistors. LCOM is high impedance when the display is off.

SEG₁-SEG₅

LED display segment outputs

Each output may activate an LED to sink the current sourced from MODE, the battery, or **vcc.**

PROG₁·

Programmed **fill** count selection inputs (dual function with **SEG1-SEG4**)

These three-level input pins define the programmed full count (PFC) in conjunction with SPFC pin, define the display mode and enable or disable self-discharge.

SPFC Programmed full count selection input

This three-level input pin along with PROG13 define the programmed full count (PFC) thresholds and scale selections described in Table 1 and Table 2. The state of the SPFC pin is only read immediately after a reset condition.

SR Sense resistor input

The voltage drop (VsR) across the sense **resis**tor Rs is monitored and integrated over time to interpret charge and discharge activity. The SR input is tied to the low side of the sense resistor and battery pack ground (see Figure 1. VsR > Vss indicates **discharge**, and VsR < Vss indicates charge. The effective voltage drop, VsRO, as seen by the **bq2011J** is VsR + Vos (see Table 4).

NC No connect

DISP Display control input

DISP floating allows the LED display to be active during charge and discharge if Vsro < -1mV (charge) or Vsro > 2mV (discharge). Transitioning DISP low activates the display for 4 ± 0.5 seconds.

SB Secondary battery input

This input monitors the single-cell voltage potential through a high-impedance resistive divider network for the end-of-discharge voltage (EDV) threshold and maximum cell voltage (MCV).

RBI Register backup input

This input is used to provide backup potential to the bq2011J registers during periods when $V_{CC} \le 3V$. A storage capacitor should be connected to RBI.

DQ Serial 1/0 pin

This is an open-drain bidirectional pin.

REF Voltage reference output for regulator

REF provides a voltage reference output for an optional micro-regulator.

Vcc Supply voltage input

Vss Ground

2/18 June 1995

Functional Description General Operation

The bq2011J determines battery capacity by monitoring the amount of charge input to or removed from a rechargeable battery. The bq2011J measures discharge and charge currents, estimates self-discharge, monitors the battery for low-battery voltage thresholds, and compensates for temperature and charge/discharge rates. The charge measurement is made by monitoring the voltage across a small-value series sense resistor between the negative battery terminal and ground. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2011J using the LED display with absolute mode as a charge-state indicator. The bq2011J can be configured to display capacity in either a relative or an absolute display mode. The relative display mode uses the last measured discharge capacity of the battery set the battery full reference. The absolute display mode uses the programmed full count (PFC) as the full reference, forcing each segment of the display to represent a fixed amount of charge. A push-button display feature is available for momentarily enabling the LED display.

The bq2011J monitors the charge and discharge currents as a voltage across a sense resistor (see Rs in Figure 1). A filter between the negative battery terminal and the SR pin may be required if the rate of change of the battery current is too great.

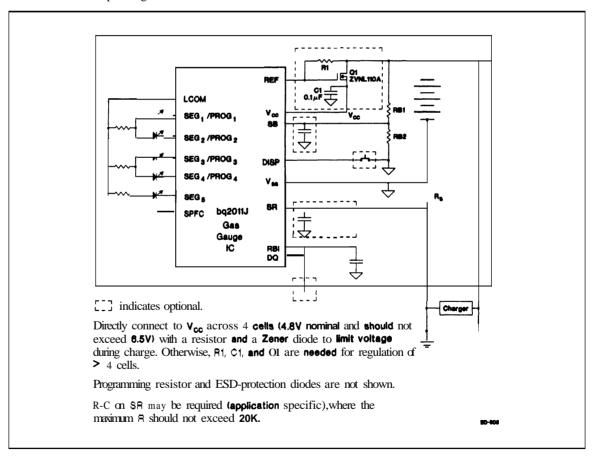


Figure 1. Battery Pack Application Diagram—LED Display,
Absolute Mode

June 1995

Register Backup

The **bq2011J** RBI input pin is intended to be used with a **storage** capacitor to **provide backup** potential to the internal **bq2011J** registers when **Vcc** momentarily **drops** below **3.0V**. **Vcc** is output on RBI when **Vcc** is above **3.0V**.

After V_{CC} rises above 3.0V, the bq2011J checks the internal registers for data loss or corruption. If data has changed, then the NAC and FULCNT registers are cleared, and the LMD register is loaded with the initial PFC.

Voltage Thresholds

In conjunction with monitoring **VsR** for **charge/discharge** currents, the **bq2011J** monitors the single-cell battery potential through the SB pin. The single-cell voltage potential is determined through a resistor-divider network per the following equation:

$$\frac{RB_1}{RB_2} = N - 1$$

where N is the number of cells, RB₁ is connected to the wsitive battery terminal, and RB₂ is connected to the negative battery terminal. The single-cell battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV). The EDV threshold level is used to determine when the battery has reached an 'empty" state, and the MCV threshold is used for fault detection during charging. The EDV and MCV thresholds for the bq2011J are fixed at:

$$V_{EDV} = 0.90V$$

 $V_{MCV} = 2.00V$

EDV detection is disabled if the discharge is at a rate equivalent to or greater than **6C** (OVLD flag = 1) EDV detection is re-enabled approximately one second after the discharge falls below a rate equivalent to **less** than **6C** (OVLD flag = 0).

Reset

The bq2011J recognizes a valid battery whenever V_{SB} is greater than 0.1V typical. V_{SB} rising from below 0.25V resets the device. Reset can also be accomplished with a command over the serial port as described in the Reset Register section.

Temperature

The bq2011J internally determines the temperature in 10°C steps centered from -35°C to +85°C. The temperature steps are used to adapt charge and discharge rate compensations, self-discharge counting, and available charge display translation. The temperature range is available over the serial port in 10°C increments as shown in the following chart:

TMPGG (hex)	Temperature Range
0x	< -30°C
1x	-30°C to -20°C
2x	-20°C to -10°C
3 x	-10°C to 0°C
4x	0°C to 10°C
5 x	10°C to 20_{\circ}c
6x	20°C to 30°C
7x	30°C to 40°C
8 x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Bx	70°C to 80°C
Cx	>80°C

Layout Considerations

The bq2011J measures the voltage differential between the SR and Vss pins. Vos (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the strict rule of a Sin-

gle-point **ground** return. Sharing high-current ground with **small** signal **ground causes** undesirable noise on the small **signal** nodes. **Additionally:**

- The capacitors (SB and Vcc) should be placed as close as possible to the SB and Vcc pins, respectively, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1µf is recommended for Vcc.
- The sense resistor (Rs) should be as close as possible to the ba2011J.
- The R-C on the SR pin should be located as close as possible to the SR pin. The maximum R should not exceed 20K.

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the **bq2011J**. The **bq2011J** accumulates a **measure** of charge and discharge currents, **as** well as an **estimation of self-discharge**. Charge and discharge currents are temperature and rate compensated, whereas self-discharge is only temperature compensated.

The main counter, Nominal Available Charge (NAC), represents the available increments the NAC register, while battery-&&&ging and self-discharge decrement

June 1995

the NAC register and increment the DCR (Discharge Count Register).

The Discharge Count Register (DCR) is used to update the Last Measured Discharge (LMD) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2011J adapts its capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the Programmed Full Count (PFC) shown in Table 1. Until LMD is updated, NAC counts up to but not beyond **this** threshold during **subsequent** charges. This approach allows the **gas** gauge to be charger-independent and compatible with any type of charge regime.

 Last Measured Discharge (LMD) or learned battery capacity:

LMD is the **last** measured discharge capacity of the battery. On initialization (application of **Vcc** or battery replacement), LMD = PFC. During **subsequent** discharges, the LMD is updated with the latest measured capacity in the **Discharge** Count **Register** (DCR) representing a discharge **from fill** to below EDV. A qualified discharge ie necessary for a capacity transfer **from** the DCR to the LMD **register**. The LMD also **serves** as the **100%** reference threshold used by the relative display mode.

2 Programmed Full Count (PFC) or initial battery capacity:

The initial LMD and gas gauge rate values are programmed by using PFC. The **PFC also** provides

the 100% reference for the **absolute** display mode. The **bq2011J** is configured for a **given** application by selecting a PFC value from Table 1. The **correct** PFC may be **determined** by multiplying the rated battery capacity in mAh by the sense **resistor** value:

Battery capacity (mAh) • sense resistor (Ω) =

PFC (mVh)

Selecting a PFC **slightly less** than the rated capacity for **absolute** mode **provides** capacity above the **full** reference for much **of** the **battery's** life.

Example: Selecting a PFC Value

Given:

Sense resistor = 0.002Ω Number of cells = 6 Capacity = 1800mAh, NiCd cells Current range = 1A to 80A Relative display mode self-discharge = 0/60 Voltage drop across sense resistor = 2mV to 160mV

Therefore:

 $1800 \text{mAh} \cdot 0.002 \Omega = 3.6 \text{mVh}$

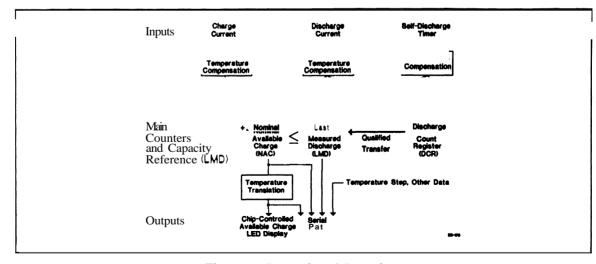


Figure 2. Operational Overview

June 1995 5/18

Select:

PFC = 35840 counts or 3.39mVh

SPFC = Z(float)

PROG1, PROG2 = H or Z PROG3 = L

PROG4 = H or Z

The initial full battery capacity ie 3.39mVh (1695mAh) until the bq2011J "learns" a new capacity with a qualified discharge from full to EDV.

3. Nominal Available Charge (NAC):

NAC counts up during charge to a maximum value of LMD and down during discharge and self discharge to 0. NAC is reset to 0 on initialization and on the first valid charge following discharge to EDV. To prevent overstatement of charge during periods of overcharge, NAC stops incrementing when NAC = LMD.

Note: NAC is set to the value in LMD when PROG₄ is pulled low during a reset.

Table 1. bq2011J Programmed Full Count mVh Selections

Programmed Full Count (PFC)	mVh	Scale	Display Mode	SPFC	PROG ₁	PROG ₂	PROG ₃
40192	3.81	1/10560		Н	H or Z	H or Z	H or Z
32256	3.05	1/10560		Z	H or Z	H or Z	H or Z
28928	2.74	1/10560	Absolute	L	H or Z	H or Z	H or Z
25856	2.45	1/10560		Н	L	H or Z	H or Z
35840	3.39	1/10560		Z	L	H or Z	H or Z
23296	2.21	1/10560		L	L	H or Z	H or Z
40192	3.81	1/10560		Н	HorZ	L	H or Z
32256	3.05	1/10560		Z	H or Z	L	H or Z
28928	2.74	1/10560		L	HorZ	L	HorZ
25856	2.45	1/10560	Relative	Н	H or Z	H or Z	L
35840	3.39	1/10560		Z	H or Z	H or Z	L
23296	2.21	1/10560		L	H or Z	H or Z	L

Table 2. Programmed Self-Discharge

PROG4	NAC Reset Value	Self-Discharge		
H or Z	NAC = 0	Enabled		
L	NAC = PFC	Disabled		

June 1995 6/18

4. Discharge Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to **0**. **Prior** to NAC = **0** (empty battery), both discharge and self-discharge increment the DCR. After NAC = **0**, only discharge increments the DCR. The DCR resets to **0** when NAC = LMD. The DCR does not roll over but **stops** counting when it reaches FFFFh.

The DCR value becomes the new LMD value on the first charge after a valid discharge to VEDV if:

No valid charge initiations (charges greater than 256 NAC counts; or 0.006 – 0.01C) occurred during the period between NAC = LMD and EDV detected.

The self-discharge count is not more than 4096 counts (8% to 18% of PFC, specific percentage threshold determined by PFC).

The temperature is ≥ O°C when the EDV level is reached during discharge.

The valid discharge flag (VDQ) indicates whether the present discharge is valid for LMD update.

Charge Counting

Charge activity is detected based on a negative voltage on the **Vsr** input. If charge activity is detected, the **bq2011J** increments NAC at a rate proportional to **Vsro** (**Vsr** + **Vos**) and, if enabled, activates an LED display if **Vsro < -1mV**. Charge actions increment the NAC after compensation for charge rate and temperature.

The **bq2011J** determines a valid charge activity **sustained** at a continuous rate equivalent to $V_{SRO} < -400\mu V$. A valid charge equates to a sustained charge activity greater than 256 NAC counts. Once a valid charge is detected, charge counting continues until V_{SRO} rises above $-400\mu V$.

Discharge Counting

All discharge counts where V_{SRO} > 500μV cause the NAC register to decrement and the DCR to increment. Exceeding the fast discharge threshold (FDQ) if the rate is equivalent to V_{SRO} > 2mV activates the display, if enabled. The display becomes inactive after V_{SRO} falls below 2mV.

Self-Discharge Estimation

The **bq2011J** continuously decrements NAC and increments DCR for self-discharge based on time and **temperature**. The self-discharge count rate is **programmed** to be a nominal $\frac{1}{200}$ • NAC rate per day or disabled per Table 2. This is the rate for a battery whose

temperature is between 20°-30°C. The NAC register cannot not be decremented below 0.

Count Compensations

The **bq2011J** determines fast charge when the NAC **updates** at a rate of **≥2 counts/sec.** Charge and diecharge activity is compensated for temperature and **charge/discharge** rate before updating the NAC and/or DCR. Self-discharge estimation ie **compensated** for temperature before updating the NAC or **DCR**.

Charge Compensation

Two charge efficiency **factors** are used for trickle charge and fast charge. Fast charge is defined as a rate of charge resulting in ≥ 2 NAC **counts/sec** ($\geq 0.15C$ to **0.32C** depending on PFC **selections**; **see** Table **1**). The compensation defaults to the fast charge factor until the actual charge rate is determined.

Temperature adapts the charge rate **compensation** factors over three ranges between nominal, warm, and hot temperatures. The **compensation factors** are shown below.

Charge Temperature	Trickle Charge Compensation	Fast Charge Compensation
<30°C	0.80	0.95
30-40°C	0.75	0.90
> 40°C	0.65	0.80

Discharge Compensation

Corrections for the rate of **discharge** are made by adjusting an internal compensation factor. This factor is based upon the number of NAC counts per **second**. The actual "C" rate **may** be calculated by using the following formula:

$$C_{RATE} = \frac{K}{N * LMD}$$

where:

K = 66,000

N = Number of samples

LMD = Contents of address 05h

June 1995 7/18

The compensation factors during discharge are:

Samples	Discharge Compensation Factor	Effective CRATE LMD = 9Dh	
N > 70	1.00	Crate < 6.0C	
70 ≥ N > 35	1.05	6. N ≤ Crate < 12.0C	
35 ≥ N > 23	1.15	12.0C ≤ CRATE < 18.0C	
N ≤ 23	1.25	Crate ≥ 18.0C	

Temperature compensation during discharge also takes place. At lower temperatures, the compensation factor increases by 0.05 for each 10°C temperature step below 10°C.

Comp. factor =
$$1.00 + (0.05 \cdot N)$$

Where N = number of 10° C steps below 10° C and CRATE < 6.0C.

For example:

T > 10°C: Nominal compensation, N = 0

 0° C < T < 10° C: N = 1 (i.e., 1.00 becomes 1.05)

 -10° C < T < 0° C: N = 2 (i.e., 1.00 becomes 1.10)

 -20° C < T < -10° C: N = 3 (i.e., 1.00 becomes 1.15)

 -20° C < T < -30° C: N = 4 (i.e., 1.00 becomes 1.20)

Self-Discharge Compensation

The self-discharge compensation is programmed for a nominal rate of $\frac{1}{200}$ • NAC per day or disabled. This is the rate for a battery within the 20–30°C temperature range (TMPGG = 6x). This rate varies across 8 ranges from <10°C to >70°C, doubling with each higher temperature step (10°C). See Table 3.

Table 3. Self-Discharge Compensation

Temperature Range	Self-Discharge Compensation Typical Rate/Day
< 10°C	NAC/320
10-20°C	NAC/ ₁₆₀
20-30°C	NAC/80
30-40°C	NAC/40
40–50°C	NAC/20
50-60°C	NAC/10
60-70°C	NAC/5
> 70°C	NAC/2.5

Error Summary

Capacity Inaccurate

The LMD is susceptible to error on initialization or if no updates occur. On initialization, the LMD value includes the error between the programmed full capacity and the actual capacity. This error is present until a valid discharge occurs and LMD is updated (see "4. Discharge Count Register" on the previous page). The other cause of LMD error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

A Capacity Inaccurate counter (CPI) is maintained and incremented each time a valid charge occurs and is reset whenever LMD is updated from the DCR. The counter

does not wrap around but stops counting at 255. The capacity inaccurate flag (CI) is set if LMD has not been updated following 64 valid ^{charges}.

Current-Sensing Error

Table 3 illustrates the current-sensing error as a function of V_{SR} . A digital **filter** eliminates charge and discharge counts to the NAC **register** when V_{SRO} ($V_{SR} + V_{OS}$) is between **-400** μ V and **500** μ V.

Table 4. bq2011J Current-Sensing Errors

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offset referred to VsR	± 50	± 150	μV	$\overline{\text{DISP}} = V_{\text{CC}}.$
INL	Integrated non-linearity error	± 2	± 4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25V.
INR	Integrated non- repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

8/18 June 1995

Communicating With the bg2011J

The **bq2011J** includes a simple single-pin (DQ plue **return**) serial data **interface**. A hoet **processor** uses the **interface** to **access various bq2011J registers**. Battery characteristics may be easily monitored by adding a single contact to the battery pack. The open-drain DQ pin on the **bq2011J should** be pulled up by the host **system**, or may be left floating if the sinterface is not used.

The interface uses a command-baaed protocol, where the host processor sends a command byte to the bq2011J. The command directs the bq2011J to either store the next eight bits of data received to a register specified by the command byte or output the eight bits of data specified by the command byte.

The communication protocol is asynchronous **return**-to-one. Command and data **bytes** consist of a stream of eight bits that have a **maximum** transmission rate of 333 **bits/sec**. The least-significant bit of a command or data byte is transmitted first. The protocol is simple enough that it can be implemented by most host processors using either polled or interrupt processing. Data input from the **bq2011J** may be sampled using the pulse-width capture timers available on some microcontrollers.

Communication is normally initiated by the host **processor** sending a **BREAK** command to the **bq2011J**. A BREAK is **detected** when the DQ pin is driven to a logic-law **state** for a time, **tB** or greater. The DQ pin should then be returned to ita normal **ready-high** logic **state** for a time, **tBR**. The **bq2011J** is now **ready** to receive a command **from** the host **processor**.

The return-to-one data bit frame consists of three distinct sections. The first section is used to start the transmission by either the host or the bq2011J taking the DQ pin to a

logic low state for a period, tenners. The next section is the actual data transition in, where the data should be valid by a period, tosu, after the negative edge used to start communication. The data should be held for a period, toy, to allow the host or bo2011J to sample the data bit.

The final section is used to stop the transmission by returning the DQ pin to a logic-high state by at least a period, tasu, after the negative edge used to start communication. The final logic-high state Should'be held urtil a period, tay, to allow time to ensure that the bit transmission was stopped properly. The temings for data and break communication are given in the serial communication timing specification and illustration sections.

Communication with the **bq2011J** is always **performed** with the least-si cant bit being transmitted **first**. Figure 3 shows an example of a communication sequence to read the **bq2011J** NAC register.

bq2011J Registers

The **bq2011J** command and status registers are listed in Table 5 and **described** below.

Command Register (CMDR)

The write-only CMDR register is accessed when eight valid command bits have been received by the bq2011J. The CMDR register contains two fields:

- W/R bit
- Command address

The $\mathbf{W}\overline{\mathbf{R}}$ bit of the **command** register is used to select whether the received command is for a read or a write function.

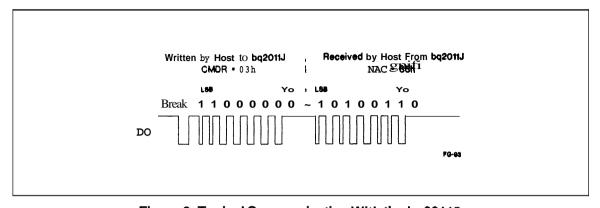


Figure 3. Typical Communication With the bq2011J

June 1995 9/18

Table 5. **bq2011J** Command and Status Registers

							Contro	l Field			
Symbol	Register Name	Loc. (hex)		7(MSB)	6	5	4	3	2	1	0(LSB)
CMDR	Command register	00h	Write	W/R	AD6	AD5	AD4	AD3	AD2	AD1	AD0
FLGS1	Primary status flags register	Olh	Read	CHGS	BRP	MCV	CI	VDQ	n/u	EDV	n/u
TMPGG	Temperature and gas gauge register	02h	Read	тмрз	TMP2	TMP1	тмро	GG3	GG2	GG1	GG0
NACH	Nominal available charge high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACHO
NACL	Nominal available charge low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATID0
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
FLGS2	Secondary status flags register	06h	Read	CR	DR2	DR1	DR0	n/u	n/u	n/u	OVLD
СРІ	Capacity inaccurate count register	09h	Read	CPI7	CPI6	CPI5	CP14	СРІЗ	CPI2	CPI1	CPIO
OCTL	Output control register	Oah	Write	1	OC5	OC4	0C3	OC2	OC1	n/u	OCE
FULCNT	Full count register	Obh	Read	FUL7	FUL6	FUL5	FUL4	FUL3	FUL2	FUL1	FULO
RST	Reset register	39h	Write	RST	0	0	0	0	0	0	0

Note:

n/u = not used

10/18

The W/R values are:

CMDR Bits									
7	6	5	4	3	2	1	0		
W/R	-	-		-					

Where W/R is:

- The bq2011J outputs the requested register contents specified by the address portion of CMDR
- 1 The following eight bits should be written to the register specified by the address portion of CMDR.

The lower seven-bit field of CMDR contains the **address** portion of the register to be **accessed**. **Attempts** to write to invalid **addresses** are ignored.

CMDR Bits										
7	6	5	4	3	2	1	0			
	AD6	AD5	AD4	AD3	AD2	AD1	AD0 (LSB)			

Primary Status Flags Register (FLGS1)

The read-only **FLGS1** register (address=01h) contains the primary bq2011J flags.

The *charge status* flag (CHGS) is asserted when a valid charge rate is detected. Charge rate is deemed valid when Vsro < -400μV. A Vsro of greater than-400μV or discharge activity clears CHGS.

The CHGS values are:

FLGS1 Bits										
7	6	5	4	3	2	1	0			
CHGS	-	-	-	-	•	-	-			

Where CHGS is:

- 0 Either discharge activity detected or $V_{SRO} > 400\mu V$
- 1 $V_{SRO} < -400 \mu V$

The battery replaced flag (BRP) is asserted whenever the potential on the SB pin (relative to Vss), Vsp, rises above 0.1V and determines the internal registers have been corrupted. The BRP flag is also set when the bq2011J is reset (see the RST register description). BRP is cleared if either the bq2011J is charged until NAC = LMD or discharged until EDV is reached. BRP = 1 signifies that the device has been reset.

The BRP values are:

FLGSI Bib							
7	6	5 4 3 2					0
•	BRP	-	-	•	•	•	-

Where BRP is:

- 0 bq2011J is charged until NAC = LMD or diecharged until the EDV flag is asserted
- SB rising from below 0.1V, or a serial port initiated reset has occurred

The maximum cell voltage flag (MCV) in asserted whenever the potential on the SB pin (relative to Vss) is above 2.0V. The MCV flag is asserted until the condition causing MCV is removed.

The MCV values are:

			FLG	SI Bits			
7	6	5	4	3	2	1	0
		MCV	•				-

Where MCV is:

- 0 Vsr < 2.0 V
- 1 $V_{SB} > 2.0V$

The capacity inaccurate flag (CI) is used to warn the user that the battery has been charged a substantial number of times since LMD has been updated. The CI flag is asserted on the 64th charge after the last LMD update or when the bq2011J is reset. The flag is cleared after an LMD update.

The CI values are:

FLGSI Bits							
7	6	5	4	3	2	1	0
•	-	•	CI		-	•	

Where CI is:

- When LMD is updated with a valid full discharge
- 1 After the 64th valid charge action with no LMD updates or the bq2011J is reset

June 1995

The **valid discharge** flag **(VDQ)** is asserted when the **bq2011J** is discharged from **NAC=LMD**. The flag **remains** set until either LMD is updated or one of three **actions** that can clear VDQ occurs:

- The self-discharge count register (SDCR) has **exceeded** the maximum acceptable value (4096 counts) for an **LMD** update.
- \blacksquare A valid charge action equal to 256 NAC counts with $V_{SRO} < 400 \mu V$
- The **EDV** flag was set at a temperature below **0°C**

The VDQ values are:

			FLG	SI Bits			
7	6	5	4	3	2	1	0
-	-	-	-	VDQ	•		•

Where VDQ is:

- O SDCR ≥ 4096, subsequent valid charge action detected, or EDV is asserted with the temperature less than 0°C
- 1 On first discharge after NAC = LMD

The **end-of-discharge warning** flag (EDV) warns the user that the battery is empty. SEG1 blinks at a 4Hz rate. EDV detection is disabled if OVLD = 1. The EDV flag is latched until a valid charge has been **detected**.

The EDV values are:

			FLG	SI Bits			
7	6	5	4	3	2	1	0
-	-	-	-		-	EDV	-

Where EDV is:

- Valid charge action detected and V_{SB} ≥ 0.90V
- 1 VSB < 0.90V providing that OVLD = 0

Temperature and Gas Gauge Register (TMPGG)

The read-only TMPGG register (address=02h) contains two data fields. The first field contains the battery temperature, The second field contains the available charge from the battery.

	TMPGG Temperature Bits						
					2	1	0
TMP3	TMP2	TMP1	TMP0		-	-	

The bq2011J contains an internal temperature sensor. The temperature is wed to set charge and discharge efficiency factors as well as to adjust the self-discharge codficient. The temperature register contents may be translated as shown below.

TMP3	TMP2	TMP1	TMP0	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

The **bq2011J** calculates the available **charge** as a function of **NAC**, temperature, and a **fill** reference, either LMD or PFC. The results of the calculation are available via the diiplay port or the gas gauge field of the TMPGG register. The register is used to give available capacity in $\frac{1}{16}$ increments from 0 to $\frac{15}{16}$.

TMPGG Gas Gauge Bits								
7 6 5 4 3 2 1 0								
-	-		-	GG3	GG2	GG1	GG0	

The gas gauge display and the gas gauge portion of the TMPGG register are adjusted for cold temperature **dependencies**. A piece-wise correction is performed **as** follows:

Temperature	Available Capacity Calculation
> 0°C	NAC/"Full Reference"
-20°C < T < 0°C	0.75 • NAC/"Full Reference"
< -20°C	0.5 • NAC/"Full Reference"

The adjustment between > 0°C and -20°C < T < 0°C has a 4°C hysteresis.

Nominal Available Charge Register (NAC)

The read/write NACH register (address=03h) and the read-only NACL register (address=17h) are the main gas gauging registers for the bq2011J. The NAC registers are incremented during charge actions and decremented during discharge and self-discharge actions. The correction factors for charge/discharge efficiency are applied automatically to NAC.

If $SEG_{\delta} = 0$ on reset, then NACH = PFC and NACL = 0. If $SEG_{\delta} = Z$ or H, the NACH and NACL registers are cleared to zero, NACL stops counting when NACL reaches zero. When the bq2011J detects a valid charge, NACL resets to zero; writing to the NAC register affects the available charge counts and, therefore, affects the bq2011J gas gauge operation.

Battery Identification Register (BATID)

The read/write BATID regieter (address=04h) is available for use by the system to determine the type of battery pack. The BATID contents are retained as long as Vcc is greater than 2V. The contents of BATID have no effect on the operation of the bq2011J. There is no default setting for this register.

Last Measured Discharge Register (LMD)

LMD is a **read/write** register (address=05h) that the **bq2011J uses** as a measured full reference. The **bq2011J** adjusts LMD based on the measured discharge capacity of the battery **from** full to empty. In this way the **bq2011J updates** the capacity of the battery. LMD is set to PFC during a **bq2011J** reset.

Secondary Status Flags Register (FLGS2)

The read-only FLGS2 register (address=06h) contains the secondary bq2011J flags.

The charge rate flag (CR) is used to denote the fast charge regime. Fast charge is assumed whenever a

charge action is **initiated**. The CR flagremains asserted if the charge rate **does** not fall below 2 **counts/sec**.

The CR values are:

			FLG	S2 Bits			
7	6	5	4	3	2	1	0
CR	-	•	•	•	•	-	-

Where CR is:

- **0** When charge rate falls below 2 counts/sec
- When charge rate is above 2 counts/sec

The fast charge regime efficiency factors are wed when CR = 1. When CR = 0, the trickle charge efficiency factors are used. The time to change CR varies due to the user-selectable count rates.

The discharge rate flags, DR2-0, are bits 6-4.

		FL	. GS2 Bi	b			
7	6	5	4	3	2	1	0
-	DR2	DR1	DR0	-			

They are used to determine the **present** discharge regime as follows:

CRATE@LMD = 90h	DRO	DR1	DR2
Crate < 6C	0	0	0
$6C \le C_{RATE} < 12C$	1	0	0
12C ≤ Crate < 18C	0	1	0
Crate ≥ 18C	1	1	0

The overload flag (OVLD) is asserted when a discharge overload is detected, CRATE \geq 6.0C for LMD = 90h (see Discharge Compensation, page 8). OVLD remains asserted as long as the condition is valid.

FLGS2Bib							
7	6	5	4	3	2	1	0
•	-	-	-	-		•	OVLD

Full Count Register (FULCNT)

The read-only FULCNT register (address=0bh) provides the system with a diagnostic of the number of times the battery has been fully charged (NAC = LMD). The number of full occurrences can be determined by multiplying the value in the FULCNT register by 16. Any discharge action 13/18

other than **self-discharge allows** detection of **another** full **occurrence** during the **next** valid charge action.

Capacity Inaccurate Count Register (CPI)

The read-only CPI register (address=09h) is used to indicate the number of times a battery has been charged without an LMD update. Because the capacity of a rechargeable battery varies with age and operating conditions, the bq2011J adapts to the changing capacity over time. A complete discharge from full (NAC=LMD) to empty (EDV=1) is required to perform an LMD update assuming there have been no intervening valid charges, the temperature is greater than or equal to O°C, and the self-discharge counter is less than 4096 counts.

The CPI register is incremented every time a valid charge is detected. The register increments to 255 without rolling over. When the contents of CPI are incremented to 64, the capacity inaccurate flag, CI, is asserted in the **FLGS1** register. CPI is reset whenever an update of the **LMD** register is performed, and the CI flag is also cleared.

Output Control Register (OCTL)

The write-only OCTL register (address=0ah) provides the system with a means to check the display connections for the bq2011J. The segment drivers may be overwritten by data from OCTL when the least-significant bit of OCTL, OCE, is set. The data in bite OC5-1 of the OCTL register (see Table 5 on page 10 for details) is output onto the segment pine, SEG5-1, respectively if OCE=1. Whenever OCE is written to 1, the MSB of OCTL should be set to a 1. The OCE register location must be cleared to return the bq2011J to normal operation. OCE may be cleared by either writing the bit to a logic zero via the aerial port or by resetting the bq2011J as explained below. Note Whenever the OCTL register is written, the MSB of OCTL should be written to a logic one.

Reset Register (RST)

The reset regieter (address=39h) provides the means to perform a software-controlled reset of the device. A full device reset may be accomplished by first writing LMD (address = 05h) to 00h and then writing the RST register contents from 00h to 80h. Setting any bit other than the most-significant bit of the RST register is not allowed, and results in improper operation of the bq 2011J.

Resetting the **bq2011J** sets the following:

- LMD = PFC
- CPI, VDQ, OCE, and NAC = 0(NAC = PFC when PROG₄ = L)
- CI and BRP=1

Display

The bq2011J can directly display capacity information using low-power LEDs. If LEDs are used, the segment pins should be tied to Vcc, the battery, or the MODE pin for programming the bq2011J.

The **bq2011J** displays the battery charge **state** in either absolute or relative mode. In relative mode, the battery charge is **represented** as a percentage of the LMD. Each LED segment represents 20% of the LMD.

In absolute mode, each segment **represents** a fixed amount of charge, based on the initial PFC. In absolute mode, each segment **represents** 20% of the PFC. **As** the battery **wears** out over time, it is **possible** for the **LMD** to be below the initial PFC. In this case, all of the **LEDs** may not turn on, representing the reduction in the actual battery capacity.

The capacity display is also adjusted for the present battery temperature. The temperature adjustment **reflects** the available capacity at a given temperature but **does** not affect the NAC **register**. The temperature **adjustments** are detailed in the TMPGG register **description** on page 12

When DISP is tied to Vcc, the SEG1-5 outputs are inactive. When DISP is left floating, the display becomes active during charge if the NAC registers are counting at a rate equivalent to Vsro <-1mV or fast discharge if the NAC registers are counting at a rate equivalent to Vsro > 2mV. When pulled low, the segment output becomes active for 4 seconds, M.5 seconds.

The segment outputs are modulated as two **banks**, with segments **1**, **3**, and 5 alternating with segments 2 and 4. The segment outputs **are** modulated at approximately **320Hz**, with each bank active for 30% of the period.

SEG₁ blinks at a 4Hz rate whenever **VsB** has been detected to be below **VEDV** to indicate a low-battery condition or NAC is leas than **10%** of the **LMD** or PFC, depending on the display mode.

Microregulator

The bq2011J can operate directly from 4 cells. To facilitate the power supply requirements of the bq2011J, an REF output is provided to regulate an external low-threshold n-FET. A micropower source for the bq2011J can be inexpensively built using the FET and an external resistor.

14/18 June 1995

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
Vsr	Relative to Vss	-0.3	+7.0	v	Minimum 1000 series resistor should be used to protect SR in case of a shorted battery (see the bq2011J application note for details).
T.		0	+70	°C	Commercial
Tofu	Operating temperature	-40	+85	°C	Industrial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are **exceeded. Functional** operation should be limited to the Recommended DC Operating **Conditions** detailed in this data **sheet**. **Exposure** to conditions beyond the operational limits for extended **periods** of time may affect device reliability.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
$v_{\rm edv}$	End-of-discharge warning	0.87	0.90	0.93	v	SB
Vsrq	Valid charge			-400	μV	V _{SR} + V _{OS}
V_{SRD}	Valid discharge	500			μV	V _{SR} + V _{OS}
V _{MCV}	Maximum singlecell voltage	1.95	2.0	2.05	V	SB
V _{BR}	Battery removed/replaced		0.1	0.25	V	SB

Note:

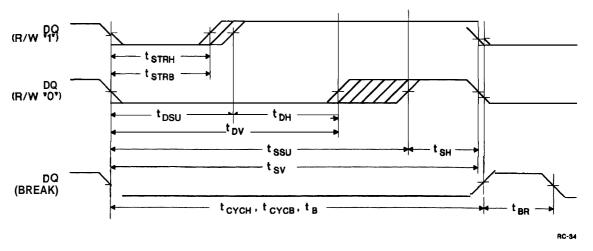
For proper operation of the threshold detection circuit, V_{CC} must be at least 1.5V greater than the voltage being measured.

June 1995

DC Electrical Characteristics (TA = TOPR)

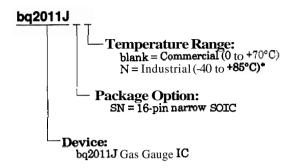
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5	v	$V_{\rm CC}$ excursion from < 2.0V to \geq 3.0V initializes the unit.
	Reference at 25°C	5.7	6.0	6.3	V	$I_{REF} = 5\mu A$
VREF	Reference at -40°C to +85°C	4.5	-	7.5	V	IREF = 5µA
Rref	Reference input impedance	2.0	5.0	-	ΜΩ	V _{REF} = 3V
		•	90	135	μA	$V_{CC} = 3.0V$, $DQ = 0$
Icc	Normal operation	•	120	180	μA	$V_{CC} = 4.25V, DQ = 0$
-00		•	170	250	μA	$V_{CC} = 6.5V$, $DQ = 0$
V _{SB}	Battery input	. 0		Vcc	V	
RsBmax	SB input impedance	10	-	-	ΜΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage	•		5	μA	V _{DISP} = V _{SS}
Ісом	LCOM input leakage	-0.2	-	0.2	μА	$\overline{\text{DISP}} = V_{CC}$
IRBI	RBI data-retention current			100	nA	$V_{RBI} > V_{CC} < 3V$
RDQ	Internal pulldown	500	-		ΚΩ	
VsR	Sense resistor input	-0.3	-	2.0	v	V _{SR} > V _{SS} = discharge; V _{SR} < V _{SS} = charge
RsR	SR input impedance	10	-	-	ΜΩ	-200mV < V _{SR} < V _{CC}
VIHPFC	PROG/SPFC logic input high	Vcc - 0.2	-	-	V	SPFC, PROG ₁₋₄
VILPEC	PROG/SPFC logic input low	•	-	Vss + 0.2	V	SPFC, PROG ₁₋₄
Vizpec	PROG/SPFC logic input Z	float	-	float	V	SPFC, PROG ₁₋₄
Інрғс	PROG/SPFC input high current	-	1.2	-	μА	V _{PFC} = V _{CC} /2
IILPFC	PROG/SPFC input low current	-	1.2	-	μA	$V_{PFC} = V_{CC}/2$
Volsl	SEGx output low, low Vcc	-	0.1	-	v	$V_{CC} = 3V$, $I_{OLS} \le 1.75$ mA SEG ₁ -SEG ₅
Volsh	SEGx output low, high Vcc	-	0.4	-	v	$V_{CC} = 6.5V$, $I_{OLS} \le 11.0$ mA SEG ₁ -SEG ₅
VOHML	LCOM output high, low Vcc	V _{CC} - 0.3	-	-	V	$V_{CC} = 3V$, $I_{OHLCOM} = -5.25$ mA
Vонмн	LCOM output high, high Vcc	V _{CC} - 0.6	-	-	V	$V_{CC} = 6.5V$, $I_{OHLCOM} = -33.0$ mA
Іонісом	LCOM source current	-33	-	-	mA	At V _{OHLCOM} = V _{CC} - 0.6V
Iols	SEGx sink current	11.0			mA	At $V_{OLSH} = 0.4V$, $V_{CC} = 6.5V$
I_{OL}	Open-drain sink current	5.0	-	-	mA	At $V_{OL} = V_{SS} + 0.3V$, DQ
Vol	Open-drain output low	-		0.5	V	I _{OL} ≤ 5mA, DQ
VIHDQ	DQ input high	2.5	-		v	DQ
VILDQ	DQ input low	-	-	0.8	v	DQ
RFLOAT	Float state external impedance	-	5	-	ΜΩ	SPFC, PROG ₁₋₄

Note: All voltages relative to Vss.


16/18 June 1995

Serial Communication Timing Specification (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcych	Cycle time, host to bq2011J	3			me	See note
tcycb	Cycle time, bq2011J to host	3		6	me	
tstrh	Start hold, host to bq2011J	5	•	•	ns	
tstrb	Start hold, bq2011J to host	500			με	
tosu	Data setup			750	μs	
tDH	Data hold	750			μв	
tDV	Data valid	1.50	•	-	ms	
tssu	Stopsetup			2.25	me	
tsh	Stop hold	700			με	
tsv	Stop valid	2.95	,		me	
tB	Break	3	•		ms	
tBR	Break recovery	1			me	


Note: The open-drain DQ pin **should** be pulled to at **least** Vcc by the **host** system for proper DQ operation. DQ may be left floating if the serial interface is not used.

Serial Communication Timing Illustration

June 1995

Ordering Information

• Contact factory for availability.

18/18 June 1995

<u>bq2011K</u> Gas Gauge IC

Features

- ➤ Conservative and repeatable measurement of available charge in rechargeable batteries
- ➤ Designed for portable equipment such as power tools with high discharge rates
- ➤ Designed for battery pack integration
 - 120µA typical standby current (self-discharge estimation mode)
 - Small size enables implementations in as little as ½
 square inch of PCB
- ➤ Direct drive of LEDs for capacity display
- > Self-discharge compensation using internal temperature sensor
- Simple single-wireserial communications port for subassembly testing
- 16-pin narrow SOIC

General Description

The bq2011K Gas Gauge IC is intended for battery-pack installation to maintain an accurate record of a battery's available charge. The IC monitore a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery. The bq2011K is designed for systems such as power tools with very high discharge rates.

Battery self-discharge is estimated based on an internal timer and temperature sensor. Compensations for battery temperature and rate of charge or discharge are applied to the charge, discharge, and selfdischarge calculations to provide available charge information across a wide range of operating conditions. Initial battery capacity is set using the **PROG**₁₄ and SPFC pins. Actual battery capacity is automatically 'learned' in the **course** of a discharge cycle from full to empty and may be displayed depending on the display mode.

Nominal available charge may be directly indicated **using** a **five**-segment **LED** dirplay. These segments are used to graphically indicate nominal available *charge*.

The bq2011K supports a simple single-line bidirectional serial link to an external processor (common ground). The bq2011K outputs battery information in response to external commands over the serial link. To support subassembly testing, the outputs may also be controlled by command. The external processor may also overwrite some of the bq2011K gas gauge data registers.

The **bq2011K** may operate directly from four cells. With the REF output and an external transistor, a simple, inexpensive regulator can be built to provide Vcc from a greater number of cells.

Internal **registers** include available *charge*, tempera —, **capacity**, battery ID, and battery status.

Pin Connections

LCOM [16 15	□ V _{CC}
SEG_/PROG2	3	14	NC
SEG ₃ /PROG ₃ [] SEG ₄ /PROG ₄ []	5	12	D DQ D RBI
` SEG ₅ ☐ SPFC ☐		11 10	DISP
V _{SS} [8	9	SR
18-F	Pin l	Narro	w SOIC
			PN-90

Pin Names

LCOM	LED common output	REF	Voltage reference output
SEG ₁ /PROG ₁	LFD segment 1/ Program	NC	No connect
SEG ₂ /PROG ₂	1 input LED segment 2 / Program 2 input	DQ	Serial communications input/output
CEC. MDOC.	1	RBI	Register backup input
SEG ₃ /PROG ₃	LED segment 3/ Program 3 input	SB	Battery sense input
SEG4/PROG4	LFD segment 4/ Program	DISP	Display control input
ana	4 input	SR	Sense resistor input
SEG ₅	LED segment 5	Vcc	3.0-6.5V
SPFC	Programmed full count selection <i>input</i>	Vss	Negative battery terminal

Oct. 1995

1/18

Pin Descriptions		NC	No connect		
LCOM	LED common	DISP	Display control input		
LCOM	Open-drain output switches Vcc to source current for the LEDs, The switch ia off during initialization to allow reading of PROG14 pullup or pull-down program resistors. LCOM is high impedance when the display is off.	SB	DISP floating allows the LED display to be active during certain charge and discharge conditions. Transitioning DISP low activates the display for 4 ± 0.5 seconds. Secondary battery input		
SEG ₁ - SEG ₅	LED display segment outputs Each output may activate an LED to sink the current sourced from LCOM, the battery, or vcc.		This input monitors the single-cell voltage potential through a high-impedance resistive divider network for the end-of-discharge voltage (EDV) threshold and maximum cell voltage (MCV).		
PROG ₁ - PROG ₄	Programmed full count selection inputs (dual function with SEG₁ · SEG₄) These three-level input pins define the programmed full count (PFC) in conjunction with SPFC pin, define the display mode and	RBI	Register backup input This input is used to provide backup potential to the bq2011K registers during periods when Vcc < 3V. A storage capacitor should be connected to RBI.		
SPFC	enable or disable self-discharge. Programmed fill count selection input This three-level input pin along with PROG1.3 define the programmed full count (PFC) thresholds described in Table 1. The state of the SPFC pin is only read immediately after a reset condition.	DQ REF	This is an open-drain bidirectional pin. Voltage reference output for regulator REF provides a voltage reference output for an optional micro-regulator.		
SR	Sense resistor input	$\mathbf{v}_{\mathbf{c}\mathbf{c}}$	Supply voltage input		
	The voltage drop (VsR) across the sense resistor Rs is monitored and integrated over time to interpret charge and discharge activity. The SR input is tied to the low side of the sense resistor and battery pack ground (see Figure 1. VsR > Vss indicates discharge, and VsR < Vss indicates charge. The effective voltage drop, VsRO, as seen by the bq2011K is VsR + Vos (see Table 4).	Vss	Ground		

Functional Description General Operation

The bq2011K determines battery capacity by monitoring the amount of charge input to or removed from a rechargeable battery. The bq2011K measures discharge and charge currents, estimates self-discharge, monitors the battery for low-battery voltage thresholds, and compensates for temperature and charge/discharge rates. The charge measurement is made by monitoring the voltage across a small-value series sense resistor between the battery's negative terminal and ground. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2011K wing the LED display with absolute mode as a charge-state indicator. The bq2011K can be configured to display capacity in either a relative or an absolute display mode. The relative display mode uses the last measured discharge capacity of the battery as the battery full' reference. The absolute display mode uses the programmed full count (PFC) as the full reference, forcing each segment of the display to represent a fixed amount of charge. A push-button diaplay feature is available for momentarily enabling the LED display.

The **bq2011K** monitors the charge and **discharge** currents as a voltage **across** a **sense resistor** (see Rs in Figure 1). A **filter** between the negative battery terminal and the SR pin may be required if the rate of change of the battery current ia too great.

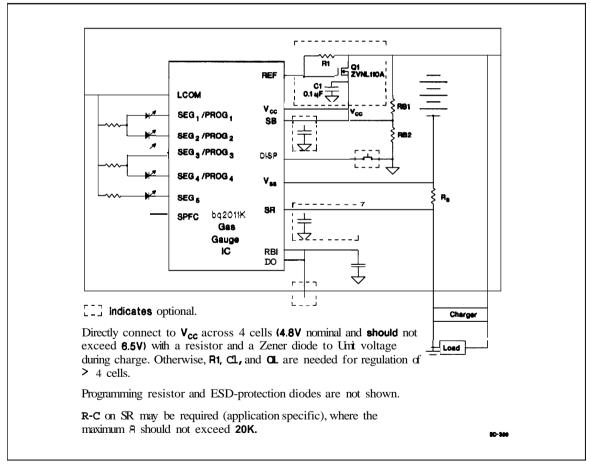


Figure 1. Application DiagramALED Display, Absolute Mode

Oct 1995

Register Backup

The **bq2011K** RBI input pin **is** intended to be used with a storage capacitor to **provide** backup potential to the internal **bq2011K** registers when **Vcc** momentarily drops below **3.0V. Vcc** is output on **RBI** when **Vcc** is above **3.0V.**

After Vcc rises above 3.0V, the bq2011K checks the internal registers for data loss or corruption. If data has changed, then the NAC register is cleared, and the LMD register is loaded with the initial PFC.

Voltage Thresholds

In conjunction with monitoring VsR for charge/discharge currents, the bq2011K monitors the single-cell battery potential through the SB pin. The single-cell voltage potential is determined through a resistor-divider network per the following equation:

$$\frac{RB_1}{RB_2} = N - 1$$

where N is the number of cells, **RB**₁ is connected to the positive battery terminal, and RB₂ is connected to the negative battery terminal. The single-cell battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV). The EDV threshold level is used to determine when the battery has reached an 'empty" state, and the MCV threshold is used for fault detection during charging. The MCV threshold for the bq2011K is fixed at:

$$V_{MCV} = 2.00V$$

The EDV threshold varies as a function of discharge current as follows:

V _{SRO} (mV)	V _{EDV} (V)
0 < V _{SRO} ≤ 10	1.160
10 < V _{SRO} ≤ 20	1.124
20 < V _{SRO} ≤ 40	1.060
40 < V _{SRO} ≤ 60	0.960
V _{SRO} > 60	0 (OVLD)

Reset

Reset can be accomplished with a command over the serial port **aa** described on page 13.

Temperature

The **bq2011K** internally determines the temperature in 10°C steps centered from -35°C to +85°C. The temperature steps are used to adapt charge and discharge rate compensations, **self-discharge** counting, and available charge display translation. The temperature

range is available over the serial part in 10°C increments as **shown** below:

TMPGG (hex)	Temperature Range
0x	<-30°C
1x	-30°C to -20°C
2x	-20°C to -10°C
3x	-10°C to 0°C
4x	0°C to 10°C
5 x	10°C to 20°C
6x	20°C to 30°C
7x	30°C to 40°C
8x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Bx	70°C to 80°C
Cx	> 80°C

Layout Considerations

The bq2011K measures the voltage differential between the SR and Vss pine. Vos (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the strict rule of a single-point ground return. Sharing high-current ground with small signal ground causes undesirable noise on the small signal nadea. Additionally:

- The capacitors (SB and Vcc) should be placed as close as possible to the SB and Vcc pins, respectively, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1µf is recommended for Vcc.
- The sense resistor (Rs) should be as close as possible to the bq2011K.
- The R-C on the SR pin should be located as close as possible to the SR pin. The maximum R should not exceed 20K.

Gas Gauge Operation

The operational overview diagram in F i e 2 illustrates the operation of the **bq2011K**. The **bq2011K accumulates** a **measure** of charge and **discharge currents**, as well as an estimation of **self-discharge**. Charge currents are temperature and rate compensated, whereas **self-discharge** is only temperature compensated.

The main counter, Nominal Available Charge (NAC), represents the available battery capacity at any given

time. Battery charging increments the NAC **register**, while battery discharging and self-discharge decrement the **NAC** register and increment the DCR (Discharge Count Register).

The Discharge Count Register (DCR) is used to update the Last Measured Discharge (LMD) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2011K adapts its capacity determination based on the actual conditions of discharge.

The battery's initial capacity **is** equal to the Programmed Full Count (PFC) shown in Table 1. Until **LMD** is updated, NAC counts up to but not beyond **this** threshold during subsequent charges. **This** approach allows the **gas** gauge to be charger-independent and compatible with any type of charge regime.

Last Measured Discharge (LMD) or learned battery capacity:

LMD is the last measured **discharge** capacity of the battery. On initialization (application of **Vcc** or battery replacement), LMD = PFC. During **subsequent** discharges, the LMD is updated with the latest measured capacity in the **Discharge** Count Register (**DCR**) representing a discharge from fill to below EDV. A qualified discharge is necessary for a **capacity** transfer from the DCR to the LMD **register**. **The** LMD also **serves** as the **100% reference** threshold used by the relative display mode.

Programmed Full Count (PFC) or initial battery capacity:

The initial LMD and gas gauge rate values are programmed by using PFC. The PFC also provides the 100% reference for the absolute display mode. The bq2011K is configured for a given application by selecting a PFC value from Table 1. The correct PFC may be determined by multiplying the rated battery capacity in mAh by the sense resistor value:

Battery capacity (mAh) • sense resistor (R) =

PFC (mVh)

Selecting a PFC slightly **less** than the rated capacity for **absolute** mode **provides** capacity **above** the full reference for much of the battery's life.

Example: Selecting a PFC Value

Given:

Sense resistor = 0.002Ω

Number of cells = 6

Capacity = 1800mAh, NiCd cells

Current range = 1A to 80A

Relative display mode

Self-discharge = C/80

Voltage drop across sense resistor = 2mV to 160mV

Voltage drop act voo beine resistor = 2111 V to 1001

Therefore:

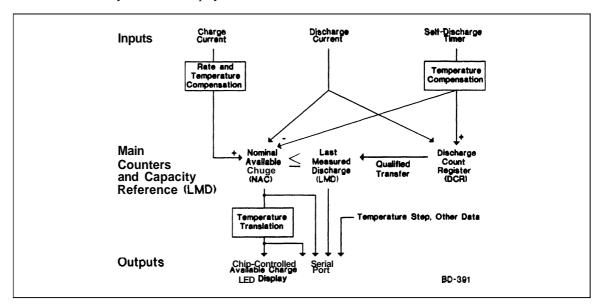


Figure 2. Operational Overview

Oct. 1995 5/18

bq2011K

 $1800 \text{mAh} \cdot 0.002 \Omega = 3.6 \text{mVh}$

Select:

PFC = 35840 counts or 3.39mVh SPFC = Z(float) PROG1, PROG2 = H or Z PROG3 = L PROG4 = H or Z

The initial full battery capacity is **3.39mVh** (1695mAh) until the **bq2011K "learns"** a **new** capacity with a qualified **discharge from** full to EDV.

3. Nominal Available Charge (NAC):

NAC counts up during charge to a **maximum** value of LMD and down during **discharge** and **self** discharge to 0. NAC is reset to 0 **on** initialization and on the first valid charge following discharge to EDV. To prevent **overstatement** of charge during periods of overcharge, NAC stops **incrementing** when NAC = LMD.

Note: NAC is set to the value in LMD when PROG4 is pulled low during a reset.

Table 1. bq2011K Programmed Full Count mVh Selections

Programmed Full Count (PFC)	mVh	Scale	Display Mode	SPFC	PROG ₁	PROG₂	PROG₃
40192	3.81	1/10560		Н	H or Z	H or Z	H or Z
32256	3.05	1/10560		z	H or Z	H or Z	H or Z
28928	2.74	1/10560	Absolute	L	H or Z	H or Z	H or Z
25856	2.45	1/10560		Н	L	H or Z	H or Z
35840	3.39	1/10560		Z	L	Hor Z	H or Z
23296	2.21	1/10560		L	L	H or Z	H or Z
40192	3.81	1/10560		Н	H or Z	L	H or Z
32256	3.05	1/10560		Z	H or Z	L	H or Z
28928	2.74	1/10560		L	H or Z	L	H or Z
25856	2.45	1/10560	Relative	н	H or Z	HorZ	L
35840	3.39	1/10560		Z	H or Z	H or Z	L
23296	2.21	1/10560		L	H or Z	H or Z	L

Table 2. Programmed Self-Discharge

PROG4	NAC Reset Value	Self-Discharge		
H or Z	NAC = 0	Enabled		
L	NAC = PFC	Disabled		

6/18 Oct. 1995

Discharge Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to **0**. Prior to NAC = **0** (empty battery), both discharge and self-discharge increment the DCR After NAC = **0**, only discharge increments the DCR The DCR resets to **0** when NAC = LMD. The DCR does not roll over but stops counting when it reaches FFFFFh.

The **DCR** value becomes the new LMD value on the first charge after a valid discharge to VEDV if:

No valid charge initiations (charges greater than 256 NAC counts; or 0.006 **- 0.01C)** occurred during the period between NAC **= LMD** and EDV detected.

The self-discharge count is not more than 4096 counts (8% to 18% of PFC, specific percentage threshold determined by **PFC**).

The temperature is ≥ OC when the EDV level is reached during discharge.

The valid discharge flag (VDQ) indicates whether the present diiharge is valid for LMD update.

Charge Counting

Charge activity is detected based on a negative voltage on the **VsR** input. If charge activity is detected, the **bq2011K increments** NAC at a rate proportional to **VsRo** (**VsR** + Vos) and, if enabled, activates an **LED** display if **VsRo** < -2mV. Charge actions increment the NAC after compensation for charge rate and temperature.

The bq2011K determines a valid charge activity sustained at a continuous rate equivalent to $V_{SRO} < -400\mu V$. A valid charge equates to a sustained charge activity greater than 256 NAC counts. Once a valid charge is detected, charge counting continues until V_{SRO} rises above $-400\mu V$.

Discharge Counting

All discharge counts where $V_{SRO} > 500\mu V$ cause the NAC register to decrement and the DCR to increment. Exceeding the fast discharge threshold (FDQ) if the rate is equivalent to $V_{SRO} > 2mV$ activates the display, if enabled. The display remains active for 10 seconds after V_{SRO} falls below 2mV.

Self-Discharge Estimation

The bq2011K continuously decrements NAC and increments DCR for self-discharge based on time and temperature. The self-discharge count rate is programmed to be a nominal 1/80 • NAC rate per day or disabled per Table 2. This is the rate for a battery temperature between 20–30°C. The NAC register cannot not be decremented below 0.

Count Compensations

The **bq2011K determines** fast charge when the NAC updates at a rate **of ≥2 counts/sec.** Charge activity is **compensated** for temperature and rate before updating the NAC **and/or DCR. Self-discharge estimation is** compensated for temperature **before** updating the NAC or DCR.

Charge Compensation

Two charge efficiency factors are **used** for trickle charge and feet charge. Fast charge is defined as a rate of charge resulting in ≥ 2 NAC **counts/sec** (≥ **0.15C** to **0.32C** depending on PFC selections; see Table 1). The **compensation defaults** to the fast charge factor until the actual charge rate is determined.

Temperature adapts the charge rate **compensation fac**tors over three rangea between nominal, warm, and hot temperatures. The wmpensation **factors** are shown below.

Charge Temperature	Trickle Charge Compensation	Fast Charge Compensation
<30°C	0.80	0.95
30-50°C	0.75	0.90
> 50°C	0.70	0.85

Discharge Compensation

Corrections for the rate of discharge are made by adjusting EDV **thresholds**. The compensation factor **used** during discharge is set to 1.00 for all rates and temperatures. The recoverable charge at colder temperatures is adjusted for display **purposes** only. **See** page 13.

Oct. 1995 7/18

Self-Discharge Compensation

The self-discharge compensation is programmed for a nominal rate of 1/80 • NAC per day or disabled. This is the rate for a battery within the 20–30°C temperature range (TMPGG = 6x). This rate varies across 8 ranges from <10°C to >70°C, doubling with each higher temperature step (10°C). See Table 3.

Table 3. Self-Discharge Compensation

Temperature Range	Self-Discharge Compensation Typical Rate/Day
< 10°C	NAC/320
10-20°C	NAC/ ₁₆₀
20–30°C	NAC/80
30-40°C	NAC/40
40-50°C	NAC/ ₂₀
50–60°C	NAC/ ₁₀
60-70°C	NAC/5
> 70°C	NAC/ _{2.5}

Error Summary

The LMD is susceptible to error on initialization or if no updates occur. On initialization, the LMD value includes the error between the programmed full capacity and the actual capacity. This error is present until a valid discharge occurs and LMD is updated (see the DCR description in the Layout Considerations" section). The other cause of LMD error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

Current-SensingError

Table 4 illustrates the current-sensing error as a function of V_{SR} . A digital filter eliminates charge and diecharge counts to the NAC register when V_{SRO} ($V_{SR} + V_{OS}$) is between $-400\mu V$ and $500\mu V$.

Communicating With the bq2011K

The bq2011K includes a simple single-pin (DQ plus return) serial data interface. A host processor uses the interface to access various bq2011K registers. Battery characteristics may be easily monitored by adding a single contact to the battery pack. The open-drain DQ pin on the bq2011K should be pulled up by the host system, or may be left floating if the aerial interface is not used.

The interface **uses** a command-based protocol, where the host **processor** sends a command byte to the **bq2011K**. The command directs the **bq2011K** to either store the nest eight **bits** of data received to a **register** specified by the command byte or output the eight bits of data specified by the command byte.

The communication protocol is **asynchronous** return-toone. Command and data bytes **consist of** a stream of eight bits that have a maximum transmission rate of 333 **bits/sec.** The least-significant bit of a command or data byte is **transmitted** first. The protocol is simple enough that it can be implemented by most **host processors using** either polled or interrupt processing. Data input **from** the **bq2011K** may be sampled **using** the **pulse-width** capture **timers** available on some **microcontrollers**.

Communication is normally initiated by the host processor sending a BREAK command to the bq2011K. A BREAK is detected when the DQ pin is driven to a logic-low state for a time, tB or greater. The DQ pin should then be returned to its normal ready-high logic state for a time, tBR. The bq2011K is now ready to receive a command from the host processor.

The return-to-one data bit frame **consists of** three distinct sections. The first section is used to start the **transmission**

Table 4. bq2011K Current-Sensing Errors

Symbol	Parameter	Typical	Maximum	Units	Notes
v_{os}	Offset referred to VSR	± 50	± 150	μV	$\overline{\text{DISP}} = \text{Vcc.}$
INL	Integrated non-linearity error	± 2	±4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25V .
INR	Integrated non- repeatability error	± 1	±2	%	Measurement repeatability given similar operating conditions.

by either the host or the bq2011K taking the DQ pinto a logic low state for a period, tstrip. The next section is the actual data transmission, where the data should be valid by a period, tpsu, after the negative edge used to start communication. The data should be held for a period, tpv, to allow the heet or bq2011K to sample the data bit.

The final section is used to stop the transmission by returning the DQ pin to a logic-high state by at least a period, W, after the negative edge used to start communication. The final logic-high state should be held until a period, tsy, to allow time to ensure that the bit transmission was stopped properly. The timings for data and break communication are given in the serial communication timing specification and illustration sections.

Communication with the **bq2011K** is always performed with the least-significant bit being transmitted first. Figure 3 shows an example of a communication sequence to read the **bq2011K** NAC register.

bq2011K Registers

The **bq2011K** command and **status registers** are listed in Table 5 and **described** below.

Command Register (CMDR)

The write-only CMDR register is accessed when eight valid command bite have been received by the bq2011K. The CMDR register contains two fields:

- a W/R bit
- a Command address

The \mathbf{W}, \mathbf{R} bit of the command register is used to **select** whether the received command is for a read or a write function.

The W/\overline{R} values are:

			CME	R Bits			
7	6	5	4	3	2	1	0
W/R	-	-	-		-	-	•

Where W/R is:

- The bq2011K outputs the requested register contents specified by the address portion of CMDR
- 1 The following eight bite should be written to the register specified by the a d k portion of CMDR.

The lower seven-bit field of CMDR contains the address portion of the register to be accessed. Attempts to write to invalid addresses are ignored.

CMDR Bits										
7	6	5	4	3	2	1	0			
•	AD6	AD5	AD4	AD3	AD2	AD1	AD0 (LSB)			

Primary Status Flags Register (FLGS1)

The read-only FLGS1 register (address=01h) contains the primary bq2011K flags.

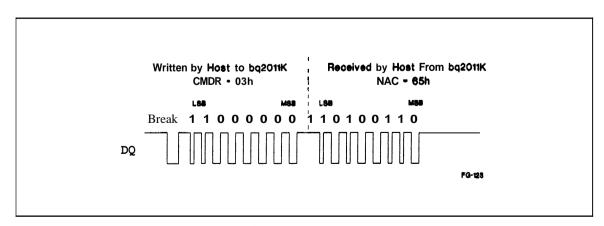


Figure 3. Typical Communication With the bg2011K

Table 5. bq2011K Command and Status Registers

	D		Dead				Contro	l Field			
Symbol	Register Name	Loc. (hex)	Read/ Write	7(MSB)	6	5	4	3	2	1	0(LSB)
CMDR	Command register	00h	Write	W/R	AD6	AD5	AD4	AD3	AD2	AD1	AD0
FLGS1	Primary status flags register	Olh	Read	CHGS	BRP	MCV	n/u	VDQ	n/u	EDV	n/u
TMPGG	Temperature and gas gauge register	02h	Read	тмрз	TMP2	TMP1	тмро	GG3	GG2	GG1	GG0
NACH	Nominal available charge high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACHO
NACL	Nominal available charge low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATID0
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
FLGS2	Secondary status flags register	06h	Read	CR	DR2	DR1	DR0		n/u	n/u	ONTD
OCTL	Output control register	Oah	Write	1	0C5	0C4	0C3	OC2	OC1	n/u	OCE
RST	Reset register	39h	Write	RST	0	0	0	0	0	0	0

Note:

n/u = not used

The charge status flag (CHGS) is asserted when a valid charge rate is detected. Charge rate is deemed valid when Vsro < -400μV. A Vsro of greater than-400μV or discharge activity clears CHGS.

The CHGS values are:

FLGSI Bib										
7	6	5	4	3	2	1	0			
CHGS	7	-	-	-	-	-	-			

Where CHGS is:

- O Either discharge activity detected or V_{SRO} > · 400µV
- 1 $V_{SRO} < -400 \mu V$

The battery replaced flag (BRP) is asserted whenever the potential on the SB pin (relative to Vss), VsB, rises above 0.1V and determines the internal registers have been corrupted. The BRP flag is also set when the bq2011K is reset (see the RST register description). BRP is cleared if either the bq2011K is charged until NAC = LMD or discharged until EDV is reached. BRP = 1 signifies that the device has been reset.

The BRP values are:

	- va.u	<u> </u>		SI Bits			
7	6	5	4	3	2	1	0
•	BRP						

Where BRP is:

- 0 bq2011K is charged until NAC = LMD or discharged until the EDV flag is asserted
- 1 Initial or full Vcc reset, or a serial port initiated reset has occurred

The maximum *cell voltage* flag (MCV) is asserted whenever the potential on the SB pin (relative to Vss) is above 2.0V. The MCV flag is asserted until the condition causing MCV is removed.

The MCV values are:

FLGSI Bits									
	7	6	5	4	3	2	1	0	
		-	MCV	•	-				

Where MCV is:

- 0 V_{SB} < 2.0V</p>
- $1 V_{SB} > 2.0V$

The valid discharge flag (VDQ) is asserted when the bq2011K is discharged from NAC=LMD. The flag

remains set until either LMD is updated or one of three actions that can clear VDQ occurs:

- The self-discharge count register (SDCR) has exceeded the maximum acceptable value (4096 counts) for an LMD update.
- A valid charge action equal to 266 NAC counts with Vsro<-400µV.
- The EDV flag was set at a temperature below O'C

The VDQ values are:

FLGSI Bib									
7	6	5	4	3	2	1	0		
			-	VDQ	•				

Where VDQ is:

- O SDCR ≥ 4096, subsequent valid charge action detected, or EDV is asserted with the temperature less than 0°C
- 1 On first discharge after NAC = LMD

The **end-of-discharge** warning flag **(EDV)** warns the user that the battery **is** empty. **SEG1** blinks at a 4Hz rate. EDV detection is disabled if OVLD = 1. The EDV flag is latched until a valid charge has been detected.

The EDV values are:

			FLG	SI Bits	3			
7	6	5	4	3	2	1	0	
•	-	-	•			EDV	-	

Where EDV is:

- Valid charge action detected
- $1 V_{SB} < V_{EDV}$

Temperature and Gas Gauge Register (TMPGG)

The read-only TMPGG register (address=02h) contains two data fields. The first field contains the battery temperature. The second field contains the available charge from the battery.

TMPGG Temperature Bib										
	7	6	5	4	3	2	1	0		
	TMP3	TMP2	TMP1	TMP0		-	-			

The **bq2011K** contains an internal temperature sensor. The temperature is **used** to set charge efficiency **factors** as well as to **adjust** the self-discharge coefficient. The

temperature register **contents** may be translated **as** shown in Table 6.

Table 6. Temperature Register Contents

ТМР3	TMP2	TMP1	TMP0	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

The bq2011K calculates the available charge as a function of NAC, temperature, and a fill reference, either LMD or PFC. The results of the calculation are available via the display port or the gas gauge field of the TMPGG register. The register is used to give available capacity in $\frac{1}{16}$ increments from 0 to $\frac{15}{16}$.

TMPGG Gas Gauge Bits									
7	6 5 4 3 2 1 0								
			•	GG3	GG2	GG1	GG0		

The gas gauge display and the **gas** gauge portion of the TMPGG register are adjusted for cold temperature dependencies. A piece-wise correction is performed **as** follows:

Temperature	Available Capacity Calculation					
> 0 _o C	NAC/"Full Reference'					
-20°C < T < 0°C	0.75 • NAC/'Full Reference'					
<-20°C	0.5 • NAC / "Full Reference"					

The adjustment between $> 0^{\circ}$ C and -20° C < T $< 0^{\circ}$ C has a 4° C hysteresis.

Nominal Available Charge Register (NAC)

The read/write NACH register (address=03h) and the read-only NACL register (address=17h) are the main gas gauging registers for the bq2011K. The NAC registers are incremented during charge actions and decremented during discharge and self-discharge actions. The correction factors for charge/discharge efficiency are applied automatically to NAC.

If SEG₅ = 0 on reset, then NACH = PFC and NACL = 0. If SEG₅ = Z or H, the NACH and NACL registers are cleared to zero, NACL stops counting when NACH reaches zero. When the bq2011K detects a valid charge, NACL resets to zero; writing to the NAC register affects the available charge counts and, therefore, affects the bq2011K gas gauge operation.

Battery Identification Register (BATID)

The **read/write BATID** register (address=04h) is available for use by the system to determine the type of battery pack. The **BATID** contents **are** retained as long as Vcc is greater than 2V. The contents of **BATID** have no effect on the operation of the **bq2011K**. There is no default **setting** for **this** register.

Last Measured Discharge Register (LMD)

LMD is a **read/write** register (address=05h) that the bq2011K uses as a measured full reference. The bq2011K adjusts LMD based on the measured discharge capacity of the battery from full to empty. In this way the bq2011K updates the capacity of the battery. LMD is set to PFC during a bq2011K reset.

Secondary Status Flags Register (FLGS2)

The read-only FLGS2 register (address=06h) contains the secondary bq2011K flags.

The charge rate flag (CR) is used to denote the fast charge regime. Fast charge is assumed whenever a charge action is initiated. The CR flag remains asserted if the charge rate does not fall below 2 counts/sec.

The CR values are:

FLGS2 Bits										
7 6 5 4 3 2 1 0										
CR	•									

Where CR is:

- 0 When charge rate falls below 2 counts/sec
- 1 When charge rate is above 2 counts/sec

The **fast** charge regime **efficiency** factors **are used** when CR = 1. When CR = 0, the trickle charge efficiency **factors** are used. The time to change CR varies due to the user-selectable count rates.

The discharge rate flags, DR2-0, are bits 6-4.

FLGS2 Bits									
7	7 6 5 4 3 2 1 0								
-	DR2	DR1	DR0	-		-			

They are **used** to determine the present discharge regime as follows:

DR2	DR1	DRO	VsRo(mV)
0	0	0	0 < V _{SRO} ≤ 10
0	0	1	10 < V _{SRO} ≤ 20
0	1	0	20 < V _{SRO} ≤ 40
0	1	1	40 < V _{SRO} ≤ 60
1	0	0	Vsro > 60

The **overload** flag (OVLD) is **asserted** when a discharge overload is detected, **V**_{SRO} > **60mV**. OVLD remains **asserted** as long as the condition is valid.

FLGS2 Bits									
7	6	5	4	3	2	1	0		
						•	OVLD		

Output Control Register (OCTL)

The write-only OCTL register (address=0ah) provides the system with a means to check the display connections for the bq2011K. The segment drivers may be overwritten by data from OCTL when the least-signiscant bit of OCTL, WE, is set. The data in bits OC5-1 of the OCTL register (see Table 6 for details) is output onto the segment pins, SEG5-1, respectively if OCE=1. Whenever OCE is written to 1, the MSB of OCTL should be set to a 1. The WE register location must be cleared to return the bq2011K to normal operation. OCE may be cleared by either writing the bit to a logic zero via the serial port or by resetting the bq2011K as explained below. Note: Whenever the OCTL register is written, the MSB of OCTL should be written to a logic one.

Reset Register (RST)

The reset register (address=39h) provides the means to perform a software-controlled reset of the device. A full device reset may be accomplished by first writing LMD (address = 05h) to 00h and then writing the RST register contents from 00h to 80h. Setting my bit other than the most-significant bit of the RST register is not allowed, a dresults in improper operation of the bq2011K.

Resetting the **bq2011K sets** the following:

- LMD = PFC
- VDQ, OCE, and NAC = 0 (NAC = PFC when PROG₄ = L)
- BRP=1

Display

The bq2011K can directly display capacity information using low-power LEDs. If LEDs are used, the segment pins should be tied to Vcc, the battery, or the LCOM pin through resistors for programming the bq2011K.

The **bq2011K** displays the battery charge state in either **absolute** or relative mode. In relative mode, the battery charge is **represented** as a percentage of the LMD. Each LED segment **represents** 20% of the LMD.

In absolute mode, each segment represents a fixed amount of charge, **based** on the initial PFC. In **absolute** mode, each segment represents 20% of the **PFC**. As the battery **wears** out over time, it **is possible** for the LMD to be below the initial PFC. In this **case**, all of the LEDs may not turn on, representing the reduction in the actual battery capacity.

The capacity display is also adjusted for the present battery temperature. The temperature adjustment reflects the available capacity at a given temperature but does not affect the NAC register. The temperature adjustments are detailed in the TMPGG register description.

When DISP is tied to Vcc, the SEG₁₋₅ outputs are inactive. When DISP is left floating, the display becomes active during charge if the NAC registers are counting at a rate equivalent to Vsro < -2mV or fast discharge if the NAC registers are counting at a rate equivalent to Vsro > 2mV. When DISP is left floating, the display also becomes active after the detection of a discharge signal with a minimum amplitude of Vsr > 20mV (10 amps for Rs = .002Ω) and a minimum pulse width of 25msec. When DISP is pulled low, the segment outputs become active for 4 seconds, ±0.5 seconds.

The segment outputs are modulated as two banks, with segments 1. 3, and 5 alternating with segments 2 and 4. The segment outputs are modulated at approximately 320Hz, with each bank active for 30% of the period.

SEG₁ blinks at a 4Hz rate whenever VsB has been detected to be below V_{EDV} to indicate a low-battery **condition** or NAC is less **than 10%** of the LMD or PFC, depending on the display mode.

Microregulator

The **bq2011K** can operate directly **from** 4 cells. To facilitate the power **supply** requirements of the **bq2011K**, an **REF** output is **provided** to **regulate** an external **low-threshold n-FET**. A micropower source for the **bq2011K** can be inexpensively built using the FET and an external resistor.

14/18 Oct. 1995

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
Vsr	Relative to Vss	-0.3	+7.0	v	Minimum 100Ω series resistor should be used to protect SR in case of a shorted battery (see the bq2011K application note for details).
		_ 0	+70	°C	Commercial
Tom	Operating temperature	-40	+85	°C	Industrial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. **Functional** operation should be limited to the Recommended DC Operating Conditions detailed in this data **sheet**. **Exposure** to conditions beyond the operational **limits** for extended periods of time may affect device **reliability**.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
VEDV	End-of-discharge warning	0.96 * V _{EDV}	V _{EDV}	1.04 * V _{EDV}	V	SB
Vsrq	Valid charge	-	•	-400	μV	V _{SR} + V _{OS}
V _{SRD}	Valid discharge	500	-	-	μV	V _{SR} + V _{OS}
V _{MCV}	Maximum single-cell voltage	1.95	2.0	2.05	V	SB

Note:

For proper operation of the threshold detection circuit, Vcc must be at least 1.5V greater than the voltage being measured.

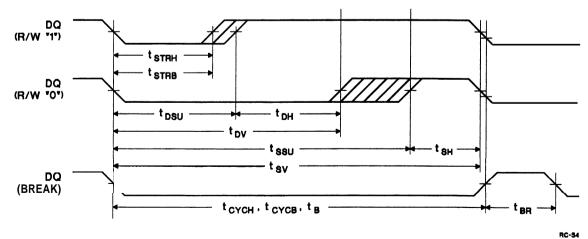
Oct 1995

bq2011K

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5		Vcc excursion from < 2.0V to ≥ 3.0V initializes the unit.
	Reference at 25°C	5.7	6.0	6.3	V	I _{REF} = 5μA
	Reference at -40°C to +85°C	4.5		7.5	V	I _{REF} = 5µA
Rref	Reference input impedance	2.0	5.0		ΜΩ	$V_{REF} = 3V$
2-11151		•	90	135	μA	$V_{CC} = 3.0V$, $DQ = 0$
Icc	Normal operation	•	120	180	μA	$V_{CC} = 4.25V$, $DQ = 0$
		•	170	250	μA	$V_{CC} = 6.5V$, $DQ = 0$
V _{SB}	Battery input	0	-	Vcc	V	
RsBmax	SB input impedance	10	-	•	ΜΩ	$0 < V_{SB} < V_{CC}$
IDISP	DISP input leakage	•		5	μA	$V_{DISP} = V_{SS}$
Ісом	LCOM input leakage	-0.2	•	0.2	μA	$\overline{\text{DISP}} = V_{CC}$
I _{RBI}	RBI data-retention current	•	-	100	nA	V _{RBI} > V _{CC} < 3V
R_{DQ}	Internal pulldown	500	-	-	ΚΩ	
Vsr	Sense resistor input	-0.3		2.0		V _{SR} > V _{SS} = discharge; V _{SR} < V _{SS} = charge
R_{SR}	SR input impedance	10			ΜΩ	-200mV < V _{SR} < V _{CC}
V _{IHPFC}	PROG/SPFC logic input high	Vcc • 0.2	•		V	SPFC, PROG ₁₋₄
VILPEC	PROG/SPFC logic input low		-	Vss + 0.2	V	SPFC, PROG ₁₋₄
Vizpfc	PROG/SPFC logic input Z	float		float	V	SPFC, PROG ₁₋₄
IIHPFC	PROG/SPFC input high current		1.2		μA	V _{PFC} = V _{CC} /2
IILPFC	PROG/SPFC input low current	•	1.2		μA	$V_{PFC} = V_{CC}/2$
Volsl	SEGx output low, low Vcc	-	0.1			$V_{CC} = 3V$, $I_{OLS} \le 1.75$ mA SEG ₁ -SEG ₅
Volsh	SEG _X output low, high Vcc		0.4			V_{CC} = 6.5V, $I_{OLS} \le 11.0$ mA SEG ₁ -SEG ₅
VOHML.	LCOM output high, low Vcc	Vcc • 0.3	•		V	Vcc = 3V, IOHLCOM = -5.25mA
Vонмн	LCOM output high, high Vcc	Vcc • 0.6	-		V	$V_{\rm CC}$ = 6.5V, $I_{\rm OHLCOM}$ = -33.0mA
IOHLCOM	LCOM source current	-33			mA	At VOHLCOM = Vcc · 0.6V
Iols	SEG _X sink current	11.0			mA	At $V_{OLSH} = 0.4V$, $V_{CC} = 6.5V$
IOL	Open-drain sink current	5.0			mA	$At V_{OL} = V_{SS} + 0.3V, \underline{DQ}$
Vol	Open-drain output low			0.5	V	I _{OL} ≤ 5mA, DQ
VihDQ	DQ input high	2.5			V	DQ
VILDQ	DQinput low			0.8	V	DQ
RFLOAT	Float state external impedance		5		MR	SPFC, PROG ₁₋₄

Note: All voltages relative to Vss.

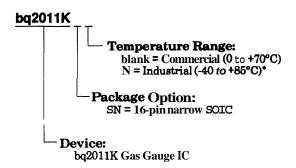

18/18 Oct. 1995

Serial Communication Timing Specification (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcych	Cycle time, host to bq2011K	3	•	-	ms	See note
tcycb	Cycle time, bq2011K to host	3	•	6	ms	
tstrh	Start hold, host to bq2011K	5	•	•	ns	
tstrb	Start hold, bq2011K to host	500	•		μs	
tosu	Data setup	-	•	750	με	
tDH	Data hold	750	-	-	μв	
tDV	Data valid	1.50	•		ms	
tssu	Stop setup	-	•	2.25	ms	
tsH	Stop hold	700	-	-	με	
tsv	Stop valid	2.95	•		ms	
tB	Break	3	•	-	ms	
tBR	Break recovery	1	•	-	ms	

Note: The open-drain DQ pin should be pulled to at least V_{CC} by the host system for proper DQ operation DQ may be left floating if the serial interface is not used.

Serial Communication Timing Illustration



ne v

Oct. 1995

17/18

Ordering Information

• Contact factory for availability.

18/18 Oct. 1995

Gas Gauge Evaluation Board

Features

bq2011J/K Gas Gauge IC evaluation and developmentsystem

- RS-232 interface hardware for easy access to state-of-chargeinformation via the serial port
- **Battery capacity monitoring functions**
- LED display of available charge
- DQ serial I/O port comunications functions

General Description

The EV2011J/K provides functional evaluation of the bq2011 IC on a PCB. The actual implementation & a bq2011-based design will be significantly smaller in size. See the bq2011 data sheet (July 1994 C or later) for bq2011 specifications.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

ı	N	0	t	2	c
н		v	L	-	-

Gas Gauge IC

Features

- Conservative and repeatable measurement of available charge in rechargeable batteries
- Charge control output
- Designed for battery pack integration
 - 120µA typical standby current (self-discharge estimation mode)
 - Small size enables implementations in as little as ½ square inch of PCB
- Integrate within a system or as a stand-alone device
 - Display capacity via singlewire serial communication port or direct drive of LEDs
- Measurements compensated for current and temperature
- Self-dischargecompensation using internal temperature sensor
- 16-pin narrow SOIC

General Description

The bq2012 Gas Gauge IC is intended for battery-pack or in-system installation to maintain an accurate record of available battery charge. The IC monitors a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery.

Self-discharge of **NiMH** and **NiCd** batteries is estimated **based** on an internal timer and temperature **sensor**. Compensations for battery temperature and rate of charge or discharge are applied to the charge, **discharge**, and self-discbarge calculations to provide available charge information **across** a wide range of operating conditions. Battery capacity is automatically recalibrated, or 'learned,' in the course of a discharge cycle **from** full to empty.

The **bq2012** includes a charge control output that, when used with other full-charge safety termination meth-

ods, can provide a cost-effective means of controllingcharge based on the battery's **charge** state.

Nominal available charge may be directly **indicated** using a **five-** or **six-**segment **LED display.** These segments are used to **graphically** indicate nominal available charge.

The bq2012 supports a simple singleline bidirectional serial link to an external processor (common ground). The bq2012 outputs battery information in response to external commands over the serial link.

Internal registers include available charge, temperature, capacity, battery ID, battery status, and programming pin settings. To support subassembly testing, the outputs may also be controlled. The external processor may also overwrite some of the bq2012 gas gauge data registers.

The **bq2012** may operate directly from three or four **cells**. With the REF output and an external **transis**tor, a simple, inexpensive regulator can be built to provide V_{CC} across a greater number **af cells**.

Pin Connections

LCOM 16 □ V_{CC} SEG./PROG, d2 15 REF SEG /PROG 3 14 CHG SEG/PROG2 4 13 DQ SEG /PROG 5 12 EMPTY SEG /PROG G 11 D SB SEG /PROG 7 10 DISP 9 b SR 16-Pin Narrow SOIC PN-50

Pin Names

LCOM	LFD common output	REF	Voltage reference output
SEG ₁ /PROG ₁	LED segment 1/ program 1 input	CHG	Charge control output
SEG ₂ /PROG ₂	LED segment 2/	DQ	Serial communications input/output
52041 ROG2	program 2 input	EMPTY	Empty battery indicator
SEG ₃ /PROG ₃	LED segment 3/ program 3 input	1241111	output
SEG4/PROG4	LED segment 4/	SB	Battery sense input
02041 R004	program 4 input	DISP	Display control input
SEG5/PROG5	LED segment 5/ program 5 input	SR	Sense resistor input
SEG ₆ /PROG ₆	LED segment 6/	V_{CC}	3.0-6.5V
	program 6 input	V_{SS}	System ground

Sept. 1996 B ______

SR Sense resistor input Pin Descriptions The voltage drop (VsR) across the sense resis-LCOM LED common output tor Rs is monitored and integrated over time to interpret charge and **discharge** activity. Open-drain output switches Vcc to source The SR input is tied to the high side of the current for the LEDs. The switch is off sense resistor. VsR < Vss indicates discharge, during initialization to allow reading of the and **Vsr > Vss** indicates charge. The effective soft pull-up or pull-down program resistors. voltage drop (VsRo) as seen by the bq2012 is LCOM is also high impedance when the dis-Vsr + Vos (see Table 5). play is off. DISP Display control input LED display **segment** outputs (dual func-SEG1tion with PROG1-PROG6) DISP high disables the LED display. DISP SEG₆ tied to Vcc allows PROGx to connect directly Each output may activate an LED to sink the to Vcc or Vss instead of through a pull-up or current sourced from LCOM. pull-down resistor. DISP floating allows the LED display to be active during a valid Programmed full wunt selection inputs PROG1charge or during discharge if the NAC regis-PROG₂ (dual function with **SEG₁-SEG₂**) ter is **update**d at a rate equivalent to **VsRo** ≤ -4mV. DISP low activates the display. See These three-level input pins define the Table 1. programmed full count (PFC) thresholds described in Table 2. SBSecondary battery input PROG3-Gas gauge rate selection inputs (dual This input monitors the single-cell voltage PROG₄ function with SEG3-SEG4) potential through a high-impedance resistive divider network for end-of-discharge voltage These three-level input pins define the scale (EDV) thresholds, maximum charge voltage factor described in Table 2. (MCV), and battery removed. **PROG**₅ Self-discharge rate selection (dual func-**EMPTY** Battery empty output tion with **SEG₅**) This open-drain output becomes high-imped-This three-level input pin defines the **selfdis**ance on detection of a valid end-&-discharge charge compensation rate shown in Table 1. voltage (VEDVF) and is low following the next PROG6 Display mode selection (dual function application of a valid charge. with SEG6) DQ Serial I/O pin This three-level pin defines the display This is an open-drain bidirectional pin. operation shown in Table 1. REF Voltage reference output for regulator CHG Charge control output REF provides a voltage reference output for **This** open-drain output becomes active low an optional micro-regulator. when charging is allowed. Valid charging conditions are described in the Charge Con-Vcc Supply voltage input trol section. Vss Ground

Functional Description General Operation

The bq2012 determines battery capacity by monitoring the amount of charge input to or removed from a rechargeable battery. The bq2012 measures discharge and charge currents, estimates self-discharge, monitors the battery for low-battery voltage thresholds, and compensates for temperature and charge/discharge rates. The charge measurement is made by monitoring the voltage across a emall-value series sense resistor between the negative battery terminal and ground. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2012 using the LED display capability as a charge-state indicator. The bq2012 can be configured to display capacity in either a relative or an absolute display mode. The relative display mode uses the last measured discharge capacity of the battery as the battery "full" reference. The absolute display mode uses the programmed full count (PFC) as the fill reference, forcing each segment of the display to represent a fixed amount of charge. A push-button display feature is available for momentarily enabling the LED display.

The bq2012 monitors the charge and discharge currents as a voltage across a sense resistor (see Rs in Figure 1). A filter between the negative battery terminal and the SR pin may be required if the rate of change of the battery current is too great.

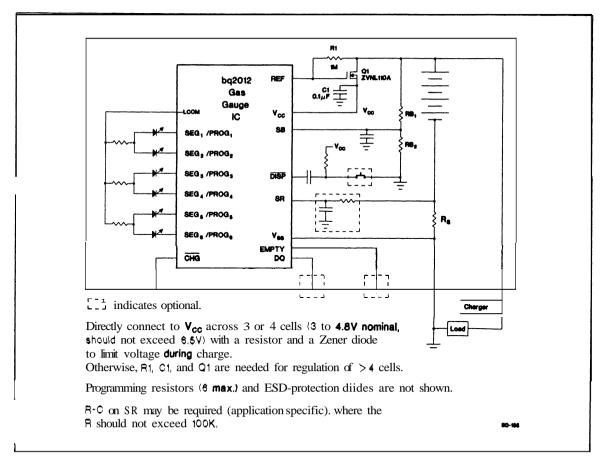


Figure 1. Battery Pack Application Diagram-LED Display

Voltage Thresholds

In conjunction with monitoring **Vsr** for **charge/discharge** currents, the **bq2012 monitors** the single-cell battery potential through the SB pin. The single-cell voltage potential is determined through a **resistor/divider** network per the following equation:

$$\frac{RB_1}{RB_2} = N - 1$$

where N is the number of cells, RB₁ is connected to the positive battery terminal, and RB₂ is connected to the negative battery terminal. The single-cell battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV). EDV threshold levels are used to determine when the battery has reached an 'empty' state, and the MCV threshold is used for fault detection during charging.

Two EDV thresholds for the bo2012 are fixed at:

EDV1 (early warning) = 1.05V

EDVF (empty) = 0.95V

If V_{SB} is below either of the two EDV thresholds, the associated flag is latched and remains latched, independent of V_{SB} , until the next valid charge.

During discharge and charge, the **bq2012** monitors VsR for various thresholds. These thresholds are used to compensate the charge and discharge rates. Refer to the count compensation section for details. EDV monitoring is disabled if $V_{SR} \le -250 \text{mV}$ typical and resumes $\frac{1}{2}$ second after $V_{SR} > -250 \text{mV}$,

EMPTY Output

The EMPTY output switches to high impedance when V_{SB} < V_{EDF} and remains latched until a valid charge occurs. The bq2012 also monitors V_{SB} relative to V_{MCV}, 2.25V. V_{SB} falling from above V_{MCV} resets the device.

Reset

The **bq2012** recognizes a valid battery whenever **VsB** is greater than **0.1V** typical. VsB rising **from** below **0.25V** or falling from above **2.25V** resets the device. Reset **can** also be accomplished with a command over the serial port **as** described in the Register Reset section.

Temperature

The bq2012 internally determines the temperature in 10°C steps centered from -35°C to +85°C. The temperature steps are used to adapt charge and discharge rate compensations, self-discharge counting, and available charge display translation. The temperature

range is available over the serial port in 10°C increments as shown below:

TMPGG (hex)	Temperature Range
0x	<-30°C
1 x	-30°C to -20°C
2 x	-20°C to -10°C
3 x	-10°C to 0°C
4x	0°C to 10°C
5x	10°C to 20°C
6x	20°C to 30°C
7x	30°C to 40°C
8x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Bx	70°C to 80°C
Сх	> 80°C

Layout Considerations

The **bq2012 measures** the voltage differential between the SR and **Vss** pins. **Vos** (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the strict rule of a single-point ground return. Sharing high-current ground with small signal ground causes undesirable noise on the small signal nodes. Additionally:

- The capacitors (SB and Vcc) should be placed as close as possible to the SB and Vcc pins, respectively, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1µf is recommended for Vcc.
- The sense resistor (Rs) should be as close as possible to the bq2012.
- The R-C on the SR pin should be located as close as possible to the SR pin. The maximum R should not exceed 100K.

4/20 Sept. 1996 B

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the bq2012. The bq2012 accumulates a meas UTC of charge and discharge currents, as well as an estimation of self-discharge. Charge and discharge currents are temperature and rate compensated, whereas self-discharge ie only temperature compensated.

The main counter, Nominal Available Charge (NAC), **represents** the available battery capacity at any given time. Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC register and increment the DCR (Discharge Count Register).

The Discharge Count Register (DCR) is used to update the Last Measured Discharge (LMD) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2012 adapts its capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the programmed full count (PFC) shown in Table 2. Until LMD is updated, NAC counts up to but not beyond this threshold during subsequent charges. This approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.

Last Measured Discharge (LMD) or learned battery capacity:

LMD is the last **measured discharge** capacity of the **battery.** On initialization (application of V \infty or battery replacement), LMD = PFC. During subsequent discharges, the LMD is updated with the latest measured capacity in the Discharge Count Register (DCR) representing a discharge from full to below EDV1. A qualified discharge is necessary for a capacity transfer from the DCR to the LMD register. The LMD also serves as the 100% reference threshold used by the relative display mode.

2 Programmed Full Count (PFC) or initial battery capacity:

The initial LMD and gas gauge rate values are programmed by using PROG1-PROG4. The PFC also provides the 100% reference for the absolute display mode. The **bq2012** is **configured** for a given application by selecting a PFC value from Table 2. The correct PFC may be determined by multiplying the rated battery capacity in mAh by the sense resistor value:

Battery capacity (mAh) • sense resistor (Ω) =

PFC (mVh)

Selecting a PFC slightly less than the rated capacity for absolute mode provides capacity above the full reference for much of the battery's life.

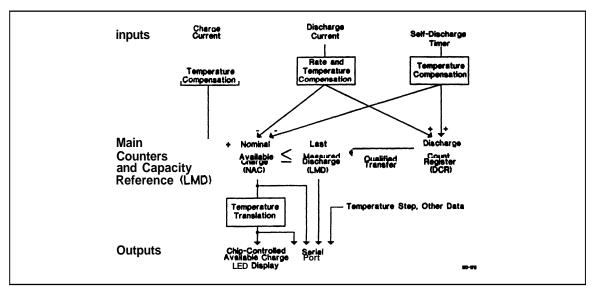


Figure 2. Operational Overview

Example: Selecting a PFC Value

Select.

Given:

Sense resistor = 0.1Ω Number of cells = 6Capacity = 2200m Ab. NiC.

Capacity = 2200mAh, **NiCd** battery Current range = 50mA to **2A** Absolute **display** mode Serial port only **Self-discharge** = **C**/64

Voltage drop over sense resistor = 5mV to 200mV

The initial full battery capacity is 211mVh (2110mAh) util the bq2012 "learns' a new capacity with a qualified discharge from full to EDV1.

PFC = 33792 counts or 211mVh PROG₁ = float

 $PROG_2 = float$

PROG₃ ≈ float

PROG₄ ≈ low

PROG5 = float

PROG6 = float

Therefore:

 $2200 \text{mAh} * 0.1\Omega = 220 \text{mVh}$

Table 1. bq2012 Programming

Pin Connection	PROG₅ Self-Discharge Rate	PRQG ₆ Dbplay Mode	DISP Display State
Н	Self-diechargedisabled	NAC = PFC on reset	LED disabled
Z	NAC/ ₆₄	Absolute	LED enabled on discharge when V_{SRO} < -4mV or during a valid charge
L	NAC/47	Relative	LED on

Note: **PROG**₅ and **PROG**₆ states are independent.

Table 2. bq2012 Programmed Full Count mVh Selections

PRO	OGx	Programmed Full Count		PROG4 = L					
1	2	(PFC)	PROG ₃ = H	PROG ₃ = Z	PROG ₃ = L	PROG ₃ = H	PROG ₃ = Z	PROG ₃ = L	Units
	-	-	Scale = 1/80	Scale = 1/160	Scale = 1/320	Scale = 1/640	Scale = 1/1280	Scale = 1/2560	mVh/ count
Н	Н	49152	614	307	154	76.8	38.4	19.2	mVh
Н	Z	45056	563	282	141	70.4	35.2	17.6	mVh
Н	L	40960	512	256	128	64.0	32.0	16.0	mVh
Z	Н	36864	461	230	115	57.6	28.8	14.4	mVh
Z	Z	33792	422	211	106	53.0	26.4	13.2	mVh
Z	L	30720	384	192	96.0	48.0	24.0	12.0	mVh
L	Н	27648	346	173	86.4	43.2	21.6	10.8	mVh
L	Z	25600	320	160	80.0	40.0	20.0	10.0	mVh
L	L	22528	282	141	70.4	35.2	17.6	8.8	mVh
		uivalent to 2 /sec. (nom.)	90	45	22.5	11.25	5.56	2.8	mV

6/20

3. Nominal Available Charge (NAC):

NAC count up during charge to a **maximum** value of LMD and down during discharge and **self-dis**charge to **0**. NAC is reset to **0** on initialization (**PROG**₆ = Zor low) and on reaching EDV1. NAC is set to PFC on **initialization** if PROG₈ = high. To prevent overstatement of charge during periods of overcharge, NAC stops incrementing when NAC = **LMD**.

4. **Discharge** Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to 0. DCR stops counting when EDVI is reached. Prior to NAC = 0 (empty battery), both discharge and self-discharge increment the DCR After NAC = 0, only discharge increments the DCR The DCR resets to 0 when NAC = LMD. The DCR does not roll over but stops counting when it reaches FFFFh.

The DCR value becomes the new LMD value on the first charge after a valid discharge to **Vgpv1** if:

No valid charge initiations (charges greater than 256 NAC counts; where Vsro > Vsro) occurred during the period between NAC = LMD and EDV1 detected.

The self-discharge count is not more than 4096 counts (8% to 18% of PFC, specific percentage threshold determined by PFC).

The temperature is 2 0°C when the EDVI level is reached during discharge.

The valid discharge flag (VDQ) indicates whether the present discharge is valid for LMD update.

Charge Counting

Charge activity is detected **based** on a **positive** voltage on the **V**_{SR} input. If charge activity is detected, the **bq2012** increments NAC at a rate proportional to **V**_{SR} (**V**_{SR} + **V**_{OS}) and, if enabled, activates the LED display if the rate is equivalent to **V**_{SRO} > 4mV. Charge actions increment the NAC after compensation for charge rate and temperature.

The bq2012 determines charge activity sustained at a continuous rate equivalent to Vsro > Vsrq. A valid charge equates to sustained charge activity greater than 256 NAC counts. Once a valid charge is detected, charge counting continues until Vsro falls below Vsrq. Vsrq is a programmable threshold as described in the Digital Magnitude Filter section. The default value for Vsrq is 375µV.

Charge Control

Charge **control** is provided by the CHG output. This output is **asserted continuously when**:

NAC < 0.94 • LMD and 0.95V < VsB < 2.25V and 0°C < Temp < 50°C and BRM = 0

This output is asserted at a 1/16 duty cycle (low for 0.5 sec and high for 7.6 sec) when the above conditions are not met and:

NAC < LMD and 0.95V < V_{SB} < 2.25V and Temp < 50°C and BRM = 0

This output is also asserted at a $\frac{1}{16}$ duty cycle (low for 0.5 sec and high for 7.5 sec) for a 2-hour top-off period after:

NAC = LMD and Temp < 50°C and 0.95V < V_{SB} < 2.25V and BRM = 0

This output is inactive when:

NAC = LMD (after a 2-hour top-off period) or Temp > 50°C or V_{SB} < 0.95V or V_{SB} > 2.25V or BRM = 1

The top-off timer (2 hours) is reset to allow another top-off after the battery is discharged to 0.8 • LMD (PROG₆ = L) or 0.8 • PFC (PROG₆ = Z or H).

Caution: The charge control output (\overline{CHG}) should be used with other forms of charge termination such as $\Delta T/\Delta t$ and ΔV .

If charge terminates due to maximum temperature, the battery temperature must fall typically 10°C below 50°C before the charge output becomes active again.

Discharge Counting

All discharge counts where V_{SRO} < V_{SRD} cause the NAC register to decrement and the DCR to increment. Exceeding the fast diecharge threshold (FDQ) if the rate is equivalent to V_{SRO} < -4mV activates the display, if enabled. The display becomes inactive after V_{SRO} rises above -4mV. V_{SRD} is a programmable threshold as described in the Digital Magnitude Filter section. The default value for V_{SRD} is -300μV.

Self-Discharge Estimation

The bg2012 continuously decrements NAC and ingrements

Let if based on tim 1 temperature.

The self-discharge count rate is programmed to be a nominal 1/64 • NAC or 1/47 • NAC per day or disabled as selected by PROG5. This is the rate for a battery whose temperature is between 20°-30°C. The NAC register cannot be decremented below 0.

Count Compensations

The bq2012 determines fast charge when the NAC updates at a rate of >2 counts/sec. Charge and discharge are compensated for temperature and charge/discharge rate before updating the NAC and/or DCR. Self-discharge estimation is compensated for temperature before updating the NAC or DCR.

Charge Compensation

Two charge efficiency compensation **factors** are used for trickle **charge** and fast charge. **Fast charge** is defined **as** a rate of charge **resulting** in ≥ 2 NAC **counts/sec** (2 **0.15C** to **0.32C** depending on PFC selections; see Table 2). The compensation defaults to the fast charge factor **until** the actual **charge** rate is determined.

Temperature adapts the *charge* rate compensation factor6 over three range8 between nominal, **warm**, and hot tempera—— The compensation factors are shown below.

Charge Temperature	Trickle Charge Compensation	Fast Charge Compensation		
<30°C	0.80	0.95		
30-40°C	0.75	0.90		
> 40°C	0.65	0.80		

Discharge Compensation

Corrections for the rate of discharge are made by adjusting an internal discharge compensation factor. The discharge factor is based on the dynamically measured Vsr. The compensation factors during discharge are:

Approximate V _{SR} Threshold	Discharge Compensation Factor	Efficiencv
Vsr > -160 mV	1.00	100%
Vsr < -150 mV	1.05	95%

Temperature compensation during discharge also takes place. At lower temperatures, the compensation factor increases by 0.05 for each 10°C temperature range below 10°C.

Compensation factor = $1.0 + (0.05 \cdot N)$

Where N = Number of 10° C steps below 10° C and -150mV < $V_{SR} < 0$.

For example:

T > 10°C: Nominal compensation, N = 0

 0° C < T < 10° C: N = 1 (i.e., 1.0 becomes 1.05)

-10°C < T < OOC N = 2 (i.e., 1.0 become 81.10)

 -20° C < T < -10° C: N = 3 (i.e., 1.0 becomes 1.15)

-20°C < T < -30°C: N = 4 (i.e., 1.0 becomes 1.20)

Self-Discharge Compensation

The self-discharge compensation is programmed for a nominal rate of 1/64 • NAC or 1/47 • NAC per day. This is the rate for a battery within the 20-30°C temperature range (TMPGG = 6x). This rate varies across 8 ranges from <10°C to >70°C, doubling with each higher temperature step (10°C). See Table 3.

Table 3. Self-Discharge Compensation

Temperature	Typical Rate					
Štep	PROGs = Z or H	PROG ₅ = L				
< 10°C	NAC/256	NAC/ ₁₈₈				
10-20°C	NAC/128	NAC/94				
20-30°C	NAC/64	NAC/47				
30-40°C	NAC/32	NAC/23.5				
40-50°C	NAC/16	NAC/11.8				
50-60°C	NAC/8	NAC/5.88				
60-70°C	NAC/4	NAC/2.94				
> 70°C	NAC/2	NAC/1.47				

Digital Magnitude Filter

The bq2012 has a programmable digital filter to eliminate charge and discharge counting below a set threshold. The default setting is -0.30mV fa- $V_{\rm SRD}$ and +0.38mV fa- $V_{\rm SRQ}$. The proper digital filter setting can be calculated using the following equation. Table 4 shows typical digital filter settings.

 $V_{SRD}(mV) = -45/DMF$

 $V_{SRQ}(mV) = -1.25 \cdot V_{SRD}$

Table 4. Typical Digital Filter Settings

DMF	DMF Hex.	VsRD (mV)	Vsaq (mV)
75	4B	-0.60	0.75
100	64	-0.45	0.56
150 (default)	96	-0.30	0.38
175	AF	-0.26	0.32
200	C8	-0.23	0.28

Error Summary

Capacity Inaccurate

The **LMD** is **susceptible** to error on initialization or if no updates occur. On initialization, the LMD value includes the **error** between the programmed full capacity and the actual capacity. This error is present until a valid discharge **occurs** and LMD is updated (see DCR **description**). The other cause of LMD **error** is battery wear-out. As the battery ages, the **measured** capacity must be adjusted to account for **changes** in actual battery capacity.

A Capacity **Inaccurate** counter **(CPI)** is maintained and **incremented** each time a valid charge occurs **(qualified** by NAC; see the **CPI register** description) and is reset whenever LMD is updated **from** the DCR. The counter does not wrap around but stops counting at 255. The capacity inaccurate **flag (CI)** is set if LMD has not been updated following 64 valid charges.

Current-Sensing Error

Table 5 illustrates the current-sensing error as a function of Vsr. A digital filter eliminates charge and discharge counts to the NAC register when Vsro (Vsr + Vos) is between Vsro and Vsro.

Communicating With the bq2012

The bq2012 includes a simple single-pin (DQ plus return) serial data interface. A host processor uses the interface to access various bq2012 registers. Battery characteristics may be easily monitored by adding a single contact to the battery pack. The open-drain DQ pin on the bq2012 should be pulled up by the host system, or may be left floating if the serial interface is not used.

The interface uses a command-based protocol, where the host **processor sends** a command byte to the **bq2012**. The command dicta the **bq2012** to either store the next eight bits of data received to a **register** specified by the **command** byte or output the **eight bits** of data **specified** by the command byte.

The communication protocol is asynchronous return-tu one. Command and data bytes consist of a stream of eight bits that have a maximum transmission rate of 333 bits/sec. The least-significant bit of a command or data byte is transmitted first. The protocol is simple enough that it can be implemented by most host processors wing either polled or interrupt processing. Data input from the bq2012 may be sampled using the pulse-width capture timers available on some microcontrollers.

Communication is normally initiated by the host processor sending a BREAK command to the bq2012. A BREAK is detected when the DQ pin is driven to a logic-low state for a time, tB or greater. The DQ pin should then be returned to its normal ready-high logic state for a time, tBR. The bq2012 is now ready to receive a command from the hoet processor.

The return-to-one data bit kame consists of three distinct sections. The first section is used to start the transmission by either the host or the bq2012 taking the DQ pin to a logic-low state for a period, tSTRH,B. The next section is the actual data transmission, where the data should be valid by a period, tDSU, after the negative edge used to start communication. The data should be held for a period, tDV, to allow the host or bq2012 to sample the data bit.

The final section is used to stop the transmission by returning the DQ pin to a logic-high state by at least a period, tssu, after the negative edge used to start communication. The final logic-high state should be held until a period, tsv, to allow time to ensure that the bit transmission was stopped properly. The timings for data and break communication are given in the aerial communication timing specification and illustration sections.

Communication with **the bq2012** is **always** performed with the **least-significant** bit being transmitted **first**. Figure 3 shows an example of a communication sequence to read the **bq2012** NAC register.

bq2012 Registers

The **bq2012** command **and** status **registers** are listed in Table 6 and described in the following sections.

Table 5. Current-Sensing Error as a Function of VSR

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offset referred to VsR	± 50	± 150	μV	$\overline{\text{DISP}} = V_{\text{CC}}$.
INL	Integrated non-linearity error	± 2	± 4	%	Add 0.1% per °C above or below 25°C and 1%per volt above or below 4.25V.
INR	Integrated non -repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

Sept. 1996 B 9/20

Table 6. **bq2012** Command and Status Registers

					Control Field							
symbol	Register Name	Loc. (hex)	Read/ Write	7(MSB)	6	5	4	3	2	1	O(LSB)	
CMDR	Command register	00h	Write	W/R	AD6	AD5	AD4	AD3	AD2	AD1	AD0	
FLGS1	Primary status flags register	01h	Read	CHGS	BRP	В	CI	VDQ		EDV1	EDVF	
TMPGG	Temperature and gas gauge register	02h	Read	тмрз	TMP2	TMP1	TMP0	GG3	GG2	GG1	GG0	
NACH	Nominal available charge high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACH0	
NACL	Nominal available charge low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO	
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATIDO	
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0	
FLGS2	Secondary status flags register	06h	Read	CR	DR2	DR1	DR0	n/u	n/u	n/u	OVLD	
PPD	Program pin pull-down register	07h	Read	n/u	n/u	PPD6	PPD5	PPD4	PPD3	PPD2	PPD1	
PPU	Program pin pull-up register	08h	Read	n/u	n/u	PPU6	PPU5	PPU4	PPU3	PPU2	PPU1	
СРІ	Capacity inaccurate count register	09h	Read	CPI7	CPI6	CPI5	CPI4	СРІЗ	CPI2	CPI1	CPI0	
DMF	Digital magnitude filter register	0ah	R/W	DMF7	DMF6	DMF5	DMF4	DMF3	DMF2	DMF1	DMF0	
RST	Reset register	39h	Write	RST	0	0	0	0	0	0	0	

Note:

n/u = not used

10/20

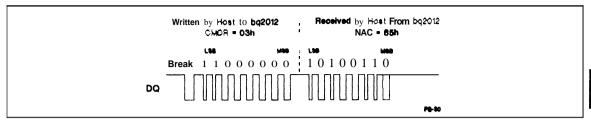


Figure 3. Typical Communication With the bq2012

Command Register (CMDR)

The write-only CMDR register is **accessed** when eight valid command bits have been received by the **bq2012**. The CMDR register contains two fields:

- W/R bit
- Command address

The $\mathbf{W}\overline{\mathbf{R}}$ bit of the command register is used to select whether the received command is for a read or a write function.

The W/R values are:

CMDR Bits									
7	6	5	4	3	2	1	0		
W/R	-	-		-	-	-	-		

Where W/\overline{R} is:

- The bq2012 outputs the requested register contents specified by the address portion of CMDR
- 1 The following eight bits should be written to the register specified by the address portion of CMDR

The lower seven-bit field of CMDR contains the address portion of the register to be **accessed**. Attempts to write to invalid **addresses** are ignored.

	CMDR Bits							
7	6	5	4	3	2	1	0	
-	AD6	AD5	AD4	AD3	AD2	AD1	AD0 (LSB)	

Primary Status Flags Register (FLGS1)

The read-only FLGSI register (address=01h) contains the primary bq2012 flags.

The charge status flag (CHGS) is asserted when a valid charge rate is detected. Charge rate is deemed valid when Vsro > Vsro. A Vsro of less than Vsro or discharge activity clears CHGS.

The CHGS values are:

	FLGSI Bits									
7	6	5	4	3	2	1	0			
CHGS	-									

Where CHGS is:

- Either discharge activity detected or Vsro
 Vsro
- 1 $V_{SRO} > V_{SRQ}$

The battery replaced flag (BRP) is asserted whenever the potential on the SB pin (relative to Vss), VsB, falls from above the maximum cell voltage. MCV (2.25V), or rises above 0.1V. The BRP flag is also set when the bq2012 is reset (see the RST register description). BRP is reset when either a valid charge action increments NAC to be equal to LMD, or a valid charge action is detected after the EDVI flag is asserted. BRP = 1 signifies that the device has been reset.

The BRP values are:

	FLGS1 Bits							
7	6	5	4	. 3	2	1	0	
•	BRP	-	-	-	-	•	-	

Where BRP is:

- Battery is charged until NAC = LMD or discharged until the EDVI flag is asserted
- VSB dropping from above MCV, VSB rising from below 0.1V, or a serial port initiated reset has occurred

Sept. 1996 B 11/20

The **battery removed** flag (BRM) is asserted whenever the potential on the SB pin (relative to Vss) rises above MCV or falls below 0.1V. The BRM flag is asserted until the condition causing BRM is removed.

The BRM values are:

	FLGS1 Bits								
7	6	5	4	3	2	1	0_		
-	=	BRM		-	-	-	-		

Where BRM is:

- $0.1V < V_{SB} < 2.25V$
- 1 0.1 V > VsR or VsR > 2.25 V

The *capacity* inaccurate flag (CI) is used to warn the user that the battery has been charged a substantial number of times since LMD has been updated. The CI flag is asserted on the 64th charge after the last LMD update or when the **bq2012** is reset. The flag is cleared after an LMD update.

The CI values are:

	FLGSI Bits								
7	6	5	4	3	2	1	0		
-	-	•	CI	-	-	-	•		

Where CI is:

- When LMD is updated with a valid full discharge
- After the 64th valid charge action with no LMD undates

The **valid discharge** flag (VDQ) is asserted when the bq2012 is discharged from NAC = LMD. The flag remains set until either LMD is updated or one of three actions that can clear VDQ occurs:

- The self-discharge count register (SDCR) has exceeded the maximum acceptable value (4096 counts) for an LMD update.
- A valid charge action sustained at VsRo > VsRo for at least 256 NAC counts.
- The EDVI flag was set at a temperature below 0°C

The VDO values are:

	FLGS1 Bits						
7	6	5	4	3	2	1	0
			-	VDQ			

Where VDQ is:

- O SDCR 2 4096, subsequent valid charge action detected, or EDV1 is asserted with the temperature less than 0°C
- 1 On first discharge after NAC = LMD

The charge control flag, \overline{CHG} , is asserted whenever the \overline{CHG} pin is asserted (see the general control section on page 7 for a description of the CHG pin function).

The CHG values are:

			FLG	SI Bits	3		
7	6	5	4_	3	_2	1	0_
				-	CHG	•	•

Where CHG is:

- When the CHG pin is asserted active low, signifying that the bq2012 is in a state to allow charge activity.
- When the CHG pin is high-impedance, signifying that no charge activity should take place.

The **first end-of-discharge warning** flag (EDVI) warns the user that the battery is almost empty. The **first** segment pin, **SEG1**, is modulated at a 4Hz rate if the display is enabled **once** EDVI is asserted, which should warn the **user** that loss of battery power is imminent. The EDVI flag is latched until a valid charge has been detected

The EDVI values are:

			FLG	SI Bits	5		
7	6	5	4	3	2	1	0
					•	EDVl	

Where EDV1 is:

- Valid charge action detected, V_{SB} ≥ 1.05V
- 1 VsB < 1.05V providing that OVLD=0 (see FLGS2 register description)

The *final end-of-discharge warning* flag (EDVF) flag is used to warn that battery power is at a failure condition. All segment drivers are turned off. The EDVF flag is latched until a valid charge has been **detected**. The EMPTY pin is also forced to a high-impedance state on assertion of EDVI. The host system may pull EMPTY high, which may be used to disable circuitry to prevent deep-discharge of the battery.

The EDVF values are:

	FLGS1 Bits						
7	6	5	4	3	2	1	0
							EDVF

Where EDVF is:

- 0 Valid charge action detected, VsB ≥ 0.95V
- 1 VsB < 0.95V providing that OVLD=0 (see FLGS2 register description)</p>

Temperature and Gas Gauge Register (TMPGG)

The read-only TMPGG register (address=02h) contains two data fields. The first field contains the battery temperature. The second field contains the available charge from the battery.

	TMPGG Temperature Bits								
7	6	5	4	3	2	1	0		
TMP3	TMP2	TMP1	TMP0	•					

The **bq2012** contains an internal temperature sensor. The temperature **is** used to set charge and discharge efficiency factors as well as to adjust the self-discharge coefficient.

The **temperature** register contents may be translated as shown in Table 7.

The **bq2012** calculates the available charge as a function of **NAC**, temperature, and a **fill** reference, either **LMD** or **PFC**. The **results** of the calculation are available via the display port or **the** gas gauge field of the **TMPGG** register. The register is **used** to give available capacity in 1/16 increments from 0 to 15/16.

	TMPGG Gas Gauge Bits							
7	6	5	4	3	2	1	0	
				GG3	GG2	GG1	GG0	

The **gas** gauge **display** and the gas gauge portion of the **TMPGG** register are adjusted for cold temperature dependencies. A piece-wise **correction is** performed as follows:

Temperature	Available Capacity Calculation
> 0°C	NAC/"Full Reference"
-20°C < T < 0°C	0.75 • NAC/'Full Reference'
< -20°C	0.5 • NAC/'Full Reference'

Table 7. Temperature Register Translation

TMP3	TMP2	TMP1	TMPO	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

The adjustment between $> 0^{\circ}$ C and -20° C < T $< 0^{\circ}$ C has a 10° C hysteresis.

Nominal Available Charge Registers (NACH/NACL)

The read/write NACH high-byte register (address=03h) and the read-only NACL low-byte register (address=17h) are the main gas gauging register for the bq2012. The NAC registers are incremented during charge actions and decremented during discharge and self-discharge actions. The correction factors for charge/discharge efficiency are applied automatically to NAC.

On reset, if PROG₆ = **Z** or low, NACH and NACL are cleared to 0; if PROG₆ = high, NACH = PFC and NACL = **0**. When the bq2012 detects a valid EDVI, NACH and NACL are reset to 0. Writing to the NAC registers affects the available charge counts and, therefore, affects the bq2012 gas gauge operation. Do not write the NAC registers to a value greater than LMD.

Battery Identification Register (BATID)

The read/write BATID register (address=04h) is available for use by the system to determine the type of battery pack. The BATID contents are retained as long as Vcc is greater than 2V. The contents of BATID have no effect on the operation of the bq2012. There is no default setting for this register,

Last Measured Discharge Register (LMD)

LMD is a read/write register (address=05h) that the bq2012 uses as a measured full reference. The bq2012

adjusts LMD based on the measured discharge capacity of the battery from full to empty. In this way the bq2012 updates the capacity of the battery. WID is set to PFC during a bq2012 reset.

Secondary Status Flags Register (FLGS2)

The read-only FLGS2 register (address=06h) contains the secondary bq2012 flags.

The charge rate flag (CR) is used to denote the fast charge regime. Fast charge is assumed whenever a charge action is initiated. The CR flag remains asserted if the charge rate does not fall below 2 counts/sec.

The CR values are:

FLGS2 Bits							
7	7 6 5 4 3 2 1 0						0
CR							

Where CR is:

- When charge rate falls below 2 counts/sec
- 1 When charge rate is above 2 counts/sec

The **fast** charge regime efficiency factors are used when CR = 1. When CR = 0, the trickle charge efficiency factors are used. The time to change CR varies due to the user-selectable count rates.

The **discharge** rate flags, DR2-0, are bits 64.

FLGS2 Bits							
7	6	5	4	3	2	1	0
-	DR2	DR1	DR0	-	-	-	

They are used to determine the current discharge regime as follows:

DR2	DR1	DRO	Vsr (V)
0	0	0	V _{SR} > -150mV
0	0	1	V _{SR} < -150mV

The *overload* flag (OVLD) is asserted when a **discharge** overload **is** detected, VSR < -250mV. OVLD remains **asserted** as long as the condition **persists** and is cleared when VSR > -250mV. The overload condition is used to stop sampling of the battery terminal **characteristics for** end-of-discharge determination. Sampling is re-enabled 0.5 **secs** after the overload condition is removed.

FLGS2 Bits						
7 6 5 1 4 1 3 2 1 0					0	
	- OVLD					

DR2-0 and **OVLD** are set based on the **measurement** of the voltage at the **SR** pin relative to Vss. The rate at which **this measurement is** made varies **with** device activity.

Program Pin Pull-Down Register (PPD)

The read-only PPD register (address=07h) contains some of the programming pin information for the bq2012. The segment drivers, SEG1-6, have a corresponding PPD register location, PPD1-6. A given location is set if a pull-down resistor has been detected on its corresponding segment driver. For example, if SEG1 and SEG4 have pull-down resistors, the contents of PPD are xx001001.

Program Pin Pull-Up Register (PPU)

The read-only PPU register (address=08h) contains the rest of the programming pin information for the bq2012. The segment drivers, SEG1-6, have a corresponding PPU register location, PPU1-6. A given location is set if a pull-up resistor has been detected on its corresponding segment driver. For example, if SEG3 and SEG6 have pull-up resistors, the contents of PPU are xx100100.

	PPD/PPU Bits							
8	7	6	5	4	3	2	1	
-	-	PPU ₆	PPU ₅	PPU ₄	PPU ₃	PPU ₂	PPU ₁	
		PPD6	PPD ₅	PPD4	PPD ₃	PPD ₂	PPD ₁	

Capacity Inaccurate Count Register (CPI)

The read-only CPI register (address=09h) is used to indicate the number of times a battery has been charged without an LMD update. Because the capacity of a rechargeable battery varies with age and operating conditions, the bq2012 adapts to the changing capacity over time. A complete discharge from full (NAC=LMD) to empty (EDV1=1) is required to perform an LMD update assuming there have been no intervening valid charges, the temperature is greater than or equal to 0°C, and the self-discharge counter is lees than 4096 counts.

The CPI register is incremented every time a valid charge is detected if NAC < 0.94 • LMD. When NAC ≥ 0.94 • LMD, the CPI register increments on the first valid charge; CPI does not increment again for a valid charge until NAC is discharged below 0.94 • LMD. This prevents continuous trickle charging from incrementing CPI if self-discharge decrements NAC. The CPI register increments to 255 without rolling over. When the contents of CPI are incremented to 64, the capacity inaccurate flag, CI, is asserted in the FLGS1 register. The CPI register is reset whenever an update of the LMD register is performed, and the CI flag is also cleared.

14/20 Sept. 1996 B

Digital Magnitude Filter (DMF)

The read-write **DMF register** (address = Oah) provides the **system** with a means to change the default **settings** of the digital magnitude filter. By writing different values into this register, the **limits** of **Vsrp** and **Vsrq** can be adjusted.

Note: Care should be taken when writing to this register. A **Vsrp** and **Vsrq** below the specified Vos may adversely affect the accuracy of the **bq2012**. Refer to Table 4 for recommended **settings** for the **DMF** register.

Reset Register (RST)

The reset register (address=39h) provides the means to perform a software-controlled reset of the device. By writing the RST register contents from 00h to 80h, a bq2012 reset is performed. Setting any bit other than the most-significant bit of the RST register is not allowed, and results in improper operation of the bq2012.

Resetting the **bq2012 sets** the following:

- 8 LMD = PFC
- CPI, VDQ, NACH, and NACL = 0
- CI and BRP = 1

Note: NACH = PFC when PROG6 = H.

Display

The **bq2012** can directly display capacity information using low-power LEDs. If **LEDs** are **used**, the program pine should be resietively tied to Vcc or **Vss** for a program high or program low, respectively.

The bq2012 displays the battery charge state in either absolute or relative mode. In relative mode, the battery charge is represented as a percentage of the LMD. Each LED segment represents 20% of the LMD. The sixth segment is not used.

In absolute mode, each segment represente a fixed amount of charge, **based** on the initial PFC. In absolute mode, each segment represents 20% of the PFC, with the sixth segment representing *overfull' (charge above the PFC). As the battery wears out over time, it is possible for the LMD to be below the initial PFC. In this case, all of the LEDs may not turn on, representing the reduction in the actual battery capacity.

The capacity display is also adjusted for the present battery temperature. The temperature adjustment reflects the available capacity at a given temperature but does not affect the NAC register. The temperature adjustmenta are detailed in the TMPGG register description.

When DISP is tied to Vcc, the SEG1-6 outputs are inactive. When DISP is left floating, the display becomes active whenever the NAC registers are counting at a rate equivalent to Vsro < 4mV or Vsro > Vsro. When pulled low, the segment outputs became active immediately. A capacitor tied to DISP allows the display to remain active for a short period of time after activation by a push-button switch.

The segment outputa are modulated as two banks of three, with segments 1, 3, and 5 alternating with segmenta 2, 4, and 6. The segment outputs are modulated at approximately 100Hz with each segment bank active for 30% of the period.

SEG₁ blinks at a 4Hz rate whenever VsB has been detected to be below VEDV1 (EDV1 = 1), indicating a low-battery condition. VsB below VEDVF (EDVF = 1) disables the display output.

Microregulator

The **bq2012** can operate directly from three or four **cells**. To facilitate the power supply requirements of the **bq2012**, an REF output is provided to regulate an external low-hold **n-FET**. A **micropower source** for the **bq2012** can be inexpensively **built** using the FET and an external **resistor**; eee Figure 1.

Sept. 1996 B 15/20

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V _C C	Relative to Vss	-0.3	+7.0	V	
All other pine	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	v	Current limited by R1 (see Figure 1)
Vsr	Relative to Vss	-0.3	+7.0	V	Minimum 100Ω series resistor should be used to protect SR in case of a shorted battery (see the bq2012 applicationnote for details).
_	Operating	0	+70	°C	Commercial
Topr	temperature	-40	+85	°C	Industrial

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
VEDVF	Final empty warning	0.93	0.95	0.97	V	SB
V _{ED} V ₁	First empty warning	1.03	1.05	1.07	V	SB
Vsr1	Discharge compensation threshold	-120	-150	-180	mV	SR, V _{SR} + V _{OS} (see note 2)
Vord	Overload threshold	-230	-250	-280	mV	SR, V _{SR} + V _{OS}
Vsro	SR sense range	-300	-	+2000	mV	SR, V _{SR} + V _{OS}
VSRQ	Valid charge	375	•		μV	V _{SR} + V _{OS} (see note 1)
Vsrd	Valid discharge	-	•	-300	μV	V _{SR} + V _{OS} (see note 1)
V _{MC} V	Maximum single-cell voltage	2.20	2.25	2.30	V	SB
		-	0.1	0.25	V	SB pulled low
V_{BR}	Battery removed/replaced	2.20	2.25	2.30	V	SB pulled high

Notes:

- 1. Default value; value set in DMF register. Vos is affected by PC board layout. **Proper** layout **guidelines** should be followed for optimal performance. See "LayoutConsiderations."
- Proper threshold measurements require Vcc to be more than 1.5V greater than the desired signal
 value.

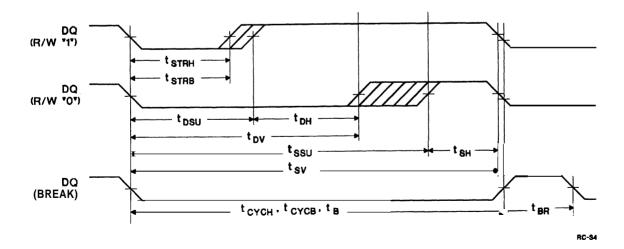
16/20 Sept. 1996 B

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5	v	Vcc excursion from < 2.0V to ≥ 3.0V initializes the unit.
VREF	Reference at 25°C	5.7	6.0	6.3	V	IREF = 5µA
VREF	Reference at -40°C to +85°C	4.5	•	7.5	V	I _{REF} = 5μA
RREF	Reference input impedance	2.0	5.0	•	MΩ	V _{REF} = 3V
		-	90	135	μА	Vcc = 3.0V
Icc	Normal operation	•	120	180	μA	$V_{\rm CC}$ = 4.25V
		•	170	250	μA	$V_{CC} = 6.5V$
V _{SB}	Battery input		•	2.4	V	
RsBmax	SB input impedance	10	-	•	ΜΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage	•	-	5	μA	$V_{DISP} = V_{SS}$
ILCOM	LCOM input leakage	-0.2	-	0.2	μA	$\overline{\text{DISP}} = V_{CC}$
R_{DQ}	Internal pulldown	500	•	-	ΚΩ	
Vsr	Sense resistor input	-0.3	•	2.0	V	V _{SR} < V _{SS} = discharge; V _{SR} > V _{SS} = charge
RsR	SR input impedance	10	-	•	MΩ	-200mV < V _{SR} < V _{CC}
VIH	Logic input high	V _{CC} - 0.2	•	•	V	PROG ₁ -PROG ₆
V _{IL}	Logic input low	-	-	Vss + 0.2	V	PROG ₁ -PROG ₆
Vız	Logic input Z	float	-	float	V	PROG ₁ -PROG ₆
Volsl	SEGx output low, low Vcc	-	0.1	-	V	$V_{CC} = 3V$, $I_{OLS} \le 1.75$ mA SEG_1-SEG_6
Volsh	SEGx output low, high Vcc	•	0.4	•	v	$V_{CC} = 6.5V$, $I_{OLS} \le 11.0$ mA SEG_1-SEG_6
VOHLCL	LCOM output high, low VCC	Vcc - 0.3	-	-	V	$V_{CC} = 3V$, $I_{OHLCOM} = -5.25$ mA
Vohlch	LCOM output high, high Vcc	V _{CC} - 0.6	-	•	V	$V_{CC} = 6.5V$, $I_{OHI,COM} = -33.0mA$
I _{IH}	PROG ₁₋₆ input high current	-	1.2	•	μA	V _{PROG} = V _{CC} /2
IIL	PROG ₁₋₆ input low current	-	1.2	•	μA	V _{PROG} = V _{CC} /2
IOHLCOM	LCOM source current	-33	-	-	mA	At Vohlich = Vcc - 0.6V
Iols	SEG _X sink current	•	-	11.0	mA	At Volsh = 0.4V
I_{OL}	Open-drain sink current	-	-	5.0	mA	At $V_{OL} = V_{SS} + 0.3V$ DQ, EMPTY, \overline{CHG}
V_{OL}	Open-drain output low	•	-	0.5	v	IoL ≤ 5mA, DQ, EMPTY
V _{IHDQ}	DQ input high	2.5	-	•	V	DQ
VILDQ	DQ input low		-	0.8	V	DQ
R _{PROG}	Soft pull-up or pull-down resistor value (for programming)	-	-	200	ΚΩ	PROG ₁ -PROG ₆
RFLOAT	Float state external impedance	-	5	-	ΜΩ	PROG ₁ -PROG ₆

Note: All voltages relative to Vss.

Sept. 1996 B


17/20

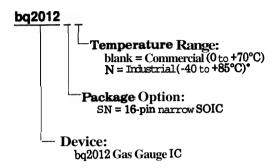
Serial Communication Timing Specification

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcych	Cycle time, host to bq2012	3			me	See note
tcycb	Cycle time, bq2012 to host	3		6	me	
tstrh	Start hold, host to bq2012	5			ns	
tstrb	Start hold, bq2012 to host	500			μs	
tosu	Data setup			750	ha	
tDH	Data hold	750			μs	
t _D v	Data valid	1.50			me	
tssu	Stop setup			2.26	ms	
tsh	Stop hold	700			нв	
tsv	Stop valid	2.95			me	
tB	Break	3			ms	
tbr	Break recovery	1			ms	

Note: The open-drain DQ pin should be pulled to at **least** Vcc by the host system for proper **DQ** operation. DQ may be left floating if the serial interface is not used.

Serial Communication Timing Illustration

18/20 Sept. 1996 B


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	7	Addition to Table 2	Added bottom row

Note: Change 1 = Sept. 1996 B changes from July 1994.

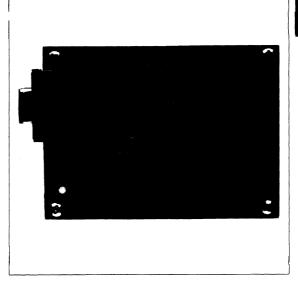
Sept. 1906 B 19/20

Ordering Information

• Contact factory for availability.

20/20 Sept. 1996 B

bq2012 Evaluation System

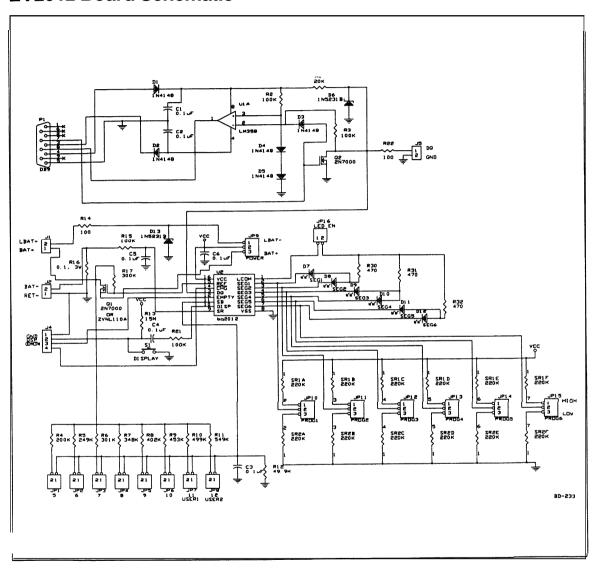

Features

- bq2012 Gas Gauge IC evaluation and development system
- RS-232 interface hardware for easy access to state-of-charge information via the serial port
- ➤ Alternative terminal block for direct connection to the serial port
- ➤ Battery state-of-charge monitoring for 5- to 10-cell (series) applications (2 user-selectable options for 3, 4, or greater than 10 cells)
- On-board regulator for greater than 4-cell applications
- State-of-charge information displayed on bank of 6 LEDs
- Nominal capacity jumper-configurable
- Cell chemistry jumper-configurable
- Display mode jumper-configurable

General Description

The EV2012 Evaluation System provides a development and evaluation environment for the bq2012 Gas Gauge IC. The EV2012 incorporates a bq2012, a sense resistor, and all other hardware necessary to provide a capacity monitoring function for 3 to 12 series NiCd or NiMH cells.

Hardware for an RS-232 interface is included on the EV2012 so that easy access to the state-of-charge information can be achieved via the serial port of the bq2012. Direct connection to the serial port of the bq2012 is also made available for check-out of the final hardware/software implementation.



The menu-driven software provided with the EV2012 displays charge/discharge activity and allows user interface to the bq2012 from any standard DOS PC.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

July 1994 Rev. C Board

EV2012 Board Schematic

Rev. C Board July 1994

Gas Gauge IC With External Charge Control

Features

- Conservative and repeatable measurement of available charge in rechargeable batteries
- Charge control output operates an external charge controller such as the bg2004 Fast Charge IC
- Designed for battery pack integration
 - 120µA typical standby current
- Integrate within a system or **as** a stand-alone device
 - Display capacity via singlewire serial communication port or direct drive of LEDs
- Measurements compensated for current and temperature
- Self-discharge compensation using internal temperature sensor
- User-selectable end-of-discharge threshold
- Battery voltage, nominal available charge, temperature, etc. available wer serial port
- 16-pin narrow SOIC

General Description

The **bq2014** Gas Gauge IC is intended for battery-pack or in-eyetem installation to maintain an accurate record of available battery charge. The IC **monitors** the voltage drop across a sense resistor connected in series between **the** negative battery terminal and **ground** to determine charge and **discharge acti**vity of the battery.

Self-discharge of NiMH and NiCd batteriee is estimated based on an internal timer and temperature sensor. Compensations for battery temperature and rate of charge or discharge are applied to the charge, discharge, and self-discharge calculations to provide available charge information across a wide range of operating conditions. Battery capacity is automatically recalibrated, or "learned," in the course of a discharge cycle from fill to empty.

The **bq2014** includes a charge control **output** that **controls** an **external Fast** Charge **IC** such **as** the **bq2004**.

Nominal Available Charge **(NAC)** may be directly indicated using a **five-segment** LED **display**.

The **bq2014 supports** a simple singleline bidirectional serial link to an external **processor** (with a common ground). The **bq2014 outputs** battery information in response to external **commands over the serial link**.

Internal registers include available charge, temperature, capacity, battery voltage, battery ID, battery etatus, and programming pin settings. To support subassembly testing, the outputa may also be controlled. The external processor may also overwrite some of the bq2014 gas gauge data registers.

The **bq2014** may operate directly from three or four cells. **With** the **REF** output and an external **transistor**, a simple, inexpensive regulator can be built to provide V_{CC} across a greater number of cells.

Pin Connections

LCOM [16 □ ∨∞ SEG_/PROG, [2 15 REF SEG/PROG, 3 14 CHG SEG_/PROG_ 4 13 DO SEG_/PROG_15 12 EMPTY SEG/PROG. 6 11 D SB DONE 7 10 DISP V ss □8 16-Pin Narrow SOIC

Dec. 1995 C

Pin Names

LCOM	LED common output	REF	Voltage reference output
SEG ₁ /PROG ₁	LED segment 1/	CHG	Charge control output
SEG ₂ /PROG ₂	program 1 input LED segment 2/	DQ	Serial communications input/output
SEG ₃ /PROG ₃	program 2 input LED segment 3/	EMPTY	Empty battery indicator output
-,	program 3 input	SB	Battery sense input
SEG ₄ /PROG ₄	LFD segment 4/ program 4 input	DISP	Display control input
SEG ₅ /PROG ₅	LED segment 5 / program 5 input	SR	Sense resistor input
DOME	1 6 ,	Vcc	3.0-6.5V
DONE	Fast charge complete	Vss	System ground
			1/20

Pin De	scriptions	SR	Sense resistor input
LCOM	Open-drain output switches Vcc to source current for the LEDs. The switch is off during initialization to allow reading of the soft pull-up or pull-down programming resistore. LCOM is also in a high impedance state when the display is off.		The voltage drop (VsR) across the sense resistor Rs is monitored and integrated over time to interpret charge and discharge activity. The SR input is tied to the high side of the sense resistor. VsR < Vss indicates discharge, and VsR > Vss indicates charge. The effective voltage drop (VsRo) as seen by the bq2014 is VsR + Vos (see Table 5).
SEG ₁ - SEG ₅	LED display segment outputs (dual function with PROG1-PROG5) Each output may activate an LED to sink the current sourced from LCOM.	DISP	Display control input DISP high disables the LED display. DISP tied to Vcc allows PROGx to connect directly to Vcc or Vss instead of through a pull-up or pull-down resistor. DISP floating allows the
PROG ₁ - PROG ₂	Programmed full count selection inputs (dual function with SEG ₁ -SEG ₂) These three-level input pins define the programmed full count (PFC) thresholds described in Table 2.		LED display to be active during a valid charge or during discharge if the NAC register is updated at a rate equivalent to Vsro ≤ -4mV. DISP low activates the display. See Table 1.
PROG ₃ - PROG ₄	Gas gauge rate selection inputs (dual function with SEG3-SEG4) These three-level input pins defiie the scale factor described in Table 2.	SB	Secondary battery input This input monitors the single-cell voltage potential through a high-impedance resistive divider network for end-of-discharge voltage (EDV) thresholds, maximum charge voltage (MCV), and battery removed.
PROG ₅	Self-discharge rate selection (dual function with SEG ₅)	EMPTY	Battery empty output
CHG	This three-level input pin defines the selfdis -charge compensation rate shown in Table 1. Charge control output		This open-drain output becomes high-impedance on detection of a valid final end-of-discharge voltage (VEDVF) and is low following the next application of a valid charge.
	This open-drain output becomes active high when charging is allowed.	DQ	Serial I/O pin
DONE	Fast charge complete		This is an open-drain bidirectional pin.
	This input is used to communicate the status of an external charge controller such as the bq2004 Fast Charge IC. Note: This pin must	REF	Voltage reference output for regulator REF provides a voltage reference output for an optional micro-regulator.
	be pulled down to Vss using a $200K\Omega$ resistor.	$\mathbf{v_{cc}}$	Supply voltage input
		$\mathbf{v_{ss}}$	Ground

Dec. 1995 C

Functional Description General Operation

The **bq2014 determines** battery capacity by monitoring the amount of charge input to or removed **from** a rechargeable battery. The **bq2014** measures discharge and charge **currents**, estimates **self-discharge**, **monitors** the battery for low-battery voltage thresholds, and compensates for temperature and **charge/discharge** rates. The charge **measurement** is made by monitoring the voltage **across** a small-value series sense resistor **between** the battery's negative terminal and ground. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2014 using the LED display capability as a charge-state indicator. The bq2014 is configured to display capacity in a relative display mode. The relative display mode uses the last measured discharge capacity of the battery as the battery "full" reference. The LED segments output a percentage of the available charge based on NAC and LMD. A push-button display feature is available for momentarily enabling the LED display.

The **bq2014 monitors** the *charge* and discharge currents as a voltage across a sense resistor (see Rs in Figure 1). A filter between the negative battery terminal and the SR pin is required.

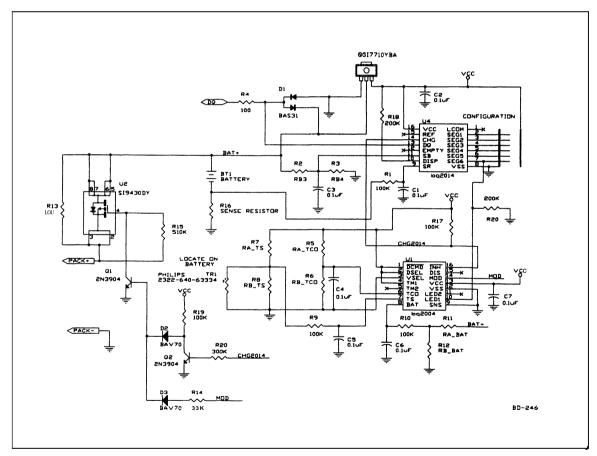


Figure 1. Battery Pack Application Diagram—LED Display

Dec. 1995 C

3/20

Voltage Thresholds

In conjunction with monitoring Vsn for charge/discharge currents, the bq2014 monitors the single-cell battery potential through the SB pin. The single-cell voltage potential is determined through a resistor/divider network per the following equation:

$$\frac{R2}{R3} = N - 1$$

where **N** is the number of cells, R2 is connected to the positive battery terminal, and R3 is **connected** to the negative battery terminal. The single-cell battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV). EDV threshold levels are used to determine when the battery has reached an "empty" state, and the MCV threshold is used for fault detection during charging.

Two EDV thresholds for the **bq2014** are programmable with the default values fixed at:

EDVF (empty) =
$$0.95V$$

If **V**_{SB} is below either of the two EDV thresholds, the associated flag is latched and remains latched, independent of VSB, until the next valid charge (as defined in the section entitled 'Gas Gauge **Operation"**). The **V**_{SB} value is also available over the serial port.

Duriig discharge and charge, the **bq2014** monitors V_{SR} for various thresholds. These **thresholds** are used to compensate the charge and discharge rates. Refer to the count compensation section for details. EDV monitoring is disabled if $V_{SR} \le -250 \text{mV}$ typical and resumes $\frac{1}{2}$ second after $V_{SR} > -250 \text{mV}$.

EMPTY Output

The EMPTY output **switches** to high impedance when VsB < VEDF and remains latched until a valid charge **occurs**.

Reset

The bq2014 recognizes a valid battery whenever VsB is greater than 0.1V typical. VsB rising from below 0.25V or falling from above 2.25V (VMCV) resets the device. Reset can also be accomplished with a command over the serial port as described in the Reset Register section.

Temperature

The bq2014 internally determines the temperature in 10°C steps centered from -35°C to +85°C. The temperature steps are used to adapt charge and discharge rate wmpensations, self-discharge counting, and available charge display translation. The temperature

range is available over the serial port in **10°C** increments as shown below:

TMPGG (hex)	Temperature Range
0x	<-30°C
1 x	-30°C to -20°C
2 x	-20°C to -10°C
3x	-10°C to 0°C
4x	0°C to 10°C
5x	10°C to 20°C
6x	20°C to 30°C
7x	30°C to 40°C
8x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Bx	70°C to 80°C
Cx	>80°C

Layout Considerations

The **bq2014** measures the voltage differential between the SR and **Vss** pins. **Vos** (the offset voltage at the **SR** pin) is greatly **affected** by PC board layout. For optimal results, the PC board layout should follow the strict rule of a single-point ground return. Sharing high-current ground with small signal ground causes undesirable noise on the small signal nodes. Additionally:

- The capacitors (C2 and C3) should be placed as close as possible to the SB and V_{CC} pine, respectively, and their paths to V_{SS} should be as short as possible. A high-quality ceramic capacitor of 0.1μf is recommended for V_{CC}.
- The sense **resistor** filter (R1, C1) should be placed as close as **possible** to the SR pin.
- The sense resistor (R16) should be as close as possible to the ba2014.

4/20 Dec. 1995 C

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the **bq2014**. The **bq2014** accumulates a measure of charge and discharge currents, as well as an estimation of self-discharge. Charge and discharge currents are temperature and rate compensated, whereas eelf-discharge is only temperature compensated.

The main counter, Nominal Available Charge (NAC), represents the available battery capacity at any given time. Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC register and increment the DCR (Discharge Count Register).

The Discharge Count Register (DCR) is used to update the Last Measured Discharge (LMD) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2014 adapts its capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the programmed full count (PFC) shown in Table 2. Until LMD is updated, NAC counta up to but not beyond this threshold during subsequent charges. This approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.

Many actions in the bq2014 are triggered by detection of a "valid charge." NAC is stored in an asynchronous, 2. byte counter; the lower byte is NACL and the upper byte is NACH. A valid charge hae occurred anytime the charge lasts long enough to cause an increment in NACH. Small increments of charging are not considered 'valid' if they result in counts in NACL but do not generate a roll-wer (carry) that increments NACH. NACL is reset anytime the counter direction changes from down to up, so the number of counta required to cause a rollover and a valid charge is always 256. The counter may be incrementing by 2, 4, 8, or more counts per increment, however, depending on the scaling factors selected. Therefore, a valid **charge** may be constituted by a smaller number of counter increments.

Last Measured Discharge (LMD) or learned **battery** capacity:

LMD is the lest **measured discharge** capacity of the battery. On initialization (application of Vcc or battery replacement), LMD = PFC. During subsequent discharges, the LMD is updated with the latest measured capacity in the Discharge Count Register (DCR) representing a discharge from full to below **EDV1.** A qualified discharge is necessary for a capacity transfer from the DCR to the LMD register. The LMD also serves as the 100% reference threshold used by the relative display mode.

Programmed Full Count (PFC) or initial battery capacity:

The initial LMD and gas gauge rate values are programmed by using PROG₁-PROG₄. The bq2014 is configured for a given application by selecting a PFC value from Table 2. The **correct** PFC may be

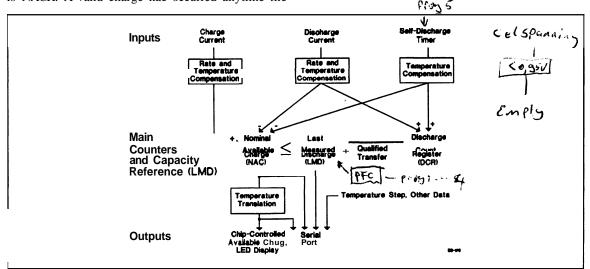


Figure 2. Operational Overview

5/20

bq2014

determined by multiplying the rated battery capacity in **mAh** by the sense **resistor** value:

Battery capacity (mAh) • sense resistor (R) =

PFC (mVh)

Selecting a PFC slightly less than the rated capacity for **absolute** mode provides capacity above the **fill** reference for much of the battery's life.

Example: Selecting a PFC Value

Given:

Sense resistor = 0.1Ω Number of cells = 6

Capacity = 2200mAh, NiCd battery Current range = 50mA to 2A Relative display mode Serial port only Self-discharge = $\frac{\text{C}_{64}}{\text{C}_{64}}$

Voltage drop over sense resistor = 5mV to 200mV

Therefore:

 $2200 \text{mAh} \cdot 0.1 \Omega = 220 \text{mVh}$

Select:

PFC = 33792 counts or 211mVh

PROG1 = float
PROG2 = float
PROG3 = float
PROG4 = low
PROG5 = float
DONE = low

Table 1. bq2014 Programming

Pin Connection	PROG ₅ Self-Discharge Rate	DISP Display State		
н	Disabled	LED disabled		
Z	NAC/64	LED enabled on discharge when Vsro < -4mV or during a valid charge		
L	NAC/47	LED on		

Table 2. bq2014 Programmed Full Count mVh Selections

PR	OGx	Programmed Full PRO		PROG ₄ = L PROG ₄ = Z		PROG ₄ = L		ROG4 = L PROG4 = Z			
1	2	Count (PFC)	PROG3 = H	PROG3 = Z	PROG3 = L	PROG3 = H	PROG3 = Z	PROG3 = L	Units		
	-	-	Scale = 1/80	Scale = 1/160	Scale = 1/320	Scale = 1/640	Scale = 1/1280	Scale = 1/2560	mVh/ count		
н	Н	49152	614	307	154	76.8	38.4	19.2	mVh		
Н	Z	45056	563	282	141	70.4	35.2	17.6	mVh		
н	L	40960	512	256	128	64.0	32.0	16.0	mVh		
Z	H	36864	461	230	115	57.6	28.8	14.4	mVh		
Z	Z	33792	422	211	106	53.0	26.4	13.2	mVh		
Z	L	30720	384	192	96.0	48.0	24.0	12.0	mVh		
L	Н	27648	346	173	86.4	43.2	21.6	10.8	mVh		
L	Z	25600	320	160	80.0	40.0	20.0	10.0	mVh		
L	L	22528	282	141	70.4	35.2	17.6	8.8	mVh		
		ivalent to 2 √s (nom.)	90	45	22.5	11.25	5.6	2.8	mV		

6/20

Dec. 1995 C

The initial full battery capacity is **211mVh** (**2110mAh**) until the **bq2014 "learns"** a new capacity with a qualified discharge from full to **EDVI**.

3. Nominal Available Charge (NAC):

NAC counta up during charge to a maximum value of LMD and down during discharge and self-diecharge to **0**. NAC **is reset** to **0** on **initialization and** on the first valid charge **after EDV = 1**. To prevent overstatement of charge during periods of overcharge, NAC stops **incrementing** when NAC = LMD.

4. Discharge Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to 0 until VsB < EDV1. Prior to NAC = 0 (empty battery), both discharge and self-discharge increment the DCR. After NAC = 0, only discharge increments the DCR. The DCR resets to 0 when NAC = LMD. The DCR does not roll over but stops counting when it reaches FFFFh.

The **DCR** value becomes the new LMD value on the first charge after a valid discharge to **VEDV1 if:**

- No valid **charges** have ∞ during the period between NAC = LMD and EDVI detected.
- The **self-discharge** count is not more than 4096 **counts** (8% to 18% of **PFC**, specific percentage **threshold** determined by PFC).
- The temperature is ≥ 0°C when the EDVI level is reached during discharge.

The valid discharge flag **(VDQ)** indicates whether the present discharge is valid for LMD update.

Charge Counting

Charge activity is detected based on a positive voltage on the VsR input. The bq2014 determines charge activity sustained at a continuous rate equivalent to VsRo (VsR + Vos) > VsRQ. Once a valid charge in detected, charge counting continues until VsRo falls below VsRQ. VsRQ is a programmable threshold (as described in the Digital Magnitude Filter section) and has a default value of 375µV. If charge activity is detected, the bq2014 increments NAC at a rate proportional to VsRo. If enabled, the bq2014 then activates an LED display. Charge actions increment the NAC after compensation for charge rate and temperature.

Charge Control

Charge control is provided by the CHG output. This output is asserted continuously when NAC > 0.94 * LMD. CHG is also asserted when a valid charge is detected (CHGS in the FLGS1 register k also set). CHG is low when NAC < 0.94 • LMD and there is no valid charge activity.

DONE Input

When the **bq2014** detects a valid **charge** complete **with** an active-high signal on the DONE input, NAC is set to LMD far NAC₆₄ (NiCd) self-discharge setting. NAC is set to 94% of LMD (if NAC is below 94%) for NAC₄₇ (NiMH) self-discharge setting. VDO is set along with DONE.

Discharge Counting

All discharge counts where Vsro < Vsro cause the NAC register to decrement and the DCR to increment if EDV1 = O. Exceeding the fast discharge threshold (FDQ) if the rate is equivalent to Vsro < 4mV activates the display, if enabled. The display becomes inactive after Vsro rises above -4mV. Vsro is a programmable threshold as described in the Digital Magnitude Filter section. The default value for Vsro is -300µV.

Self-DischargeEstimation

The **bq2014** continuously decrements NAC and increments DCR for self-discharge based on time and temperature. The self-discharge count rate is **programmed** to be a **nominal 1/64** • NAC or 1/47 • NAC per day or **disabled** as selected by **PROG**5. If a is the rate for a battery **whose** temperature is **between 20°-30°C**. The NAC register cannot be **decremented** below **0**.

Count Compensations

The bq2014 determines fast charge when the NAC updates at a rate of ≥2 counts/sec. Charge and discharge are compensated for temperature and charge/discharge rate before updating the NAC and/or DCR Self-discharge estimation is compensated for temperature before updating the NAC or DCR.

Charge Compensation

Two charge efficiency compensation factors are used for trickle charge and fast charge. Fast charge is defined as a rate of charge resulting in ≥ 2 NAC counts/sec (≥ 0.15 C to 0.32C depending on PFC selections; see Table 2). The compensation defaults to the fast charge factor until the actual charge rate is determined.

Dec. 1995 C 7/20

Temperature adapts the charge rate compensation factors over three ranges between nominal, warm, and hot temperatures. The compensation factors are shown below.

Charge Temperature	Trickle Charge Compensation	Fast Charge Compensation
<40°C	0.80	0.95
>40°C	0.75	0.90

Discharge Compensation

Corrections for the rate of discharge are made by adjusting an internal discharge compensation factor. The discharge factor is based on the dynamically measured Vsp.

The compensation factors during discharge are:

Approximate Vsa Threshold	Discharge Compensation Factor	Efficiency
V _{SR} > -150 mV	1.00	100%
Vsr < -150 mV	1.05	95%

Temperature compensation during discharge **also** takes place. At lower temperatures, the compensation factor increases by 0.05 for **each** 10°C temperature range below **10°C**.

Comp. factor =
$$1.0 + (0.05 \cdot N)$$

Where N = Number of 10° C steps below 10° C and -150mV < $V_{SR} < 0$.

For example:

 $T > 10^{\circ}C$: Nominal compensation, N = 0

 0° C < T < 10° C: N = 1 (i.e., 1.0 becomes 1.05)

 -10° C < T < 0° C: N = 2 (i.e., 1.0 becomes 1.10)

 -20° C < T < -10° C: N = 3 (i.e., 1.0 becomea 1.15)

 -20° C < T < -30° C: N = 4 (i.e., 1.0 becomes 1.20)

Self-Discharge Compensation

The **self-discharge** compensation is programmed for a nominal rate of **1**/64 • NAC per day, **1**/47 • NAC per day, or disabled. **This** is the **rate** for a battery within the **20–30°C** temperature range **(TMPGG = 6x)**. **This** rate varies **across** 8 range8 from **<10°C** to **>70°C**, doubling with each higher temperature step (10°C). See Table 3.

Table 3. Self-Discharge Compensation

Temperature	Typical Rate			
Step	PROG ₅ = Z	PROG ₅ = L		
< 10°C	NAC/256	NAC/ ₁₈₈		
10-20°C	NAC/128	NAC/94		
20-30°C	NAC/64	NAC/47		
30-40°C	NAC/32	NAC/23.5		
40-50°C	NAC/16	NAC/11.8		
50-60°C	NAC/8	NAC/5.88		
60-70°C	NAC/4	NAC/2.94		
> 70°C	NAC/2	NAC/1.47		

Digital Magnitude Filter

The **bq2014** has a programmable digital filter to **eliminate** charge and discharge counting below a set threshold. The default setting is **-0.30mV** for **VsrD** and **+0.38mV** for **VsrQ**. The proper digital filter setting can be calculated using the following equation. Table 4 **shows** typical digital filter **settings**.

$$V_{SRD}(mV) = -45/DMF$$

$$V_{SRO}(mV) = -1.25 \cdot V_{SRD}$$

Table 4. Typical Digital Filter Settings

DMF	DMF Hex.	VsRD (mV)	VsRQ (mV)	
75	4B	-0.60	0.75	
100	64	-0.45	0.56	
150 (default)	96	-0.30	0.38	
175	AF	-0.26	0.32	
200	C8	-0.23	0.28	

Error Summary

Capacity Inaccurate

The LMD is susceptible to error on initialization or if no updates occur. On initialization, the LMD value includes the error between the programmed full capacity and the actual capacity. This error is present until a valid discharge occurs and LMD is updated (see DCR description, page 7). The other cause of LMD error is battery wearout. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

A Capacity Inaccurate counter **(CPI)** is maintained and **incremented** each time a valid charge **occurs** (qua ed by NAC; **see** the CPI **register** description) **and** is reset when-

8/20

Dec. 1995

9/20

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offset referred to VsR	± 50	± 150	μV	$\overline{\text{DISP}} = V_{CC}$.
INL	Integrated non-linearity error	±2	± 4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25V.
INR	Integrated non -repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

Table 5. Current-Sensing Error as a Function of VsR

ever LMD is updated from the DCR. The counter does not wrap around but stops counting at 255. The capacity inaccurate flag (CI) is set if LMD has not been updated following 64 valid charges.

Current-Sensing Error

Table 5 illustrates the current-sensing error as a function of Vsr. A digital filter eliminates charge and discharge counts to the NAC register when Vsro (Vsr + Vos) is between Vsro and Vsro.

Communicating With the bq2014

The bq2014 includes a simple single-pin(DQ plus return) serial data interface. A host processor uses the interface to access various bq2014 registers. Battery characteristics may be easily monitored by adding a single contact to the battery pack. The open-drain DQ pin on the bq2014 should be pulled up by the host system, or may be left floating if the serial interface is not used.

The interface uses a command-based protocol, where the hoet processor sends a command byte to the bq2014. The command directs the bq2014 to either store the next eight bits of data received to a register specified by the command byte or output the eight bits of data specified by the command byte.

The communication **protocol** is **asynchronous return-to**one. Command and data bytes consist of a stream of eight bits that have a maximum transmission rate of 333 **bits/sec.** The least-significant bit of a command or **data** byte is transmitted first. The **protocol** is simple **enough** that it can be implemented by **most** hoet **processors** using

either polled or interrupt processing. Data input from the bq2014 may be sampled using the pulse-width capture timers available on some microcontrollers.

Communication is normally initiated by the **host** processor sending a BREAK command to the **bq2014**. A BREAK is detected when the DQ pin is driven to a **logic**-low state for a time, **tB** or greater. The DQ pin **should** then **be** returned to its **normal** ready-high logic **state** for a time, **tBR**. The **bq2014** is **now** ready to receive a command from the hoet **processor**.

The return-to-one data bit frame consists of three distinct sections. The first donis used to start the transition by either the hoet or the bq2014 taking the DQ pm to a logic-low state for a period, terrang. The next section is the actual data transition, where the data should be valid by a period, those, after the negative edge used to start communication. The data should be held for a period, toy, to allow the host or bq2014 to sample the data bit.

The firal section is used to stop the transmission by returning the DQ pin to a logic-high state by at least a period, tssu, after the negative edge used to start communication. The final logic-high state should be held until a period, tsv, to allow time to ensure that the bit transmission was stopped properly. The timings for data and break communication are given in the serial communication timing specification and illustration sections.

Communication with the bq2014 is always performed with the least-significant bit being transmitted first. Figure 3 shows an example of a communication sequence to read the bq2014 NAC register.

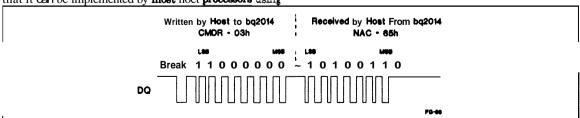


Figure 3. Typical Communication With the **bq2014**

Dec. 1995 C

bq2014 Registers

The **bq2014** command and status registers **are** listed in Table 6 and described below.

Command Register (CMDR)

The write-only CMDR register **is** accessed when eight valid command bits have been received by the **bq2014**. The CMDR register contains two **fields**:

- W/R bit
- Command address

The \mathbf{W}/\mathbf{R} bit of the command register is used to select whether the received command is for a read or a write function.

The	W	/R	val	lues	are:

-	CMDR Bits									
7	6	5	4	3	2	1	0			
W/R	-	-	-	-	-	-	-			

Where W/R is:

- The bq2014 outputs the requested register contents specified by the address portion of CMDR.
- The following eight bits should be written to the register specified by the address portion of CMDR.

The lower seven-bit field of CMDR contains the address portion **c** the register to be accessed. Attempts to write to invalid **addresses** are ignored.

CMDR Bits								
7	6	5	4	3	2	1	0	
-	AD6	AD5	AD4	AD3	AD2	AD1	AD0 (LSB)	

Primary Status Flags Register (FLGS1)

The read-only FLGSI register (address=01h) contains the primary bq2014 flags.

The charge **status** flag (CHGS) is asserted when a valid charge rate is detected. Charge rate is deemed valid when **Vsro > Vsrq.** A **Vsro** of less than **Vsrq** or discharge activity clears CHGS.

The CHGS values are:

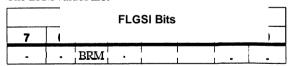
	FLGSI Bits										
7 6 5 4 3 2 1 0											
CHGS	-						L				

Where CHGS is:

- Either discharge activity detected or Vsro
 Vsrq
- 1 Vsro > Vsrq

The battery replaced flag (BRP) is asserted whenever the potential on the SB pin (relative to Vss), VsB, falls from above the maximum cell voltage, MCV (2.25V), or rises above 0.1V. The BRP flag is also eat when the bq2014 is reset (see the RST register description). BRP is reset when either a valid charge action increments NAC to be equal to LMD, or a valid charge action is detected after the EDVI flag is asserted. BRP = 1 signifies that the device has been reset.

The BRP values are:


			FLGSI	Bits			
•				Ī	2	1	0
•	BRP	•	I I I	-	-	-	-

Where BRP is:

- O Battery is charged until NAC = LMD or discharged until the EDVI flag is asserted
- 1 VsB dropping from above MCV, VsB rising from below 0.1V, or a serial part initiated reset has occurred

The battery **removed** flag (BRM) is asserted whenever the potential on the SB pin (relative to **Vss**) rises above MCV or falls below **0.1V**. The BRM flag is **asserted** until the condition causing BRM is **removed**. Due to signal filtering, 30 **seconds** may have to **transpire** for BRM to react to battery insertion or removal.

The BRM values are:

Where BRM is:

- $0 0.1V < V_{SB} < 2.25V$
- 1 $0.1 \text{ V} > \text{V}_{SB} \text{ or } \text{V}_{SB} > 2.25 \text{V}$

The **capacity inaccurate** flag **(CI)** is used to warn the ueer that the battery has been charged a substantial number of times since LMD has been updated. The CI flag is asserted on the 64th charge after the last LMD update or when the **bq2014** is reset. The flag **is** cleared after an LMD update.

Dec. 1995 C

Table 6. bq2014 Command and Status Registers

	Register	Loc.	Read/	-			Contr	ol Field			
Symbol	Name	(hex)	Write	7(MSB)	6	5	4	3	2	1	O(LSB)
CMDR	Command register	00h	Write	W/R	AD6	AD5	AD4	AD3	AD2	AD1	AD0
FLGS1	Primary status flags register	Olh	Read	CHGS	BRP	BRM	CI	VDQ	n/u	EDV1	EDVF
TMPGG	Temperature and gas gauge register	02h	Read	TMP3	TMP2	TMP1	тмг0	GG3	GG2	GG1	GG0
NACH	Nominal available charge high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACH0
NACL	Nominal available charge low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATID0
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
FLGS2	Secondary status flags register	06h	Read	CR	DR2	DR1	DRO	n/u	n/u	n/u	OVLD
PPD	Program pin pull-down register	07h	Read	n/u	n/u	PPD6	PPD5	PPD4	PPD3	PPD2	PPD1
PPU	Program pin pull-up register	08h	Read	n/u	n/u	PPU6	PPU5	PPU4	PPU3	PPU2	PPU1
CPI	Capacity inaccurate count register	09h	Read	CPI7	CPI6	CPI5	CPI4	СРІЗ	CPI2	CPI1	CPI0
DMF	Digital magnitude filter register	0Ah	R/W	DMF7	DMF6	DMF5	DMF4	DMF3	DMF2	DMF1	DMF0
VSB	Battery voltage	0Bh	Read	VSB7	VSB6	VSB5	VSB4	VSB3	VSB2	VSB1	VSB0
VTS	End-of- discharge threshold select	0Ch	R/W	VTS7	VTS6	VTS5	VTS4	VTS3	VTS2	VTS1	VTS0
RST	Reset register	39h	Write	RST	0	0	0	0	0	0	0

Note:

n/u = not used

Dec. 1995 C

11/20

The CI values are:

FLGS1 Bits										
7 6 5 4 3 2 1 0										
		-	CI	-						

Where CI is:

- When LMD is updated with a valid full discharge
- After the 64th valid charge action with no LMD updates or when the device is reset

The valid discharge flag (VDQ) is asserted when the bq2014 is discharged from NAC = LMD or DONE is valid. The flag remains set until either LMD is updated or one of three actions that can clear VDO occurs:

- The self-discharge count register (SDCR) has exceeded the maximum acceptable value (4096 counts) for an LMD update.
- A valid charge action sustained at Vsro > Vsro for at least 256 NAC counts.
- The EDVI flag was set at a temperature below **0°C**

The VDQ values are:

FLGS1 Bits										
7	7 6 5 4 3 2 1 0									
			-	VDQ	-					

Where VDQ is:

- SDCR ≥ 4096, subsequent valid charge action detected, or EDV1 is asserted with the temperature less than OC
- 1 On first discharge after NAC = LMD or DONE is valid

The **first end-of-discharge warning** flag **(EDV1)** warns the user that the battery is **almost** empty. The **first** segment pin, **SEG1**, is modulated at a **4Hz** rate if the display is enabled once EDV1 is asserted, which should warn the user that **loss** of battery power is imminent. The EDV1 flag is latched until a valid **charge** has been detected. The EDV1 threshold is externally controlled via the **VTS** register (see Voltage Threshold Register on this page).

The EDVI values are:

	FLGS1 Bits										
7 6 5 4 3 2 1 0											
					-	EDVI	-				

Where **EDV1** is:

- Nalid charge action detected, VSB ≥ VTS
- V_{SB} < V_{TS} providing that OVLD=0 (see FLGS2 register description)

The fiml end-of-discharge warning flag (EDVF) flag is used to warn that battery power is at a failure condition. All segment drivers are turned off. The EDVF flag is latched until a valid charge has been detected. The EMPTY pin is also forced to a high-impedance state on assertion of EDVF. The host system may pull EMPTY high, which may be used to disable circuitry to prevent deep-discharge of the battery. The EDVF threshold is set 100mV below the EDVI threshold.

The EDVF values are:

	FLG\$1 Bits									
7	7 6 1 5 4 3 2 1 0									
						EDVF				

Where EDVF is:

- Valid charge action detected, V_{SB} ≥ V_{TS} · 100mV
- 1 VsB < Vrs 100mV providing that OVLD=0 (see FLGS2 register description)

Voltage Threshold Register (VTS)

The end-of-discharge threshold voltages (EDV1 and EDVF) can be set using the VTS register (address = 0Ch). The read/write VTS register sets the EDVI trip mint. EDVF is set 100mV below EDV1. The default value in the VTS register is 70h, representing EDVI = 1.05V and EDVF = 0.95V. EDVI = 2.4V • (VTS/256).

VT\$ Register Bits									
7 6 5 4 3 2 1 0									
VTS7	VTS6	VTS5	VTS4	VTS3	VTS2	VTS1	VTS0		

Battery Voltage Register (VSB)

The **read-only** battery voltage register **is** used to read the single-cell battery voltage on the SB pin. The VSB **register** is updated approximately once per **second** with the present value of the battery voltage. $VsB = 2.4V \cdot (VSB/256)$.

	VSB Register Bits									
7 6 5 4 3 2 1								0		
	VSB7	VSB6	VSB5	VSB4	VSB3	VSB2	VSB1	VSB0		

12/20 Dec. 1995 C

Temperature and Gas Gauge Register (TMPGG)

The read-only TMPGG register (address=02h) contains two data fields. The first field contains the battery temperature. The second field contains the available charge from the battery.

	TMPGG Temperature Bits							
7	6	5	4	3	2	1	0	
TMP3	TMP2	TMP1	TMP0	-				

The **bq2014** contains an internal temperature sensor. The temperature is **used** to set **charge** and discharge efficiency **factors** as **well** as to adjust the self-dischargecoefficient. The temperature **register** contents may be translated **as** shown in Table 7.

The **bq2014** calculates the available charge **as** a function of NAC, temperature, and LMD. The **results** of the calculation are available via the **display** port or the gaa gauge field of the TMPGG register. The register is **used** to give available capacity in ½6 increments from **0** to 15/16.

	TMPGG Gas Gauge Bits									
7	6	5	4	3	2	1	0			
	- GG3 GG2 GG1 GG0									

The gae gauge display and the gas gauge portion of the **TMPGG** register are adjusted for cold temperature **dependencies**. A **piece-wise** correction is **performed as follows**:

Temperature	Available Capacity Calculation
> 0°C	NAC / 'Full Reference'
-20°C < T < 0°C	0.75 • NAC/"Full Reference"
<-20°C	0.6 • NAC/'Full Reference"

The adjustment between $> 0^{\circ}$ C and -20° C <T $< 0^{\circ}$ C has a 10° C hysteresis.

Nominal Available Charge Registers (NACH/NACL)

The read/write NACH high-byte register (address=03h) and the read-only NACL low-byte register (address=17h) are the main gas gauging registers for the bq2014. The NAC registers are incremented during charge actions and decremented during discharge and self-discharge actions. The correction factors for charge/discharge efficiency are applied automatically to NAC.

Table 7. Temperature Register Translation

TMP3	TMP2	TMP1	TMP0	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

On reset, NACH and NACL are cleared to 0. When the bq2014 detects a charge, NACL resets to 0. NACH and NACL are reset to 0 on the first valid charge after VsB = EDV1. Writing to the NAC registers affects the available charge counts and, therefore, affects the bq2014 gas gauge operation. Do not write the NAC registers to a value greater than LMD.

Battery Identification Register (BATID)

The read/write BATID register (address=04h) is available for use by the system to determine the type of battery pack. The BATID contents are retained as long as Vcc is greater than 2V. The contents of BATID have no effect on the operation of the bq2014. There is no default setting for this register.

Last Measured Discharge Register (LMD)

LMD is a read/write register (address=05h) that the bq2014 uses as a measured full reference. The bq2014 adjusts LMD based on the measured discharge capacity of the battery from full to empty. In this way the bq2014 updates the capacity of the battery. LMD is set to PFC during a bq2014 reset.

Secondary Status Flags Register (FLGS2)

The read-only FLGS2 register (address=06h) contains the secondary bq2014 flags.

The charge rate flag (CR) is used to denote the fast charge regime. Fast charge is assumed whenever a charge action is initiated. The CR flag remains asserted if the charge rate does not fall below 2 counts/sec.

Dec. 1995 C

The CR values are:

	FLGS2 Bits									
7	7 6 5 4 3 2 1 0									
CR				-	-	-	•			

Where CR is:

- When charge rate falls below 2 counts/sec
- 1 When charge rate is above 2 counts/sec

The fast charge regime efficiency **factors** are **used** when **CR = 1**. When CR = 0, the trickle charge efficiency factors are used. The time to change CR varies due to the user-selectable count rates.

The discharge rate flags, DR2-0, are bits 6-4.

	FLGS2 Bits							
7	7 6 5 4 3 2 1 0							
-	DR2	DR1	DR0	-	-			

They are used to determine the current discharge regime as follows:

DRO Vsr (V)	Vsr (V)	O Vsr (V)	DRO	DR1	DR2
0 VSR > -150m	> -150n	V _{SR} > -150mV	0	0	0
1 Vsr < -150m	< < -150 r	V _{SR} < -150mV	1	0	0

The overload flag (OVLD) is asserted when a discharge overload is detected, V_{SR} < -250mV. OVLD remains asserted as long as the condition persists and is cleared after V_{SR} > -150mV. The overload condition ie used to atop sampling of the battery terminal characteristics for end-of-discharge determination when excessive discharges occur.

FLGS2 Bits								
7	6	5	4	3	2	1	0	
						•	OVLD	

DR2-0 and **OVLD** are set based on the measurement of the voltage at the SR pin relative to Vss. The rate at which this measurement is made varies with device activity.

Program Pin Pull-Down Register (PPD)

The read-only PPD register (address=07h) contains some of the programming pin information for the bq2014. The segment drivers, SEG₁₋₅ and DONE, have corresponding PPD register locations, PPD₁₋₆. A given location is set if a pull-down resistor has been detected on its corresponding segment driver. For example, if SEG₁ and SEG₄ have pull-down resistors, the contents of 1420

PPD are xx101001. (Note: DONE must be pulled down for proper operation.)

Program Pin Pull-Up Register (PPU)

The read-only PPU register (address=08h) contains the rest of the programming pin information for the bq2014. The segment drivers, SEG1-5 and DONE, have corresponding PPU register locations, PPU1-6. A given location is set if a pull-up resistor has been detected on its corresponding segment driver. For example, if SEG3 and DONE have pull-up resistors, the contents of PPU are xx100100.

	PPD/PPU Bits									
8	8 7 6 5 4 3 2 1									
	- PPU ₆ PPU ₅ PPU ₄ PPU ₃ PPU ₂ PPU ₁									
	•	PPD6	PPD_5	PPD4	PPD3	PPD_2	PPD ₁			

Capacity Inaccurate Count Register (CPI)

The read-only CPI register (address=09h) is used to indicate the number of times a battery has been charged without an LMD update. Because the capacity of a rechargeable battery varies with age and operating conditions, the bq2014 adapts to the changing capacity over time. A complete discharge from full (NAC=LMD) to empty (EDV1=1) is required to perform an LMD update assuming there have been no intervening valid charges, the temperature is greater than or equal to O°C, and the self-dischargecounter is leas than 4096 counts.

The CPI register is incremented every time a valid charge is detected. When NAC > 0.94 • LMD, however, the CPI register increments on the first valid charge; CPI does not increment again for a valid charge until NAC < 0.94 • LMD. This prevents continuous trickle charging from incrementing CPI if self-discharge decrements NAC. The CPI register increments to 255 without rolling over. When the contents of CPI are incremented to 64, the capacity inaccurate flag, CI, is asserted in the FLGS1 register. The CPI register is reset whenever an update of the LMD register is performed, and the CI flag is also cleared.

Digital Magnitude Filter (DMF)

The read-write DMF register (address = **0Ah)** provides the system with a means to change the default settings of the digital magnitude filter. By writing different values into this register, the limits of Vsm and VsrQ can be adjusted.

Note: Care should be taken when writing to this register. A **V**_{SRD} and **V**_{SRQ} below the specified Vos may adversely **affect** the accuracy of the **bq2014**. Refer to Table 4 for recommended settings for the **DMF** register.

Dec. 1995 C

Reset Register (RST)

The reset register (address=39h) provides the means to perform a software-controlled reset of the device. By writing the RST register contents from Oh to 80h, a bq2014 reset is performed. Setting any bit other than the most-significant bit of the RST register is not allowed, and results in improper operation of the bq2014.

Resetting the bg2014 sets the following:

- LMD = PFC CPI, VDQ, NACH, and NACL = 0
- CI and BRP = 1

Note: Self-discharge is disabled when PROG5 = H.

Display

The **bq2014** can directly display capacity infurmation **using** low-power LEDs. If **LEDs** are used, the program pine should be **resistively** tied **to** Vcc or Vss for a program high or program low, respectively.

The bq2014 displays the battery charge state in relative mode. In relative mode, the battery charge is represented as a percentage of the LMD. Each LED segment represents 20% of the LMD.

The capacity display is also adjusted for the battery temperature. The temperature adjustment reflects the available capacity at a given temperature but does not affect the NAC register. The temperature adjustments are detailed in the TMPGG register description.

When DISP is tied to Vcc, the SEG1-5 outputs are inactive. Note: DISP must be tied to Vcc if the LEDs are not used. When DISP is left floating, the display becomes active whenever the NAC registers are counting at a rate equivalent to Vsro < 4mV or charge current is detected, Vsro > Vsro. When pulled low, the segment outputs become active immediately. A capacitor tied to DISP allows the display to remain active for a short period of time after activation by a paah-button switch.

The segment outputs are modulated as two banks of three, with segments 1, 3, and 6 alternating with segments 2 and 4. The segment outputs are modulated at approximately 100Hz with each segment bank active for 30% of the period.

SEG₁ blinks at a **4Hz** rate whenever **VsB** has been detected to be below V_{EDV1} (**EDV1 = 1**), indicating a low-battery condition. V_{SB} below **V_{EDVF}** (**EDVF = 1**) **disables** the display output.

Microregulator

The bq2014 can operate directly from 3 or 4 cells. To facilitate the power supply requirements of the bq2014, an REF output is provided to regulate an external low-threshold n-FET. A micropower source for the bq2014 can be inexpensively built using the FET and an external resistor; see Figure 1.

Dec. 1995 C

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	v	Current limited by R1 (see Figure 1)
VsR	Relative to Vss	-0.3	+7.0	V	Minimm 100Ω series resistor should be used to protect SR in case of a shorted battery (see the bq2014 application note for details).
m	Operating	0	+70	°C	Commercial
Topr	temperature	-40	+85	°C	Industrial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are exceeded.** Functional operation should be limited to the Recommended DC Operating **Conditions** detailed in this data sheet. Exposure to conditions beyond the operational **limits** for extended periods of time may **affect** device reliability.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning, default	0.92	0.95	0.98	V	SB
V _{EDV1}	First empty warning, default	1.02	1.05	1.08	V	SB
Vsr1	Discharge compensation threshold	-120	-150	-180	mV	SR
Vsro	SR sense range	-300		+2000	mV	SR
Vovld	Overload threshold	-220	-250	-280	mV	SR
VsrQ	Valid charge	375			μV	V _{SR} + V _{os} (see note 1)
Vsrd	Valid discharge			-300	·V	V _{SR} + V _{OS} (see note 1)
V _{MC} V	Maximum single-cell voltage	2,20	2.25	2.30	V	SB
			0.1	0.25	V	SB pulled low
V_{BR}	Battery removed/replaced	2.20	2.26	2.30	v	SB pulled high

Notes:

- Default value; value set in DMF register. Vos is affected by PC board layout. Proper layout guidelines should be followed for optimal performance.
- 2. To ensure correct threshold determination and proper operation, Vcc > VsB + 1.5V

16/20

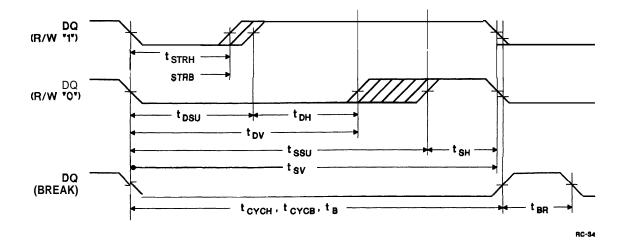
DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5	V	Vcc excursion from < 2.0V to ≥ 3.0V initializes the unit.
VREF	Reference at 25°C	5.7	6.0	6.3	V	I _{REF} = 5µA
A KEL	Reference at -40°C to +85°C	4.5	•	7.5	V	IREF = 5µA
RREF	Reference input impedance	2.0	5.0	•	MΩ	V _{REF} = 3V
		-	90	135	μА	Vcc = 3.0V
Icc	Normal operation	•	120	180	μA	V _{CC} = 4.25V
	•	-	170	250	μА	$V_{CC} = 6.5V$
V _{SB}	Battery input	- .	-	2.4	v	
RsBmax	SB input impedance	10	-	•	ΜΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage	-	-	5	μА	$V_{DISP} = V_{SS}$
ILCOM	LCOM input leakage	-0.2	-	0.2	μА	$\overline{\text{DISP}} = V_{CC}$
R_{DQ}	Internal pulldown	500	-	-	ΚΩ	
V_{SR}	Sense resistor input	-0.3	-	2.0	v	V _{SR} < V _{SS} = discharge; V _{SR} > V _{SS} = charge
RsR	SR input impedance	10	-	-	MΩ	-200mV < V _{SR} < V _{CC}
VIH	Logic input high	Vcc - 0.2			V	PROG ₁ -PROG ₅
V_{IL}	Logic input low	•	-	V _{SS} + 0.2	v	PROG ₁ -PROG ₅ ; note 1
V_{IZ}	Logic input Z	float	-	float	V	PROG1-PROG5
Volsl	SEGx output low, low Vcc	•	0.1	-	v	$V_{CC} = 3V$, $I_{OLS} \le 1.75$ mA $SEG_1 - SEG_5$
Volsh	SEGx output low, high Vcc	-	0.4	-	V	$V_{CC} = 6.5V$, $I_{OLS} \le 11.0$ mA SEG ₁ -SEG ₅
VOHLCL	LCOM output high, low Vcc	Vcc - 0.3	-	-	V	Vcc = 3V, IOHLCOM = -5.25mA
Vohlch	LCOM output high, high Vcc	Vcc - 0.6		-	V	$V_{CC} = 6.5V$, $I_{OHI_{COM}} = -33.0$ mA
I _{IH}	PROG ₁₋₅ input high current	-	1.2	•	μΑ	V _{PROG} = V _{CC} /2
IIL	PROG ₁₋₅ input low current	-	1.2	-	μA	V _{PROG} = V _{CC} /2
IOHLCOM	LCOM source current	-33	•	•	mA	At V _{OHLCH} = V _{CC} - 0.6V
Iols	SEG _X sink current	•		11.0	mA	At Volsh = 0.4V
IoL	Open-drain sink current	-	-	5.0	mA	At Vol = Vss + 0.3V DQ, EMPTY, CHG
Vol	Open-drain output low	•	-	0.5	v	IoL ≤ 5mA, DQ, EMPTY
V _{IHDQ}	DQ input high	2.5		-	V	DQ
VILDQ	DQ input low	-		0.8	v	DQ
R _{PROG}	Soft pull-up or pull-down resistor value (for programming)	-	•	200	ΚΩ	PROG ₁ -PROG ₅
RFLOAT	Float state external impedance	-	5	•	ΜΩ	PROG ₁ -PROG ₅

Notes: All voltages relative to Vss.

1. DONE must be pulled low for proper operation.

Dec. 1995 C

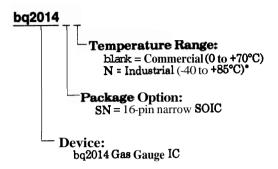

17/20

Serial Communication Timing Specification

Symbol	Parameter	Minimum	Typicai	Maximum	Unlt	Notes
tcych	Cycle time, host to bq2014	3			ms	See note
tcycb	Cycle time, bq2014 to host	3		6	ms	
tstrh	Start hold, host to bq2014	5			ns	
tstrb	Start hold, bq2014 to host	500			με	
tDSU	Data setup			750	μв	
tDH	Data hold .	750			μв	
t _D v	Data valid	1.50			ms	
tssu	Stop setup			2,25	ms	
tsH	Stop hold	700			μв	
tsv	Stop valid	2.95			ms	
tB	Break	3			ms	
tbr	Break recovery	1			ms	

Note: The open-drain DQ pin should be pulled to at least Vcc by the host **system** for proper DQ operation. DQ may be **left** floating if the serial interface **is** not used.

Serial Communication Timing Illustration


18/20 Dec. 1995 C

Data Sheet Revision History

ChangeNo. Page No. Description		Nature of Change	
1	1, 3, 5, 6, 7, 13, 15	Changed display mode	Relative display mode only
1	1, 17	DONE pin	Removed PROG ₆
1	2, 17	DONE pin	Added: DONE pin must be pulled to Vss with a 200KΩ resistor
1	6	Table 1	Removed PROG ₆
1	7	DONE input	Was: NAC is set to 90% Is. NAC is set to 94%
1	8, Table 3	PROG ₅ = Z	Was: PROG ₅ = Z or H Is: PROG ₅ = Z
2	8	Temperature Compensationtable	Replaced
2	6	Table 2	Added VsR definition
2	6	Valid charge definition	Added definition
2	14	Overload flag	Was: 0.5sec, after V _{SR} > -250mV Is: after V _{SR} = -150mV

Change 1 = Dec. 1994 B "Final" changes from Aug. 1994 A "Preliminary." Change 2 = Dec. 1995 C from Dec. 1994 B. Note:

Ordering Information

• Contact **factory** for availability.

20/20 Dec. 1995 C

Advance Information bq2014H

Gas Gauge IC With External Charge Control

Features

- Conservative and repeatable measurement of available charge in rechargeable batteries
- Charge control output operates an external charge controller such as the bq2004 Fast Charge IC
- 16-pin narrow SOIC
- Designed for battery pack integration
 - 120µA typical standby current
- Integrate within a system or as a stand-alone device
 - Display capacity via singlewire serial communication port or direct drive of LEDs
- Measurements compensated for current and temperature
- Self-discharge compensation using internal temperature sensor
- User-selectable end-of-diecharge threshold
- Battery voltage, nominal available charge, temperature,
 etc. available over serial port

 High-speed (5Kbits/sec.) DQ bus interface

General Description

The **bq2014H** Gae Gauge IC is intended for battery-pack or in-eyetem installation to maintain an accurate record of available battery charge. The IC **monitors** the voltage drop across a senee resistor connected in **series** between the negative battery terminal and ground to determine charge and discharge activity of the battery.

of NiMH and NiCd batteries is estimated based on an internal timer and temperature sensor. Compensations for battery temperature and rate of charge or discharge are applied to the charge, discharge, and self-discharge calculations to provide available charge information across a wide range of operating conditions. Battery capacity is automatically recalibrated,

or "learned," in the course of a discharge cycle from full to empty.

The **bq2014H** includes a charge control output that **controls** an external Fast Charge IC such as the bq2004,

Nominal Available Charge **(NAC)** may be directly indicated ueing a five-segment LED **display.**

The bq2014H supports a simple eingle-line bidirectional serial link to an external processor (with a common ground). The bq2014H outputs battery information in response to external commands over the aerial lirk.

Internal **registers** include available charge, temperature, capacity, battery voltage, battery ID, battery status, and programming pin settings. To support subassembly **testing**, the outputa may **also** be controlled. The external **processor** may also overwrite some of the **bq2014H** gas gauge data registers.

The **bq2014H** may operate directly from three or four cells. With the REF output and an external transistor, a simple, inexpensive regulator can be built to provide Vcc across a greater number of cells.

The **5Kbits/sec**. DQ **bus** interface is 16-times faster **than** the **bq2014**, reducing communications overhead in the monitoring **microcontroller**.

Pin Connections

LCOM [16 □ V∞ SEG_/PROG, [2 15 REF SEG_/PROG_ 3 14 CHG SEG/PROG 4 13 DQ SEG PROG 5 12 EMPTY SEG_/PROG_ 6 11 D SB DONE 7 10 DISP 9 | SR V ₅₅ □ 8 16-Pin Narrow SOIC PN-84

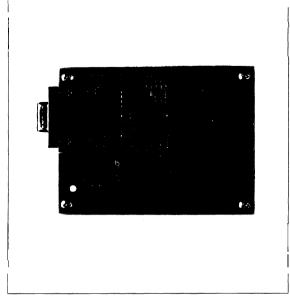
Pin Names

LCOM	LED common output	REF	Voltage reference output
SEG ₁ /PROG ₁	LED segment 1/ program 1 input	CHG	Charge control output
SEG ₂ /PROG ₂	LED segment 2/ program 2 input	DQ	Serial communications input/output
SEG ₃ /PROG ₃	LED segment 3/ program 3 input	EMPTY	Empty battery indicator output
SEG ₄ /PROG ₄	LED segment 4/	SB	Battery sense input
3EU4FROU4	program 4 input	DISP	Display control input
SEG5/PROG5	LED segment 5/ program 5 input	SR	Sense resistor input
DONE	1 0 1	Vcc	3.0-6.5V
DONE	Fast charge complete	VSS	System ground

Sept. 1996

N	J	otes
	ч	OLES

bq2014 Evaluation Board

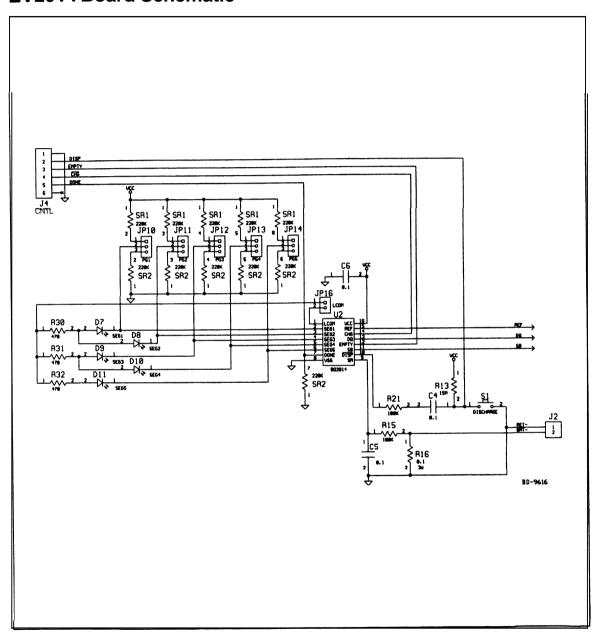

Features

- bq2014 Gas Gauge IC evaluation and development system
- RS-232 interface hardware for easy access to state-of-charge information via the serial port
- ➤ Alternative terminal block for direct connection to the serial port
- ➤ Battery state-of-charge monitoring for 5- to 10-cell (series) applications (2 user-selectable options for 3, 4. or greater than 10 cells)
- On-board regulator for greater than 4-cell applications
- State-of-charge information displayed on bank of 5 LEDs
- Nominal capacity jumper-configurable
- Cell chemistry jumper-configurable

General Description

The EV2014 evaluation system provides a development and evaluation environment for the bq2014 Gas Gauge IC. The EV2014 incorporates a bq2014, a sense resistor, and all other hardware necessary to provide a capacity monitoring function for 3 to 12 series NiCd or NiMH cells.

Hardware for an RS-232 interface is included on the EV2014 so that easy access to the battery state-of-charge information can be achieved via the serial port of the bq2014. Direct connection to the serial port of the bq2014 is also made available for check-out of the final hardware/software implementation.



The menu-driven software provided with the EV2014 displays charge/discharge activity and allows user interface to the bg2014 from any standard DOS PC.

A full data sheet for this product is available on our web site (http:Nwww.benchmarq.com), or you may contact the factory for one.

Sep. 1995 Rev. B Board

EV2014 Board Schematic

Rw. B Board Mer, 1995

Gas Gauge and Fast Charge Evaluation System

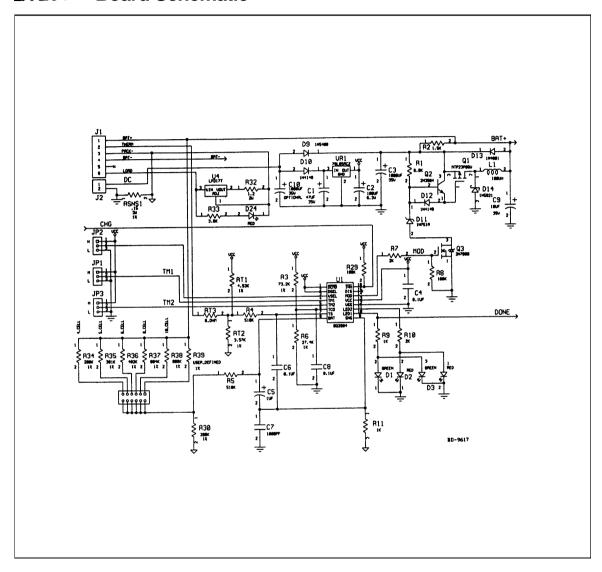
Features

- bq2014 Gas Gauge and bq2004 Fast Charge evaluation and development system
- ➤ Battery state-of-charge monitoring and fast charge control of four to ten NiCd or NiMH cells
- ➤ Charge current sourced from an on-board switch-mode regulator (up to 3.0A)
- Fast charge termination by ΔT/Δt, –ΔV, PVD, maximum temperature, maximum time, and maximum voltage
- RS-232 interface hardware for easy access to state-of-charge information
- Nominal capacity and cell chemistry are jumper configurable

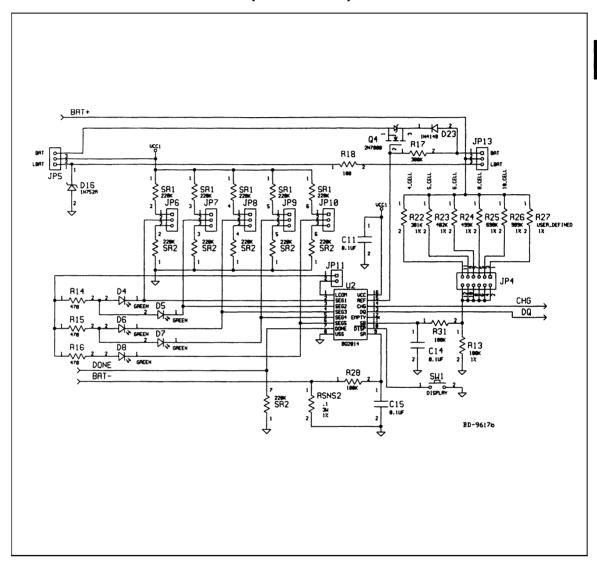
General Description

The EV2014x evaluation system provides a development and evaluation environment for the bq2014 Gas Gauge IC and the bq2004 Fast Charge IC. The EV2014x incorporates a bq2014, a bq2004, and all the external components required to reliably fast charge and accurately monitor the capacity of four to ten NiCd or NiMH cells.

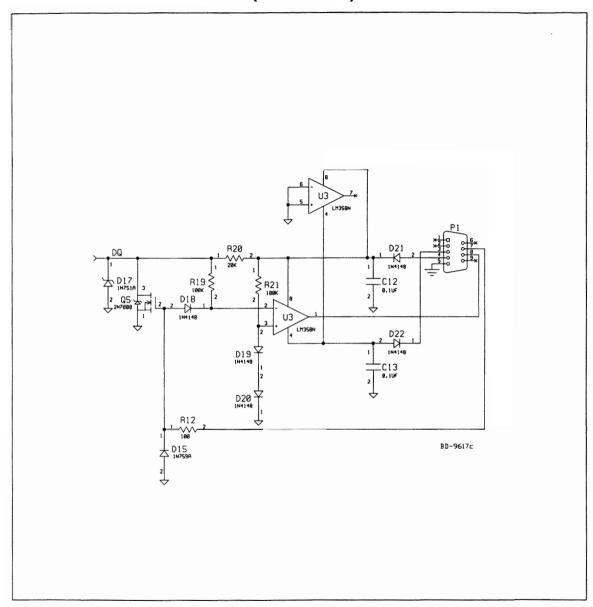
The bq2004 regulates the fast charge current. Fast charge is terminated by any of the following: $\Delta T/\Delta t$ (the rate of change in temperature versus time), $-\Delta V$ (negative voltage change) or PVD (peak voltage detect), maximum temperature, maximum time, and maximum voltage. The board provides a direct connection for an NTC thermistor. Jumper settings select the voltage termination mode, the termination hold-off time, top-off, and maximum charge time limits.



The EV2014x includes an RS-232 interface for easy access to the battery state of charge information via the serial port of the bq2014. The menu-driven gas gauge software provided displays charge/discharge activity and allows user interface to the bq2014 from any standard DOS PC.


The user supplies the power supply and the batteries. The user configures the EV2014x board for the number of cells, nominal battery capacity, and cell chemistry. Onboard LEDs indicate charging status and remaining capacity. The capacity LEDs are activated by the push button switch.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.


EV2014x Board Schematic

EV2014x Board Schematic (Continued)

EV2014x Board Schematic (Continued)

Using NiMH and Li-lon Batteries in Portable Applications

Introduction

Lithium Ion (Li-Ion) batteries are becoming more available in the marketplace, allowing system designers to use both nickel metal-hydride (NiMH) and Li-Ion battery types to power their portable equipment. The batteries, however, require different charge schemes. NiMH batteries are usually fast-charged at a constant current and terminated by either pea.voltage detection, PVD, or the increasing rise in temperature at the end of full charge, AT/At. Li-Ion batteries are usually charged at a constant voltage with a 1C current limit. Charge is usually terminated by time or when the charging current drops to a very low rate, typically less than 6/30, indicating that the battery is full.

In addition to battery charging, the **designer** has the task of battery monitoring and capacity reporting. NiMH batteries are typically monitored for end-of-discharge voltage, battery temperature, and charge and discharge current. With a fairly flat discharge voltage over about Woof its capacity, capacity gauging for NiMH is done by **determining** the Amp-hour capacity removed during discharge and replaced during charge. NiMH batteries **loose** capacity due to **self-discharge**, which **is** determined by the temperature of the battery and is about 1.5 to 2 percent at **25°C**.

Li-Ion batteries also require monitoring for capacity and state of charge. Li-Ion batteries using coke electrodes have a sloping discharge as shown in Figure 1. In some cases, the voltage during discharge can be used as an indicator of state of charge, but the voltage must be corrected for charge/discharge rate and ambient temperature. Voltage is acceptable for full or empty indication. but the better approach would be to monitor the capacity removed and the capacity replaced to determine the battery state of charge. This method would be more applicable to the other type of Li-Ion battery, which uses graphite electrodes. The graphite Li-Ion battery has a much flatter discharge profile making voltage-based gauging much less accurate than the coke Li-Ion batteries. The self-discharge for both types of Li-Ion batteries is about **Yoth** of that for NiMH batteries.

Benchmarq Microelectronics is developing charge controllers, battery protectors, and capacity gauging ICs specifically tailored for the Li-Ion battery. Today, however, Li-Ion batteries can be charged and monitored using existing Benchmarq products. The purpose of this paper is to describe how a subsystem can be developed that will support both NiMH and Li-Ion batteries using existing Benchmarq ICs and easily transition to the new IC developments.

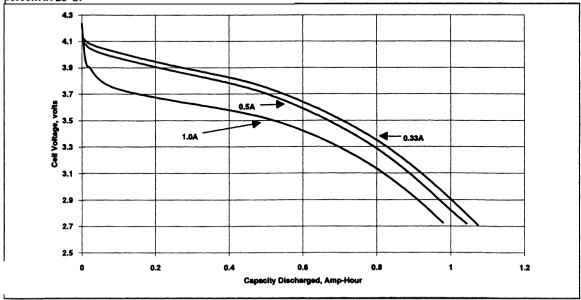


Figure 1. Li-Ion Battery Discharge Curve (Coke Electrodes)

Apr. 1995

Using NiMH and Li-Ion Batteries in Portable Applications

Charger

The charger is based on the bq2004 operating in the switch-mode topology as shown in Figure 2. The charger can be controlled by either a bq2004 or a bq2004E. The charger is operated in a buck configuration where BAT+ is the battery pack positive contact and BAT- is the battery pack negative contact. When the battery is a NiMH pack, the SELC connection is not connected. When the battery is a Li-Ion battery, then the SELC contact is tied to the BAT+ contact within the battery pack. The battery also provides a thermistor contact so that charging can be qualified by the battery temperature and $\Delta T/\Delta t$ can be used for charge termination.

L1 is made using a composite core, MICROMETALS PN **ST50-267**, in a **toroid** geometry (see attached data sheet). The toroid is wound with 70 **turns** of 22 gauge copper magnet wire. The initial inductance is about 3mH. Be-

cause the inductance h a function of the current, the greater the current, the lower the inductance. This property allows for a greater range of current with smaller changes in switching frequency. The current range is needed for the lithium battery where the charge current decreases during charging as the battery EMF approaches the maximum allowable charging voltage. The switchingfrequency is about 30KHz.

When the SELC contact is floated, the charge selection is made for NiMH. In this mode, the bq2004 is configured for 1C charging with top-off and pulse trickle. The charge current is set to 2.25A. In this example, the battery divider h configured for nine cells. The AT/At sensitivity is configured using R8 and R9, and the maximum charge temperature is set by the resistors R5 and R6. The bqCharge disk provides a program to calculate the proper values for these resistors depending on the application requirements and the thermistor choice. The

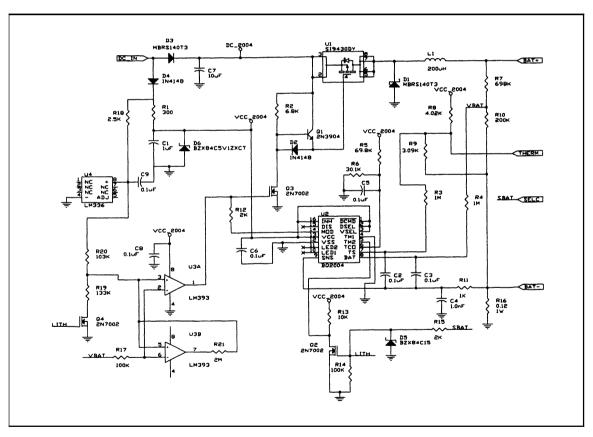


Figure 2. Li-Ion/NiMH bq2004 Switch-Mode Charging System

Apr. 1995

Using NiMH and Li-Ion Batteries In Portable Applications

functional operation of the **bq2004** and **bq2004E** is described in their respective data sheets.

When the SELC contact in at the BAT+ potential, the Li-Ion mode is selected. The battery pack is configured for three-by-three battery configuration, three strings of three cells in series connected in parallel. The TM1 and TM2 pine are set to provide a six-hour time-out with no top-offor trickle. The battery starts charging at the current limit cat to 1.9A and is voltage-limited to 4.225V. For graphite Li-Ion cells, RI9 and R20 are changed to limit charge voltage to 4.125V. During charging, the current varies as the battery EMF reaches the voltage limit. Full charge in indicated after the time-out of six hours.

Capacity Gauging

Capacity gauging is an important user feature for both **NiMH** and Li-Ion. Capacity gauging is provided by the **bq2014** for **NiMH** batteries and can be co gured using

the information in the bq2014 data sheet. The bq2014 can also be used for Li-Ion capacity gauging and is &cussed in thin paper.

Figure 3 shows the ba2014 monitoring an NiMH battery configured similar to that described in the above charger section. The application can identity the battery pack as NiMH by bit 4 of the PPU register. This bit in 0 for nickel-based chemistries. The bq2014 provides the proper compensation for charge and discharge rates compensation and self-discharge ƙitĥ correction. The bq2014 provides software-adjustable end-of-discharge voltage selection. Battery voltage is also available. The capacity of stattery is reported in a 8-bit register pair. The typical application scales this value based on the sense resistor used to get the Amphour capacity. The application can also scale the capacity to Watt-hours by using the battery voltage. During discharge, the battery voltage is read from the bq2014 and averaged with the end-of-discharge voltage. This is the average available voltage for the remaining die-

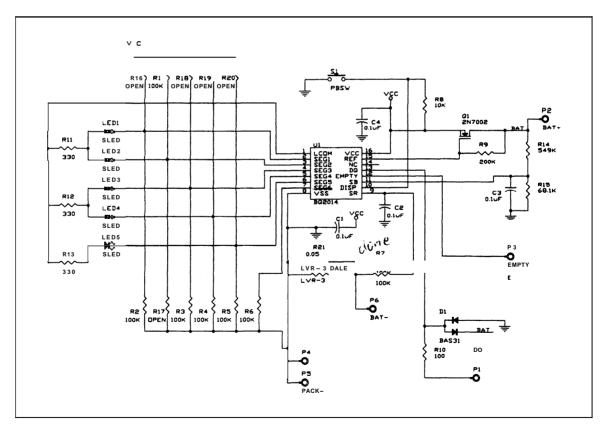


Figure 3. bq2014 NiMH Battery Capacity Monitoring System

Apr. 1995 ______ 3/6

Using NiMH and Li-Ion Batteries in Portable Applications

charge at the current discharge rate. The average voltage is then multiplied by the remaining capacity to **get** the remaining **Watthours**. Although **NiMH batteries** are usually gauged in Amp-hours due to their relatively flat discharge **profile**, Watt-hour capacity can **also** be used for consistency with Li-Ion batteries.

Li-Ion battery capacity can be obtained using the bq2014 as shown in Figure 4. The primary difference is the configuration for the capacity and pulling PROG5 high to disable self-discharge compensation. The self-discharge for Li-Ion batteries is about hoth of that for NiMH and can be neglected in most applications. For those applications that choose to compensate for elf-discharge, the BATID register can be written with the week of the year so the time that the battery might have been exposed to self-discharge can be measured; however, in most applications, this correction is small enough to be neglected. Although the capacity for Li-Ion batteries is

usually **reported** in **Watt-hours**, the capacity can be computed as **described above**. Figure 5 **shows** the cycle profile for a Li-Ion battery that **has** been discharged to 2.7 **volts** per cell after various **levels** of partial recharge. The battery capacity is determined properly, and the user can be comfortable with using the battery near the end of capacity.

Summary

Benchmarq is developing a family of compatible Li-Ion chargers, protectors, and capacity gauges. Using existing products, manufacturers can go to market today with chargers from Benchmarq that support both NiMH and Li-Ion batteries. Battery capacity can be determined for both NiMH and Li-Ion batteriee using the bq2014.

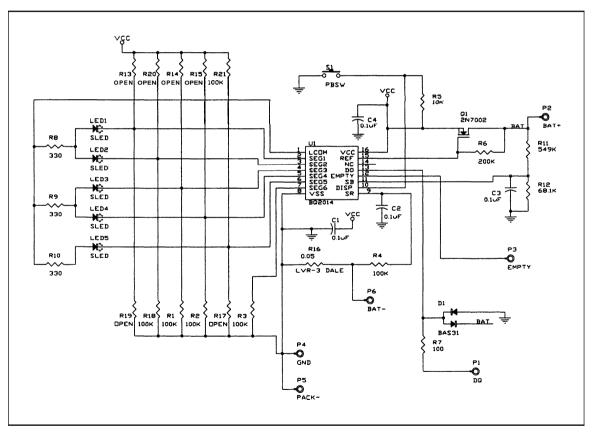


Figure 4. bq2014 Li-Ion Battery Capacity Monitoring System

4/6 Apr. 1995

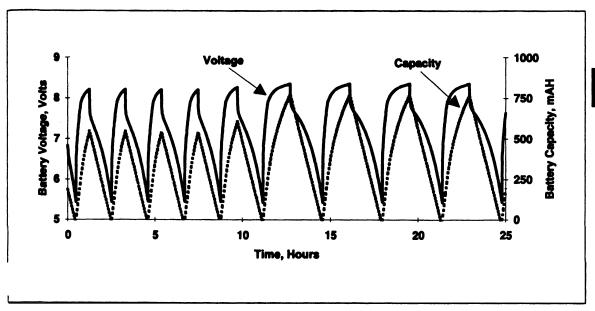
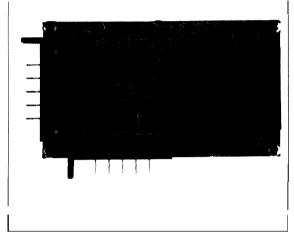


Figure 5. Li-lon Battery Discharge and Capacity Profile

6/6 Apr. 1995

Level 2 Smart Charger With Dual Battery Selector

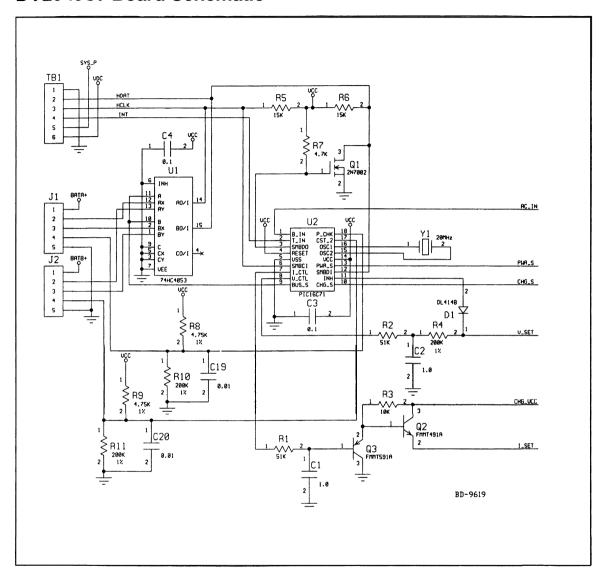

Features

- Level 2 Smart Charger evaluation and development board with Dual Battery Selector
- ➤ Supports System Management Bus specification and Level 2 Smart Charger specifications rev. 1.0
- Supports the Smart Battery Selector specification and handles switching between external DC and one or two battery packs
- ➤ Supports stand-alone or in-system charging
- ➤ Charge voltage regulation range from 10 to 17.4V, current regulation range from 0 to 2.4A
- DC input range from 18 to 24V
- High-efficiency, low-ripple switch-mode design with high-side current sensing
- For safety, charging is suspended on charging command timeout or maximum temperature
- Interrupts host on change in selector status (battery or DC removed or replaced)

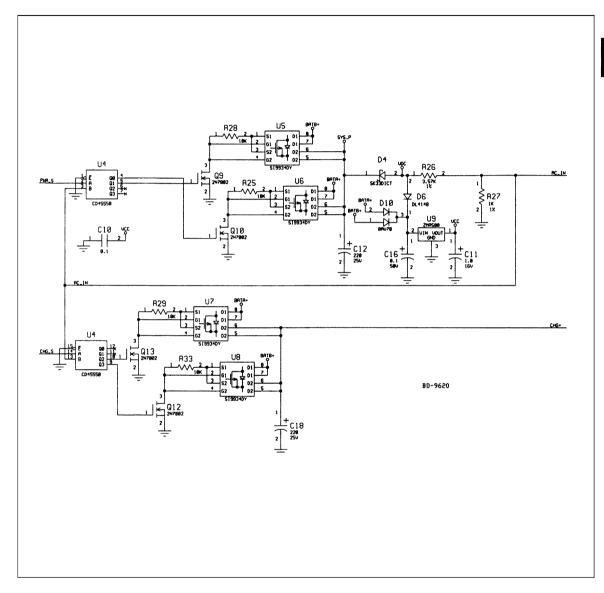
General Description

The DV2043S7 Smart Charger Development System with Smart Battery Selector provides a development environment for Smart Charger devices compliant to the System Management Bus, Smart Charger, and Smart Battery Selector specifications. The unit supports single-or dual-battery configurations. The two-chip design provides stand-alone or in-system charging of SMBus-compliant batteries or dumb batteries under host control. Using a high-efficiency switch-mode regulator, the DV2043S7 will charge from 0 to 2.4A and voltage compliance of 10 to 17.4V. The bq2054 plus microcontroller high-side current sensing design can be modified to support other voltage and current requirements.

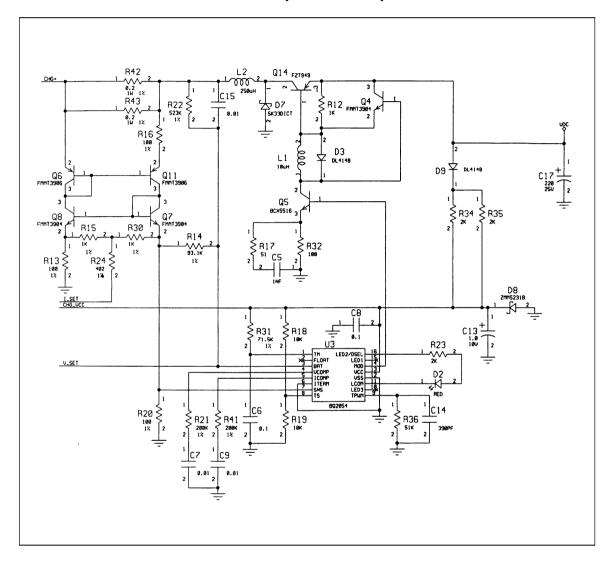
Charging begins with a pre-charge qualification phase. The bq2054 performs a low-current qualification test to detect batteries that have failed. The bq2054 pre-charges under-voltage batteries for as long as 34 minutes to try to bring the pack up to minimum voltage (8V). If this time expires and the pack voltage is still under 8V, then the DV2043S7 indicates a battery fault. The DV2043S7, responding to Smart Charger commands, ad-



justs the current and voltage to the appropriate levels. Charging terminates when the battery signifies a full charge condition. If maximum charging temperature is exceeded or if communication with the battery is lost, the DV2043S7 suspends charging until it receives new charging commands or until temperature returns to allowable levels.


The microcontroller communicates with the SMBus and provides the voltage and current scaling to the bq2054. The bq2054 is designed to regulate both current and voltage using an internal PWM and reference circuit. Efficiencies greater than 85% are possible using the DV2043S7 design, allowing for low-power dissipation. The DV2043S7 is ideal for in-system charging where a high-efficiency design is ideal.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.


DV2043S7 Board Schematic

DV2043S7 Board Schematic (Continued)

DV2043S7 Board Schematic (Continued)

Gas Gauge IC With SMBus Interface

Features

- Provides conservative and repeatable measurement of available charge in NiCd, NiMH, and Lithium Ion rechargeable batteries
- ➤ Designed for battery pack integration
 - 120µA typical standby current
 - Small size enables implementations in as little as % square inch of PCB
- ➤ Supports Rev. 1.0 System
 Management Bus interface and
 Smart Battery Data specifications
- Measurements compensated for current and temperature
- Programmableself-dischargeand charge compensation
- ➤ Supports SBData charge control commands for Li-Ion, NiMH, and NiCd chemistries
- ➤ 16-pin narrow SOIC

General Description

The **bq2040 Gas** Gauge **IC** With **SMBus** Interface is intended for battery-pack or in-system **installation** to maintain an accurate record of available battery charge. The **bq2040** directly **supports** NiCd, NiMH, and Lithium Ion battery **chemistries**.

The bq2040 supports the System Management Bus (SMBus) protocol and the Smart Battery Data (SBData) specifications (Rev. 1.0). Battery voltage, temperature, state-of-charge, capacity, charge-cycle count, etc. are available over the SMBus serial link. Battery-charge state can be directly indicated using a four-segment LED display to graphically depict battery full-to-empty in 25% increments.

The bq2040 estimates battery selfdischarge based on an internal timer, temperature sensor, and userprogrammable rate information stored in external **E**PROM. The bq2040 applies compensations for battery temperature and rate of charge or discharge to the charge, discharge, and self-discharge calculations, providing available charge information across a wide range of operating conditions. The bq2040 automatically recalibrates, or learns' battery capacity in the full course of a discharge cycle from full to empty.

The **bq2040** may operate directly **from** three **or** four nickel chemistry cells. With the REF output and an external **transistor**, a simple, inexpensive regulator **can** be built to provide **Voc** for other battery cell **configurations**.

An external **E**²**PROM** is **used** to program initial values into the **bq2040**. Valuer **such as** design capacity, **chemistry**, and aerial number, can be **customized** for individual battery pack configurations.

Pin Connections

	· ·
V _{CC} □ 1	16 □ V _{о∪т}
SCL 42	15 🗆 REF
SDA 43	14 SMBC
SEG ₁□4	13 ☐ SMBD
SEG ₂ □5	(
SEG ₃ □6	11 🗅 SB
SEG ₄ □7	10 DISP
V _{SS} □ 8	9
_	
16-Pin	Narrow SOIC
	PN-76

Pin Names

Vout	Supply output	SB	Battery sense input
SEGi	LED segment 1	DISP	Display control input
SEG ₂	LED segment 2	SR	Sense resistor input
SEG ₃	LFD segment 3	SMBC	Serial communication clock
SEG ₄	LED segment 4	SMBD	Serial communication
SCL	Serial memory clock	2MPD	data input/output
SDA	Serial memory data	Vcc	3.0-6.5V
REF	Voltage reference output	v_{ss}	System ground
PSTAT	Protector status		

Sept. 1996

Pin Descriptions		SR	Sense resistor input
SEG ₁ -	LED display segment outputs		The voltage drop (VsR) across pins SR and Vss is monitored and integrated over time
5204	Each output may activate an external LED to sink the current sourced from Vcc.		to interpret charge and discharge activity. The SR input is connected to the sense resistor and the negative terminal of the
SMBC	System management bus clock		battery. Vsr < Vss indicates discharge, and Vsr > Vss indicates charge. The effec-
	This open-drain bi-directional pin is used to clock the data transfer to and from the bq2040.		tive voltage drop, V_{SRO} , as seen by the bq2040 is $V_{SR} + V_{OS}$ (see Table 3).
SMBD	System management bus data	DISP	Display control input
	This open-drain bi-directional pin is used to transfer address and data to and from the bq2040.		DISP high disables the LED display. DISP floating allows the LED display to be active during charge or during dis-
SCL	Serial memory clock		charge if the rate is greater than a user- programmable threshold. DISP low
	This output is used to clock the data transfer		activates the display.
	between the bq2040 and the external configuration memory.	SB	Secondary battery input
SDA	Serial memory data		This input monitors the single-cell voltage
	This bi-directional pin is used to transfer address and data to and from the bq2040 and the external configuration memory.		potential through a high-impedance resistive divider network. The pack voltage is reported in the SBD register function Voltage() (0x09) and is compared to end-of-diecharge and
Vour	Supply output	DEE	charge voltage parameters.
	This output supplies power to the external	REF	Voltage reference output for regulator
DOT LO	E ² PROM configuration memory.		REF provides a voltage reference output for an optional micro-regulator.
PSTAT	Protector status input	$\mathbf{v_{cc}}$	Supply voltage input
This input is used to report the protector status during charge. SBD charge current broadcasts zero current if this input is high. PSTAT should be connected to Vss if Li-Ion batteries are not used.		Vss	Ground

Functional Description General Operation

The bq2040 determines battery capacity by monitoring the amount of charge input to or removed from a rechargeable battery. The bq2040 measures discharge and charge currents, estimates self-diecharge, monitore the battery for low-battery voltage thresholds, and compensates for temperature and charge rates. The charge measurement is made by monitoring the voltage across a small-value series sense resistor between the negative battery terminal and ground. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2040 using the LED capacity display, the serial port, and an external E²PROM for battery pack programming information. The ba2040 can be configured for battery chemistry, manufacturer name and serial number, display mode, self-discharge compensation, and various other battery-specific information. Table 1 outlines the externally programmable functions available in the **ba2040.** Refer to the **Programming** the **ba2040** section for further details.

An internal temperature sensor eliminates the need for an external thermistor—reducing wet and components. An internal, temperature-compensated time-base eliminates the need for an external oscillator, further reducing cost and components. The entire circuit in Figure 1 could occupy less than 3/4 square inch of board space.

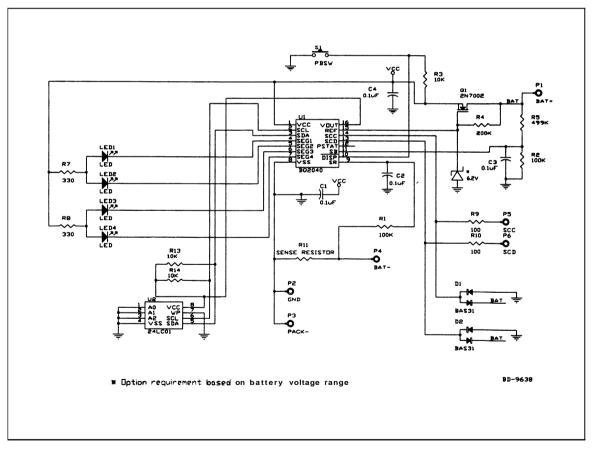


Figure 1. Battery Pack Application Diagram--LED Display

Sept. 1996 3/30

Table 1. Configuration Memory Programming Values

Parameter Name	Address	Length	Units
Design capacity	TBD	16 bits: low byte, high byte	mAh
Initial battery voltage	TBD	8 bite	N/A
Fast charging current	TBD	16 bits: low byte, high byte	mA
Charging voltage	TBD	16 bite: low byte, high byte	mV
Remain capacity alarm	TBD	16 bite: low byte, high byte	N/A
FLAGS1	TBD	8 bite	N/A
FLAGS2	TBD	8 bits	N/A
Current measurement gain	TBD	16 bits: low byte, high byte	N/A
EDV ₁	TBD	16 bits: low byte, high byte	mV
EDV_{F}	TBD	16 bite: low byte, high byte	mV
Temperature offset	TBD	16 bits: low byte, high byte	°K
Self-discharge rate	TBD	16 bits: low byte, high byte	N/A
Digital filter	TBD	8 bits	N/A
Current integration gain	TBD	16 bits: low byte, high byte	N/A
Discharge display threshold	TBD	8 bite	N/A
Battery voltage offset	TBD	8 bits	mV
Battery voltage gain	TBD	8 bits	N/A
Slow charging current	TBD	16 bits: low byte, high byte	mA
Reserved	TBD		
Design voltage	TBD	16 bits: low byte, high byte	mV
Specification info	TBD	16 bite: low byte, high byte	N/A
Manufacturer date	TBD	16 bits: low byte, high byte	N/A
Serial number	TBD	16 bite: low byte, high byte	N/A
Manufacturer name	TBD	8 + 120 bits	N/A
Device name	TBD	8 + 120 bits	N/A
Chemistry	TBD	8 + 120 bits N/A	
Manufacturer data	TBD	8 +120 bits	N/A

Note: N/A = Not applicable; data packed or coded.

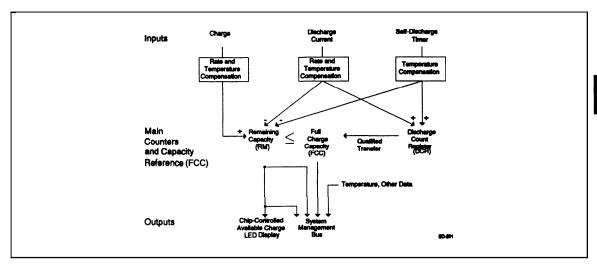


Figure 2. Operational Overview

Voltage Thresholds

In conjunction with monitoring VsR for charge/discharge currents, the bq2040 monitors the battery potential through the SB pin. The voltage potential is determined through a resistor divider network per the following equation:

$$\frac{R_5}{R_2} = \frac{MBV}{2.25} - 1$$

where MBV is the maximum battery voltage, R₅ is connected to the positive battery terminal, and R₂ is connected to the negative battery terminal. should be rounded to the next highest integer. The battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV) and for alarm warning conditions. EDV threshold levels are used to determine when the battery has reached an 'empty' state, and the MCV threshold is used for fault detection during charging. The battery voltage gain and two EDV thresholds are programmed via E*PROM. See the Programming the ba2040 section for further details.

If **VsB** is below either of the two **EDV** thresholds, the **associated flag** is latched and remains latched, independent of **VsB**, until the next valid charge.

EDV monitoring may be disabled under certain conditions. If the discharge current is greater than approximately 6A, EDV monitoring is disabled and resumes after the current falls below 6A.

Reset

The **bq2040** is reset when first connected to the battery pack. The **bq2040** can also be reset with a command over the serial port, as described in the Software Reset section.

Temperature

The bq2040 monitors temperature using an internal sensor. The temperature is used to adapt charge/discharge and self-discharge compensations as well as maximum temperature and $\Delta 17/\Delta t$ during bq2040 controlled charge. Temperature may also be accessed wer the serial port. See the Programming the bq2040 section for further details.

Layout Considerations

The bq2040 **measures** the voltage **differential** between the SR and Vss **pins**. Vos (the **offset** voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the strict rule of a single-point ground return. Sharing high-current ground with small signal ground **causes** undesirable **noise** on the small **signal nodes**. Additionally, in reference to Figure 1:

- The capacitors (C1, C3, and C4) should be placed as close as possible to the SB and VCC pins, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1µf is recommended for Vcc.
- The sense resistor capacitor (C2) should be placed as close as possible to the SR pin.

Sept. 1996 5/30

bq2040 Preliminary

- The sense resistor (R11) should be as close as possible to the bq2040.
- The IC should be close to the cells for the best temperature measurement.

An optional **zener** may be necessary to ensure Vcc is not above the maximum rating during operation.

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the bq2040. The bq2040 accumulates a measure of charge and discharge currents, as well as an estimation of self-discharge. Charge and discharge currents are temperature-compensated, and charge is rate-compensated. Self-discharge is only temperature compensated.

The main counter, Remaining Capacity (RM), represents the available battery capacity at any given time. Battery charging increments the RM register, while battery discharging and self-discharge decrement the RM register and increment the **DCR** (Discharge Count Register).

The Diecharge-Count Register (DCR) is used to update the Full-Charge Capacity (FCC) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the **bq2040** adapts **its** capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the Design Capacity **(DC)**. Until FCC is updated, RM counts up to, but not beyond, this threshold during **subsequent** charges.

Full-Charge Capacity or learned-battery capacity:

FCC is the last **measured** discharge capacity of the battery. On initialization (application of **Vcc**), FCC **= DC**. During subsequent discharges, the FCC is updated with the latest measured capacity in the Discharge Count Register (DCR), representing a discharge from full to below **EDV1**. A **qualified** discharge is necessary for a capacity transfer from the DCR to the FCC register. The FCC also serves as the **100%** reference threshold used by the relative display mode.

2 Design Capacity (DC):

The **DC** is the user specified battery capacity and is programmed by using an external E**PROM**. The **DC** also provides the **100%** reference for the absolute display mode.

3. Remaining Capacity (RM):

RM counts up during charge to a maximum value of FCC and down during discharge and self-discharge

to **0.** RM is reset to **0x0A** on initialization and when EDVI = 1 and a valid charge is detected. To prevent overstatement of charge during periods of overcharge, RM stops incrementing when RM = FCC. RM may optionally be written to a user-defined value when fully charged when the battery pack is under bq2040 charge control. See bq2040 Charge Control for further details.

Discharge Count Register (DCR):

The DCR counts up during discharge independent of RM and can continue increasing after RM has decremented to **0**. Prior to RM = **0** (empty battery), both discharge and self-discharge increment the DCR. After RM = **0**, only discharge increments the DCR. The DCR resets to **0** when RM = FCC. The DCR does not roll over but stops counting when it reachw FFFFh.

The DCR value becomes the new FCC value on the **first** charge after a valid discharge to **VEDV1** if:

- No valid charge initiations (charges greater than 10mAh, where V_{SRO} > V_{SRQ}) occurred during the period between RM = FCC and EDV1 detected.
- The self-discharge count is not more than **256mAh**.
- The temperature is ≥ 273°K when the EDVI level is reached during discharge.

The valid discharge flag (VDQ) indicates whether the **present** discharge is valid for FCC update. An FCC update cannot be greater than 256mAh.

Charge Counting

Charge activity is detected based on a **positive** voltage on the **Vsr** input. If charge activity is detected, the **bq2040** increments RM at a rate proportional to **Vsro** and, if enabled, activates an LED display. Charge actions increment the RM after compensation for charge rate and temperature.

The **bq2040** determines charge activity sustained at a continuous rate equivalent to **Vsro** > Vsro. A valid charge equates to sustained charge activity greater than 10 mAh. Once a valid charge is detected, charge counting continues until **Vsro** falls below **Vsro**. Vsro is a programmable **threshold** as described in the Digital Magnitude Filter section.

Discharge Counting

All discharge counts where **V**_{SRO} < **V**_{SRD} cause the RM register to decrement and the DCR to increment. **V**_{SRD} is a programmable threshold as described in the Digital Magnitude Filter section.

6/30 Sept. 1996

Self-DischargeEstimation

The bq2040 continuously decrements RM and increments DCR for self-discharge based on time and temperature. The self-discharge rate is dependent on the battery chemistry. The bq2040 self-discharge estimation rate is externally programmed in **E**²**PROM** and can be programmed from **0** to 25% per day at 20°C. This rate doubles every 10°C from O°C to 70°C.

Charge Control

The **bq2040** supports SBD charge control by broadcasting ChargingCurrent() and ChargingVoltage() to the Smart Charger address. Smart-charger broadcasts can be disabled by writing bit 14 of **BatteryStatus()** to 1. The bq2040-based charge control can be disabled by setting bit 4 in Flags2 (MSB of 0x2f) to 1. See Programming the **bq2040** for further details. If RM is below the full charge percentage, then the bq2040 will broadcast the fast charge current and voltage to the Smart Charger, if enabled. The bq2040 will broadcast the maintenance current values (trickle-rate) if **Voltage()** ie below **EDVF**.

The **bq2040** internal charge control **is** compatible with Li-Ion and nickel-baaed chemistries. For Li-Ion, the **bq2040** will broadcast the required charge current and voltage according to the values programmed in the esternal E^{2} PROM. During a valid charge (VQ = 1), if Current (0x0a) falls below 50mA while Voltage (0x09) is within 256mV of the charging voltage, the bo2040 will signal a valid charge termination where the Terminate-Charge and My-Charged bit is set in Battery Status.

For nickel-based chemistries, the **bq2040** will broadcast the required charge current and voltage according to the programmed values in the external E²PROM. Maximum Temperature and AT/& are used as valid charge termination methods. Note: Nickel-based chemistries require a charge voltage higher than the maximum cell voltage during charge to ensure constant-current charging. During a valid charge (VQ = 1), if the **bq2040** determines a maximum temperature or AT& rate greater than the programmed value, the Terminate Charge and Fully-Charged bit will be set in Battery Status.

Once the bq2040 determines a valid charge termination condition, charging current is set to **0** until this condition ceases (\Delta T/\Delta t, MaxT, min. current). After a valid charge termination and the terminate condition ceases, maintenance (trickle) charge current and voltage will be broadcast to the **Smart** Charger. This **process** continues until RM falls below the full charge percentage. The **bq2040** will then request the fast-charge current and voltage to the Smart Charger.

During fast charge, the **bq2040** will suspend charge by requesting zero current and setting the Terminate-Charge-Alarm bit in Battery Status. Charge is suspended if the actual charge current is 25% greater than Sept. 1996

the programmed charged current. If the programmed charge current is less than 1024mA, overcurrent suspend will occur if the actual charge current is 256mA greater than the programmed value. Charge is also suspended if the actual battery voltage is 5% greater than the programmed charge voltage. If PSTAT goes high, then the **bq2040** will suspend charge until the **PSTAT** goes low and Current() is zero. If the battery temperature is greater than the programmed maximum temperature prior to charge, then the bq2040 will suspend charge requests until the temperature falls below 50°C.

After a valid charge **termination**, RM may optionally be set to a value from 0 to 100% of the Full Charge Capacity. If RM is below the value programmed in Full Charge Percent, RM will be set to Full Charge Percent upon valid charge **termination**. If RM is above the Full Charge Percent, RM is not modified. This value also is used to determine when the bq2040 braodcasts fast-charge or maintenance-charge information.

Count Compensations

Charge activity is **compensated** for temperature and rate before updating the RM and/or DCR. RM is compensated for temperature before updating the RM register. Self-discharge estimation is compensated for temperature before updating RM or DCR.

Charge Compensation

Charge **efficiency** is **compensated** for rate, temperature. and battery chemistry. For Li-Ion chemistry cells, the charge efficiency is unity for all cases. However, the charge efficiency for nickel chemistry cells is adjusted wing the following equation:

$$RM = RM * (Q_{EPC} - Q_{ET})$$

where RelativeStateofCharge ≤ FullChargePercentage

and QEFC is the programmed fast charge efficiency varying from .75 to .99.

$$RM = RM * (Q_{ETC} - Q_{ET})$$

where RelativeStateofCharge ≥ FullChargePercentage

and QETC is the programmed maintenance (trickle) charge efficiency varying from .50 to .97.

QET is used to **adjust** the charge efficiency as the battery temperature increases according to the following:

$$Q_{ET} = 0 \text{ if } T < 30^{\circ}C$$

$$Q_{ET} = 0.02 \text{ if } 30^{\circ}C \le T < 40^{\circ}C$$

$$Q_{ET} = 0.05 \text{ if } T \ge 40^{\circ}C$$

7/30

Remaining Capacity Compensation

The **bq2040** adjusts the RM as a function of temperature. This adjustment accounts for the reduced capacity of the battery at colder temperatures. The following equation is used to adjust RM:

If T ≥ 5°C

Remaining Capacity () = Nominal Available Capacity()

If $T < 5^{\circ}C$

RC() = NAC() (1 + TCC * (T - 5°C))

where T • temperature °C

TCC = 0.016 for Li-Ion cells

TCC • 0.0004 for Ni chemistry cells

Digital Magnitude Filter

The **bq2040** has a programmable digital filter to **eliminate** charge and **discharge** counting below a set threshold. Table 2 shows typical digital filter settings. The proper digital filter setting can be calculated using the following **equation**.

 V_{SRD} (mV) = -45/DMF

 V_{SRQ} (mV) = -1.25 * V_{SRD}

Table 2. Typical Digital Filter Settings

DMF	DMF Hex.	VsRD (mV)	VsRQ (mV)
75	4B	-0.60	0.75
100	64	-0.45	0.56
150 (default)	96	-0.30	0.38
175	AF	-0.26	0.32
200	C8	-0.23	0.28

Error Summary

Capacity Inaccurate

The FCC is susceptible to error on initialization or if no updates occur. On initialization, the FCC value includes the error between the design capacity and the actual capacity. This error is present until a valid discharge ∞ curs and FCC is updated (see the DCR description). The other cause of FCC error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

Current-Sensing Error

Table 3 illustrates the current-sensing error as a function of **Vsr.** A digital filter eliminates charge and discharge **counts** to the RM register when **Vsro** is between **Vsro** and Vsro.

Display

The **bq2040** can **directly** display capacity information **using** low-power **LEDs**. The **bq2040** displays the battery charge state in either **absolute** or relative mode. In relative mode, the battery charge is represented **as** a percentage of the FCC. Each LED segment **represents** 25% of the FCC.

In absolute mode, each segment represents a fixed amount of charge, based on the initial design capacity. In absolute mode, each **segment represents** 25% of the design capacity. As the battery **wears** out over time, it **is possible** for the FCC to be below the initial **design** capacity. In this case, all of the **LEDs** may not turn on in absolute mode, **representing** the reduction in the actual battery capacity.

The displayed capacity is compensated for the **present** battery temperature. The displayed capacity will vary as temperature varies, indicating the available charge at the present conditions.

Table 3. bq2040 Current-Sensing Errors

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offset referred to VsR	± 50	± 150	μV	$\overline{\text{DISP}} = V_{CC}$.
INL	Integrated non-linearity error	± 2	± 4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25V .
INR	Integrated non -repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

When DISP is tied to Vcc, the SEG1-4 outputs are inactive. When DISP is left floating, the display becomes active whenever the bq2040 recognizes a valid charge or if the discharge rate exceeds the programmed fast discharge display threshold. When pulled low, the segment outputs become active immediately for a period of approximately 4 seconds.

The segment outputs are modulated as two banks of two, with segments 1 and 3 alternating with segments 2 and 4. The segment outputs are modulated at approximately 100Hz with each segment bank active for 30% of the period.

SEG₁ blinks at a **4Hz** rate whenever V_{SB} has been detected to be below V_{EDV1} (EDV₁ = 1), indicating a low-battery condition. V_{SB} below V_{EDVF} (EDV_F = 1) disables the display output.

Microregulator

The **bq2040** can operate directly from 3 or 4 nickel chemistry cells. To facilitate the power supply **requirements** of the **bq2040**, an REF output is provided to regulate an **external** low-threshold **n-FET**. A micropower source for the **bq2040** can be **inexpensively** built **using** the FET and an external **resistor**; see Figure 1.

Communicating With the bg2040

The **bq2040** includes a simple two-pin (SMBC and SMBD) serial data interface. A hoet **processor uses** the interface to access various **bq2040 registers**. This allows battery **characteristics** to be easily monitored, by adding two **contacts** to **the** battery pack. The open-drain SMBD and SMBC pine on the **bq2040** are pulled up by **the host system**, or may be connected to **Vss**, if the serial interface is not **used**.

The interface uses a command-based protocol, where the host processor sends the smart battery address and an eight-bit command byte to the bq2040. The command directs the bq2040 to either store the next data received to a register specified by the command byte or output the data specified by the command byte.

bq2040 Data Protocols

The SMBus Host, acting in the role of an SMBus master, uses the read word and write word protocols to wmmunicate integer data with the bq2040. The read block protocol is used to access block data, such as ManufacturerName(). When the bq2040 needs to inform the SMBus Host about an alarm condition or to inform the Smart Battery Charger about its desired charging voltage or current, the bq2040, acting as an SMBus master, uses the write word protocol to commu-

nicate with the **SMBus Host** or Smart Battery Charger acting **as** an **SMBus** slave.

SMBus Host-to-bq2040 Message Protocol

The SMBus Host communicates with the bq2040 using one of three protocols:

- Read word
- Write word
- Read block

The particular protocol used is a function of the command. The **protocols** used are shown in Figure 3.

bq2040-to-Smart Battery Charger Message Protocol

The **bq2040**, acting as an optional SMBus master, sometimes **tries** to **alter** the charging **characteristics**. It **also** may **send** critical **messages** to the Smart Battery Charger, **behaving as** an **SMBus** slave wing the **SMBus** write word protocol. Communication begins with the Smart Battery **Charger's address**, followed by a command **code** and a two-byte value. The Smart Battery Charger adjusts its output to correspond with the **request**. **See** Figure 4.

bq2040 Critical Message Protocol

The bq2040 to SMBus Host message is sent using the SMBus write word protocol. Communication begins with the SMBus Host's address, followed by the bq2040's address, which also replaces the command code. The SMBus Host or Smart Battery Charger can now determine that the bq2040 was the originator of the message and that the following 16 bits are its statue. See Figure 6.

SMBus Host-to-Smart Battery Messages (see Table 7)

ManufacturerAccess() (0x00)

This read or write word is optional and its meaning is implementation specific.

RemainingCapacityAlarm() (0x01)

This read or write word sets or gets the LowCapacity threshold value. Whenever the RemainingCapacity of alls below the RemainingCapacity alarm value, the Smart Battery sends AlarmWarning() messages to the SMBus Hoet with the REMAINING_CAPACITY_ALARM bit set. A value of 0 disables this alarm. The value is set to 10% of the design capacity at time of manufacture. The value will remain unchanged until altered by the Remaining-CapacityAlarm() function.

Sept. 1996 9/30

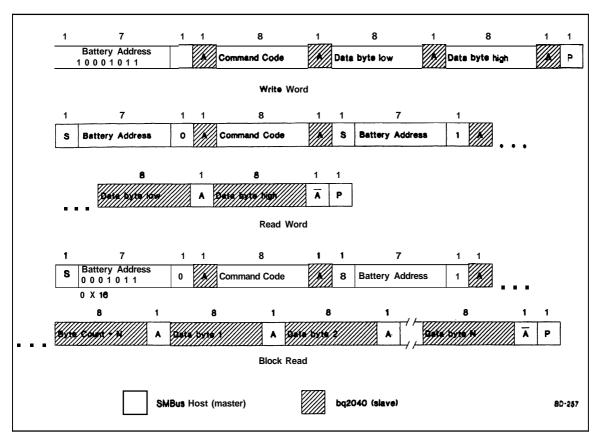


Figure 3. SMBus Host Protocols

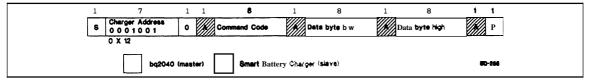


Figure 4. bq2040-to-Smart Battery Charger Message Protocol

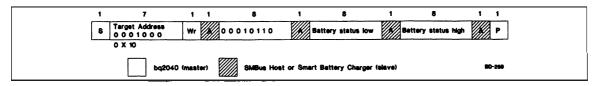


Figure 5. bq2040-to-Bus Host Message Protocol

10/30 Sept. 1996

Units: mAh

Range: 0 to 65,535 mAh

RemainingTimeAlarm() (0x02)

This read/write word sets or gets the RemainingTime alarm value. Whenever the AverageTimeTo Empty0 falls below the RemainingTime value, the Smart Battery sends AlarmWarning() messages to the SMBus Host with the REMAINING-TIME-ALARM bit set. A RemainingTime value of 0 disables this alarm. The RemainingTime alarm is set to 10 minutes at the time of manufacture. The RemainingTime alarm value may be changed until altered by the RemainingTimeAlarm() function.

Units: Minutes

Range: 0 to 65,536 minutes

BatteryMode() (0x03)

This **read/write** word selects the various battery operational modes. The bq2040 supports **the battery's** capacity information specified in mAh. This function also determines whether the **ChargingCurrent()** and **ChargingVoltage()** values are broadcast to the Smart Battery Charger when the Smart Battery requires charging (CHARGER-MODE bit).

CHARGER-MODE bit enables or **disables** the Smart Battery's transmission of **ChargingCurrent()** and **ChargingVoltage()** messages to the Smart Battery Charger. When set, the Smart Battery will not **transmit ChargingCurrent()** and **ChargingVoltage()** values to the Smart Battery Charger. When cleared, the Smart Battery will transmit the **ChargingCurrent()** and **ChargingVoltage()** values to the Smart Battery Charger when charging is desired.

CAPACITY_MODE bit indicates that capacity information will be reported in mAh and current is in mA units.

Field	Bits Used	Format	Allowable Values
Reserved	06, 8-13		
Condition Flag	7	read only bit flag	0 = Battery OK 1 = Conditioning cycle requested
CHARGER_ MODE	14	bit flag	0 = Enable broad- cast to charger 1 = Disable broadcast to charger
CAPACITY_ MODE	15	bit flag	0 = Report in mA or mAh

AtRate() (0x04)

This read/write word is the first half of a two-function set used to set the AtRate value used in calculations made by the AtRateTimeToFull(), and AtRateTimeTo Empty().

- When the AtRate value is positive, ted
 AtRateTimeToFull() function returns the predictime to full-charge at the AtRate value of charge.
- When the AtRate value is negative, the AtRateTimeTo Empty0 function returns the predicted operating time at the AtRate value of discharge.

Units: mA

Range: -32,768 mA to 32,767 mA

Note: The AtRate value is set to zero at time of manufacture (default).

AtRateTimeToFull() (0x05)

This **read-only** word **returns** the **predicted** remaining time to fully *charge* the battery at the AtRate value (mA) and is valid only if read **immediately** after an **AtRate()** command.

Unite: minutes

Range: 0 to 66,534 **min**

Granularity: 2 min or better

Invalid Data Indication: 65,535 indicates the

battery is not being charged

AtRateTimeToEmpty() (0x06)

This read-only word **returns** the predicted remaining operating time if the **battery** is **discharged** at **the AtRate** value and **is** valid only if read immediately after an **AtRateO** command.

Units: minutes

Range: 0 to **65,534 min**

Granularity: 2 min or better

Invalid Data Indication: 66,535 indicates the

battery is not being discharged

AtRateOK() (0x07)

This read-only word returns a Boolean value that indicates whether or not the **EDV₁** flag has been set.

Boolean: Indicates if the battery can supply addi-

tional energy

Units: Boolean

Range: TRUE • 0 ,FALSE 0

Sept. 1996

11/30

Temperature 0 (0x08)

This read-only word returns the cell-pack's internal temperature (°K).

Output: unsigned int-cell temperature in tenths of degrees Kelvin increments

Unite: 0.1°K

Range: 0 to +500.0°K

Granularity: **0.5°K** or better

Accuracy: ±3°K

Voltage() (0x09)

This read-only word **returns** the cell-pack voltage (mV).

Output: unsigned int-battery terminal voltage in mV

Units: mV

Range: 0 to 65,535 mV

Granularity: **0.2%** of **design** voltage Accuracy: ±0.2% of design voltage

Current() (0x0a)

This read-only word returns the current through the battery's terminals (mA).

Output: signed int—charge/discharge rate in mA -positive for charge, negative for discharge

Units: mA

Range: 0 to 32,767 mA for charge or 0 to -32,768

mA for discharge

Granularity 0.2% of the DesignCapacity() or better

Accuracy: ±0.2% of the Design Capacity

AverageCurrent() (0x0b)

This read-only word returns a rolling average of the current through the battery's terminals. The AverageCur**rent()** function returns **meaningful** values after the battery's first minute of operation.

Output: signed int—charge/discharge rate in mA — positive for charge, negative for discharge

units: mA

Range: 0 to 32,767 mA for charge or 0 to -32,768

mA for diecharge

Granularity 0.2% of the **DesignCapacity()** or better

Accuracy: ±0.2% of the Design Capacity 12/30

MaxError() (0x0c)

This read-only word returns the expected margin of error (%).

Output: unsigned int-percent uncertainty

Unite: %

Range: 0 to 100%

Granularity: 1% or better

RelativeStateOfCharge() (0x0d)

This read-only word returns the predicted ing battery capacity expressed as a percentage of FullChargeCapacity() (%).

Output unsigned int-percent of remaining capacity

Units: %

Range: 0 to 100%

Granularity: 1% or better

AbsoluteStateOfCharge() (0x0e)

This read-only word returns the predicted remaining battery onli y :ei l as a percentage of DesignCapacity() (%). Note that AbsoluteStateOfCharge can return values greater than 100%.

Output: unsigned int—percent of remaining ca-

pacity

Units: %

Range: 0 to 65,535 % Granularity: 1% or better Accuracy: :MaxError()

Remaining Capacity() (0x0f)

This read-only word returns the predicted **remaining** battery capacity. The RemainingCapacity() value is expressed in mAh at the nominal discharge rate.

Output: unsigned int--estimated remaining capacity in mAh

Units: mAh

Range: 0 to 65,535 mAh

Granularity: 0.2% of DesignCapacity() or better

FullChargeCapacity() (0x10)

This read-only word returns the predicted pack capacity when it is fully charged. The FullChargeCapacity() value

is expressed in mAh at a % discharge rate.

Output: unsigned int—estimated full charge capacity in mAh or 10mWh

Units: mAh

Range: 0 to 65,535 mAh

Granularity: 0.2% of design capacity or better

RunTimeToEmpty() (0x11)

This read-only word returns the predicted remaining battery life at the **present** rate of discharge (minutes). The **RunTimeToEmpty()** value **is** calculated based on **Current()**.

Output: unsigned int-minutes of operation left

Unite: minutes

Range: 0 to **65,534** minutes
Granularity. 2 minutes or better

Invalid data indication: 65.535 indicates battery

is being charged

AverageTimeToEmpty() (0x12)

This read-only word returns the predicted remaining battery life at the **present** average **discharge** rate (**minutes**). The **AverageTimeToEmpty** is calculated **based** on AverageCurrent().

Output: unsigned int-minutes of operation left

Units: minutes

Range: 0 to **65,534** minutes

Granularity **2 minutes** or better

Invalid data indication: **65,535 indicates** battery

is being charged

AverageTimeToFuil() (0x13)

This read-only **word** returns the predicted time until the **Smart** Battery reaches full **charge** at the **present** average charge rate (minutes).

Output: unsigned int-remaining time in minutes

Unite: minutes

Range: 0 to 65,534 minutes

Granularity: 2 minutes or better

Invalid data indication: 65,635 indicates battery

is not being charged

BatteryStatus() (0x16)

This read-only word returns The Smart Battery's status word (flags). Some of the BatteryStatus() flags (REMAINING-CAPACITY-ALARM and REMAINING_TIME_ALARM) are calculated based on current. Sea Table 4. for definitions.

unsigned int: Status Register with alarm ∞nditions bit mapped as follows:

	Alarm Bits							
0x8000	OVER_CHARGED_ALARM							
0x4000	000 TERMINATE_CHARGE_ALARM							
0x2000	00 reserved							
0x1000	OVER_TEMP_ALARM							
0x0800	TERMINATE_DISCHARGE_ALARM							
0x0400	reserved							
0x0200	REMAINING_CAPACITY_ALARM							
0x0100	REMAINING_TIME_ALARM							
	Status Bits							
0x0080	INITIALIZED							
0x0040	DISCHARGING							
0x0020	FULLY_CHARGED							
0x0010	FULLY_DISCHARGED							
	Error Code							
0x0000- 0x000f								

Some of the **BatteryStatus()** flags are calculated based on current. **See** Table 8 for **definitions**.

CycleCount() (0x17)

This read-only word returns the number of charge/discharge cycles the battery has experienced. A charge/discharge cycle starts from a base value equivalent to the battery's state-of-charge, upon completion of a charge cycle. The bq2040 increments the cycle counter during the current charge cycle, if the battery has been discharged to below 85% of the state-of-chargeat the end of the last charge cycle. A discharge > 0.5% prevents false reporting of small charge/discharge cycles.

Output: unsigned **int—count** of **charge/dis**charge cycles the battery **has** experienced

Unite: cycles

Sept. 1995 13/30

Range: 0 to 65,535 cycles; 65,535 indicates battery has experienced 65,535 or more cycles

Granularity: 1 cycle

DesignCapacity() (0x18)

This read-only word returns the theoretical capacity of a new pack. The **DesignCapacity()** value is expressed in mAh at the nominal discharge rate.

Output: unsigned int—battery capacity in mAh

Unite: mAh

Range: 0 to 65,535 mAh

DesignVoltage() (0x19)

This read-only word returns the theoretical voltage of a new pack (mV).

Output: unsigned int -the battery's normal ter-

minal voltage in mV

Units: mV

Range: 0 to **65,535 mV**

SpecificationInfo() (0x1a)

This read-only word returns the version number of the **SmartBattery** specification the battery pack supports, as well as voltage and current scaling information in packed integer. The **SpecificationInfo** is packed as follows: (major version number * **0x10** + minor version number) + (voltage scaling + current **scaling • 0x10) • 0x100.**

Field	Bits Used	Format	Allowable Value
Revision	0–3	4-bit binary value	0–15
Version	4–7	4-bit binary value	0–15
VScale	8–11	4-bit binary value	0–3 (multiples voltage by 10 ^ VScale)
IPScale	12–15	4-bit binary value	0–3 (multiples current/power by 10 ^ IPScale)

ManufactureDate() (0x1b)

This read-only word returns the date the cell was manufactured in a packed integer word. The date is packed as follows: (year - 1980), month, day.

Field	Bits Used	Format	Allowable Value
Day	0-4	5-bit binary value	1–31 (corresponds to date)
Month	5–8	4-bit binary value	1–12 (corresponds to month number)
Year	9–15	7-bit binary value	0 • 127 (corresponds to year biased by 1980)

SerialNumber() (Oxlc)

This read-only word returns a serial number. This number, when combined with the ManufacturerName(), the DeviceName(), and the ManufactureDate(), uniquely identifies the battery (unsigned int).

Output: unsigned int

ManufacturerName() (0x20)

This read-only string returns a character string where the first byte is the number of characters available. The maximum number of characters is **16**. The character string contains the battery manufacturer's name. For example, "BattCorp" identifies the Smart Battery manufacturer as BattCorp.

Output: string--character string

DeviceName() (0x21)

This read-only string returns a character string where the first byte is the number of characters available. The maximum number of characters is 15. The 15-byte character string contains the battery's name. For example, a DeviceName() of "MBC301" indicates that the battery is a model BC301.

Output: string—character string

DeviceChemistry() (0x22)

This read-only string **returns** a character string where the first byte is the number of characters available. The maximum number of characters is **15**. The 15-byte character string contains the battery's chemistry. For example, if the **DeviceChemistry()** function returns "NiMH," the battery pack contains nickel metal hydride cells.

Output: string--character string

14/30 Sept. 1996

ManufacturerData() (0x23)

This read-only string allows access to an up to 15-byte manufacturer data string where the **first** five **bytes** are user-defmable in the external configuration memory and **bytes** six through fifteen **are** defined according to the following table.

Output: block data-data whose meaning is assigned by the Smart Battery's manufacturer

bq2040 or SMB Host-to-Smart Battery Charger Messages(See Table 6)

Whenever the BatteryMode() CHARGER_MODE bit is set to zero (default) and the bq2040 detects the presence of a Smart Battery Charger (level 2 charger—refer to the Smart Battery Charger Specification), the bq2040 sends the ChargingCurrent() and ChargingVoltage() values to the Smart Battery Charger. The bq2040 continues broadcasting these values at 12-second intervals.

ChargingCurrent() (0x14)

The **bq2040** sends the desired charging rate to the Smart Battery Charger (mA),

Output: unsigned int — maximum charger output current in mA

Units: mA

Range: 0 to 65,534 mA

Granularity: 0.2% of the design capacity or better

Accuracy: ± 0.2% of the design capacity

Invalid data **indication:** 65,535 indicates the Smart Battery Charger should operate **as** a voltage **source** outside its maximum **regu**lated **current** range

ChargingVoltage() (0x15)

The **bq2040 sends** the desired voltage to the Smart Battery Charger (mV).

Output: unsigned int-charger output current in mV

Units: mV

Sept. 1996

Range: 0 to 65,534 mV

Granularity: 0.2% of the design voltage or better

Accuracy: ± 0.2% of the design voltage

Invalid data indication: 65,535 indicates the Smart Battery Charger should operate as a current **source** outside its maximum **regu**lated voltage range

lated voltage range

bq2040 Critical Messages

Whenever the **bq2040** detects a critical condition, it **becomes** a bus master and sends **AlarmWarning()** messages to both the Smart Battery Charger, if enabled, and the SMBus Host, as appropriate, notifying them of the critical condition(s). The message sent by the AlarmWarning() function is similar tessage retuned by the **BatteryStatus()** function. The **bq2040** continues broadcasting the AlarmWarning() at 12-second intervals until the critical condition(s) has been corrected.

AlarmWarning() (0x16)

The bq2040, acting as a bus master device to the SMBus Host and/or the Smart Battery Charger, sends this message to notify them that one or more alarm conditions exist. Alarm indications are encoded as bit fields in the Battery's statue, which is then sent to the SMBus Host and/or Smart Battery Charger by this function. The AlarmWarning() is repeated at 12-second intervals until the condition(s) causing the alarm has been corrected.

Output: unsigned int—Status Register with alarm conditions bit mapped as follows:

	Alarm Bits
0x8000	OVER_CHARGED_ALARM
0x4000	TERMINATE_CHARGE_ALARM
0x2000	reserved
0x1000	OVER_TEMP_ALARM
Ох.	TERMINATE_DISCHARGE_ALARM
0x0400	reserved
0x0200	REMAINING_CAPACITY_ALARM
0x0100	REMAINING_TIME_ALARM
	Status Bits
0x0080	INITIALIZED
0x0040	DISCHARGING
0x0020	FULLY_CHARGED
0x0010	FULLY-DISCHARGED
	Error Code
0x0000- 0x000f	All bits set high prior to AlarmWarning() transmission

Note: Alarm bits 0x0200 and 0x0100 cause the Alarm-Warning() to be sent only to the SMBus Host. All other

15/30

alarm bite **cause** the AlarmWarning() to be **sent** to both the **SMBus** Host and the Smart Battery Charger, if CHARGER-MODE = 0.

Status Bits and Error Codes

Status bits are listed in Table 4 and error codes are listed in Table 5.

FLAGS1&2() (0x2c)

This read-only register returns an unsigned integer *rep*-resenting the internal status **registers** of the bq2040. The MSB represents **FLAGS2**, and the **LSB** represents **FLAGS1**. See Table 6 for the bit description for **FLAGS1&2**.

FLAGS2

The Display Mode flag (DMODE), Bit 7, determines whether the bq2040 displays Relative or Absolute capacity.

The DMODE values are:

	FLAGS2 Bits												
7	6	5	4	3	2	1	0						
DMODE													

Where DMODE is:

- O Selects Absolute display
- 1 Selects Relative display

The Protector Status flag (PSTAT), bit 6, determines if the overvoltage protector for Li-Ion cells is active. If PSTAT = 1, then the bq2040 broadcasts Terminate_Charge and sets the charging current to zero until the average current is zero and PSTAT = 0.

The PSTAT values are:

	FLAGS2 Bits												
7	6	5	4	3	2	1	0						
-	PSTAT	-		-		-	-						

Where **PSTAT** is:

0 Protector status OK

Protector status not OK; suspend charge

The Chemistry flag (CHM), Bit 5, selects Li-Ion or Nickel compensation factors.

The CHM values are:

	FLAGS2 Bits											
7	7 6 5 4 3 2 1 0											
	-	CHM				-	•					

Where CHM is:

- Selects Nickel
- 1 Selects Li-Ion

Bit 4, the *Charge Control* flag (CC), determines whether a **bq2040-based** charge termination will set RM to a **user**-defined programmable full charge capacity.

The CC values are:

	FLAGS2 Bits											
7	7 6 5 4 3 2 1 0											
-	-	•	CC		•	-						

Where CC is:

- **0** RM is not modified on valid **bq2040** charge termination
- 1 RM is **set** to a programmable **percentage** of the FCC when a valid **bq2040** charge termination occurs

Bit 3 is reserved.

Bit 2, the Overvoltage flag (OV), is aet when the bo2040 detects a pack voltage 5% greater than the programmed charging voltage. This bit is cleared when the pack voltage falls 5% below the programmed charging voltage.

The OV values are:

	FLAGS2 Bits												
7	6	5	4	3	2	1	0						
-		•	-	•	OV	•							

Where OV is:

- 0 BatteryVoltage() < 1.05 * ChargingVoltage</p>
- 1 BatteryVoltage() ≥ 1.05 * ChargingVoltage

Table 6. Bit Description for FLAGS1 and FLAGS2

	(MSB) 7	6	5	4	3	2	1	0 (LSB)
FLAGS2	DMODE	PSTAT	CHM	cc		OV	LTF	oc
FLAGS1	ΔΤ/Δt1	ΔΤ/Δt0	VQ	WRINH	VDQ	SEDV	EDV1	EDVF

^{- =} Reserved

16/30 Sept. 1996

Bit 1, the Low *Temperature Fault* flag (LTF), is set when temperature<0°C and cleared when temperature>5°C.

The LTF values are:

	FLAGS2 Bits											
7_	7 8 5 4 3 2 1 0											
		•				LTF						

Where LTF is:

- 0 Temperature>5°C
- 1 Temperature<0°C

Bit 0, the Overcurrent flag (OC), is set when the average current is 25% greater than the programmed charging current. If the charging current is programmed less than 1024mA, overcurrent is set if the average current is 256mA greater than the programmed charging current. This flag is cleared when the average current falls below 256mA.

The OC values are:

	FLAGS2 Bits									
7	6	5	4	3	2	1	0			
-						-	OC			

Where OC is:

- O Average current is less than 1.25 ° charging current or less than 256mA if charging current is programmed less than 1024mA
- 1 Average current **exceeds** 1.25 charging *cur*rent or **256mA** if the charging current ie
 programmed leas **than 1024mA**. This bit is
 cleared if average **current<256mA**

FLAGS1

Bit 7 and bit 6, the **Delta Tempenture** flags, signify whether the **bq2040 is** sensing a valid $\Delta T/\Delta t$ for charge termination. Both bits **must transition** to a 1 to signify that the rise in battery temperature **exceeds** the **programmed** rate threshold. The bits are clear if the rate of temperature falls below the programmed $\Delta T/\Delta t$ rate.

The $\Delta T/\Delta t_0$, $\Delta T/\Delta t_1$ values are:

	FLAGS1 Bit8									
7	6	5	4	3	2	_1	0			
ΔΤ/Δt ₁	ΔΤ/Δto		•	-	-		-			

Where $\Delta T/\Delta t_0$, $\Delta T/\Delta t_1$ is:

- **0** Temperature < Programmed Δ**T/Δt** rate
- 1 Temperature > Programmed ΔT/Δt rate

The Valid Charge flag (VQ), Bit 5, is set when Vsro≥VsrQ and 10mAh of charge has accumulated. This bit is cleared during a discharge and when Vsro≤VsrQ.

The VO values are:

	FLAGSI Bit8							
7	6	5	4	3	2	1	0	
	-	VQ	-]

Where VQ is:

- 0 VsRo ≤ VsRQ
- 1 VSRO ≥ VSRQ and 10mAh of charge has accumulated

The Write Inhibit flag (WRINH), Bit 4, allows or inhibits writes to all registers.

The WRINH values are:

	FLAGS1 Bit8								
7	6	5	4	3	2	1	0		
			WRINH		•				

Where WRINH is:

- 0 Allows writes to all registers
- Inhibits all writes and secures the bq2040 from invalid/undesired writes.

WRINH **should** be set at the time of pack assembly and **tested** to prevent normally read-write registers from **acci**dental over-writing.

The Valid Discharge flag (VDQ), Bit 3, is set when a valid discharge is occurring (discharge cycle valid for learning new full charge capacity) and cleared if a partial charge is detected, EDV1 is asserted when T<0°C, or self-discharge accounts for more than 256mAh of the diecharge.

The VDQ values are:

	FLAGSI Bits									
7	6	5	4	3	2	1	0			
				VDQ						

Where VDQ is:

- Self-discharge is greater than 256mAh, EDVI = 1 when T<0°C or VQ = 1</p>
- 1 On first discharge after **RM=FCC**

The Stop *EDV* flag **(SEDV)**, Bit 2, is set when the discharge **current>6.15A** and cleared when the discharge current **falls** below **6.15A**.

Sept. 1996 17/30

The SEDV values are:

	FLAGS1 Bits								
7	6	5	4	3	2	1	0		
				-	SEDV	-			

Where SEDV is:

- 0 Current<6.15A</p>
- 1 Current>6.15A

The First *End-of-DischargeVoltage* flag (EDV1), Bit 1, is set when Voltage()<EDV1=1 if SEDV=0 and cleared when VQ=1 and Voltage()>EDV1.

The EDVI values are:

	FLAGS1 Bits								
7	6	5	4	3	2	1	0		
					-	EDVl	•		

Where EDVl is:

- 0 VQ = 1 and Voltage ()> EDV1
- 1 Voltage() < EDVI and SEDV = 0</p>

The *Final* End-of-Discharge *Voltage* flag (EDVF), Bit **0**, is set when **Voltage()<EDVF=1** if **SEDV=0** and cleared when **VQ=1** and **Voltage()>EDVF**.

The EDVF values are:

	FLAGS1 Bits								
7	6	5	4	3	2	1	0		
							EDVF		

Where EDVF is:

- 0 VQ = 1 and Voltage > EDVF
- 1 Voltage \leq EDVF and SEDV = 0

Software Reset

The bq2040 can be reset over the serial port by confirming that the WRINH bit is set to zero in FLAGS1, writing MaxError() (0x0c) to any value other than 2, and writing the reset register (0x44) to 8009, causing the bq2040 to reinitialize and read the default values from the external EPROM.

Programming the bq2040

The bq2040 requires the proper programming of an external EPROM for proper device operation. Each module can be calibrated for the greatest accuracy, or general "default" values can be used. A programming kit (interface board, software, and cable) for an IBM-compatible PC is available from Benchmarq. Please contact Benchmarq for further detail

The **bq2040** uses a **24C01** or equivalent serial **E**²**PROM** for **storing** the **various** initial values, calibration data, and **string** information. Table 1 outlines the parameters and **addresses** for **this** information. **Tables** 9 and 10 detail the **various** register **contents** and show an example program value for an **1800mAh** NiMH battery pack, using a $50m\Omega$ sense **resistor**.

Table 7. Error Codes (BatteryStatus() (0x16))

Error	Code	Access	Description	
OK	0x0000	read/write	bq2040 processed the function code without detecting any errors	Γ
Busy	0x0001	read/write	bq2040 is unable to process the function code at this time	Ī
NotReady	0x0002	read/write bq2040 cannot read or write the data at this time —try again later		
UnsupportedCommand	0x0003	read/write	bq2040 does not support the requested function code	
AccessDenied	0x0004	write	bq2040 detected an attempt to write to a read-only function code	
Overflow/Underflow	0x0005	read/write	bq2040 detected a data overflow or underflow	
BadSize	0x0006	write	bq2040 detected an attempt to write to a function code with an incorrect size data block	1
UnknownError	0x0007	read/write	bq2040 detected an unidentifiable error	

Note: Reading the bq2040 after **an** e m r clears the *error* code.

Table 8. Status Bits

	Alarm Bit8	
Bit Name	Set When:	Reset When:
OVER-CHARGE- ———	ho? MO detects over-temperature. AlfAt, or minimum charge current conditions exist (Note: valid charge termination).	A discharge occurs or when $\Delta T/\Delta t$, over-temperature, or minimum current ceases during charge.
TERMINATE_CHARGE_ALARM	bq2040 detects over-current over- voltage, over-temperature, or AT/At conditions exist during charge. Charging current is set to zero, indicating a charge suspend.	A discharge occurs or when all conditions causing the event cease.
OVER_TEMP_ALARM	bq2040 detects that its internal temperature is greater than the programmed value (valid termination).	Internal temperature falls below 50°C.
TERMINATE_DISCHARGE_ALARM	bq2040 determines that it has supplied all the charge that it can without being damaged (EDVF).	Battery reaches a state of charge sufficient for it to once again safely supply power.
REMAINING_CAPACITY_ALARM	bq2040 detects that the RemainingCapacity() is less than that set by the RemainingCapacity() function.	Either the value set by the RemainingCapacityAlarm() function is lower than the Remaining Capacity() or the RemainingCapacity() is increased by charging.
REMAINING-TIME-ALARM	bq2040 detects that the estimated remaining time at the present dischargerate is less than that set by the Remaining Time Alarm () function.	Either the value set by the RemainingTimeAlarm() function lower than the AverageTimeToEmpty() or the AverageTimeToEmpty() increased by charging.
	Status Bits	
Bit Name	Set When:	Reset When:
INITIALIZED	bq2040 is aet when the bq2040 has reached a full or empty state.	Battery detects that power-on or user-initiated reset has occurred.
DISCHARGING	bq2040 determines that it is not being charged.	Battery detects that it is being charged.
FULLY_CHARGED	bq2040 determines a valid charge termination. RM will then be set to full charge percentage if necessary.	RM discharges below the full charge percentage
FULLY_DISCHARGED	bq2040 determines that it has supplied all the charge that it can without being damaged (that is, continued uae will result in permanent capacity lose to the battery)	RelativeStateOfCharge() is greater than or equal to 10%

20/30 Sept. 1996

Table 9. Example Register Contents (Preliminary)

		ROM Iress		ROM ontent8		
Description	Low Byte	High Byte	Low Byte	High Byte	Example Values	Notes
Design Capacity			08	07	1800mAh	This sets the initial full charge battery capacity stored in FCC. FCC is updated with the actual full to empty discharge capacity after a valid discharge from RM = FCC to Voltage() = EDV1.
Initial Battery Voltage			30	2a	10800mV	This register is used to adjust the battery voltage. Comparing the values read from the bq2040 to two known input voltages allows the bq2040 to calibrate the battery voltage to vithin 1%. This action adjusts for errors in the resistor-dividers used for the SB input and bq2040 offset errors.
Fast charging current			08	07	1800mA	This register is wed to set the fast charge current for the smart Charger.
Fast charging voltage			c4	3b	15300mV	This register is wed to set the fast charge voltage for the Smart Charger.
Remaining Capacity Alarm			b4	00	180mAh	This value represents the low capacity alarm value.
FLAGS1			10			This enables writes to all registers and should be set to 10h prior to pack chipment to inhibit undesirable writes to the bq2040 .
FLAGS2			ьо		Li-Ion = a0h NiMH = 80h	See FLAGS2 register for the bit description and the proper value for programming FLAGS2. Selects relative display mode, Lithim Ion compensation factors, and enables bq2040 Smart Charger control.
Current Measurement Gain ¹			ee	02	37.5/.06	The current gain measurement and current integration gain are related and defined for the bq2040 current measurement. 0x0c = 37.5/sense resistor value in ohms.
EDV1			16	ďb	9450mV (1.05V/cell)	The value programmed is the two's complement of the threshold voltage in mV .
EDVF			d8	dc	9000mV (1.0V/cell)	The value programmed is the two's complement of the threshold voltage in mV .

Note:

1. Can be **adjusted** to calibrate the battery pack.

Table 9. Example Register Contents (Continued)

	E ² Pf Add	ROM ress	E ² Pi Hex Co	. •		
Description	Low Byte	High Byte	Low Byte	High Byte	Example Values	Notes
Temperature Offset			32		5.0°C	The default value is 0x80 (12.8° + nominal value). Actual temp (20°C) = Nominal temp. (15°C) · temp. offset (5°C) where temperature determined by the bq2040 can be adjusted from 0° to 25.5° (Temperature offset (0-255) • .1) + nominal value temp.
Maximum Charge Temperature, ΔΤ/Δt			87		61.2°C (74 - (8 • 1.6)) ΔΤ/Δt = 7	Maximum charge temperature is 74 - (mt • 1.6)°C (upper nibble). ΔΤ/Δt rate is in the lower nibble and varies from 0 to 15, where 0 is more sensitive than 15. Typical value is 7.
Self- Discharge Rate			fO		.15C	This packed field is the 2s complement of ((RM/4)/(RM/x)) where RM/x is the desired self-dischargerate per day at room temperature.
Digital Filter			fa		.18mV	Tris field is used to set the digital magnitude filter as described in Table 2.
Current Integration Gain ¹			40	00	3.2/.05	This field represents the following: 3.2/sense resistor in ohms. It is used by the bq2040 to scale the measured voltage values on the SR p i .in mA and mAh. This register also compensates for variations in the reported sense resistor value.
Full Charge Percentage			a0		96%=60 23(60)=a0	This packed field is the 2s complement of the desired value in RM when the bq2040 determines a full charge termination. If RM is below this value, RM is set to this value. If RM is above this value, then RM is not adjusted.
Charge Compensation			bd		85% = maintenance comp. 95% = fast charge comp.	This packed value is used to set the fast charge and maintenance charge efficiency for nickel-based batteries. The upper nibble adjusts the maintenance charge compensation; the lower nibble adjusts the fast charge compensation. Maintenance, upper nibble = (eff% • 256 · 128)/8 Fast charge, lower nibble = (eff% • 256 · 192)/4
Battery Voltage Offset ¹			00		0mV	This value is used to adjust the battery voltage offset according to the following: Voltage offset (mV) = VsB • 1000 + Voff) • no. of cells
Voltage Gain ¹			09	05	9.02	Voltage gain is packed as two units. For example, R5/R2 = 9.09 would be stored as: whole number stored in 0x1a (= 09h) and the decimal component stored in Oxlb as 256 • 0.02 = 05.
Serial Number			12	27	10002	Tris contains the optional pack serial number.

Note:

1. Can be adjusted to calibrate the battery pack.

22/30 Sept. 1996

Table 9. Example Register Contents (Continued)

		ROM ress		ROM ontents		
Description	Low Byte	High Byte	Low Byte	High Byte	Example Values	Notes
Charge Cycle Count			00	00	0	This field contains the charge cycle count and should be set to zero for a new battery.
Reserved						
Maintenance Charge Current			64	00	100mA	This field contains the desired maintenance current after fast charge termination by the bq2040.
Reserved						
Design Voltage			30	2a	10800mV	This is nominal battery pack voltage.
Specification Information			00	00		This is the default value for this register.
Manufacturer Date			al	20	May 1,1996 = 8353	Packed per the ManufactureDate() description, which represents May 1.1996 in this example.

Table 10. Example Register Contents (String Data)

String Description	Address	0x ?0	0x ?1	0x ?2	0x ?3	0x ?4	0x ?5	0x ?6	0x ?7	0x ?8	0x ?9-?f
Reserved		00	00	00	00	00	00	00	00	00	00
Manufacturer's Name		09	42 B	45 E	4e N	43 C	48 H	4d M	41 A	52 R	51 Q
Device Name		08	42 B	51 Q	32 2	30 0	39 9	31 1	41 A	34 4	00-
Chemistry		04	4e N	69 I	4d M	48 H	00	00	00	00	00- 00
Manufacturer's Data		04	44 D	52 R	31 1	35 5	00	00	00	00	QQ- 00

Sept. 1996 23/30

Table 11. bq2040 Master Functions

Function	Code	Access	Data
ChargingCurrent (to Smart Battery Charger)	0x14	write	mA
Charging Voltage (to Smart Battery Charger)	0x15	write	mV
AlarmWarning (to SMBus Host)	0x16	write	word
AlarmWarning (to Smart Battery Charger)	0x16	write	word

Table 12. Smart Battery Slave Functions (Preliminary)

Function	Code	Access	Units	Defaults
ManufacturerAccess	0x00	read/write	word	
RemainingCapacityAlarm	0 1	read/write	mAh	0.1* DC
RemainingTimeAlarm	0x02	read/write	minutes	000Ah
BatteryMode	0 3	read/write	bit flags	0000h
AtRate	0x04	read/write	mA	0000h
AtRateTimeToFull	0x05	read	minutes	FFFFh
AtRateTimeToEmpty	0x06	read	minutes	FFFFh
AtRateOK	0 7	read	Boolean	0000h
Temperature	0x08	read	0.1 °K	
Voltage	0x09	read	mV	
Current	0x0a	read	mA	0000h
AverageCurrent	0x0b	read	mA	0000h
MaxError	0ж0с	read	percent	2%
RelativeStateOfCharge	0 x 0d	read	percent	0000h
AbsoluteStateOfCharge	0x0e	read	percent	0000h
RemainingCapacity	0x0f	read	mA.	0000h
FullChargeCapacity	0x10	read	mAh	E ²
RunTimeToEmpty	0x11	read	minutes	
AverageTimeToEmpty	0x12	read	minutes	
AverageTimeToFull	0x13	read	minutes	
ChargingCurrent	Ox14	read	mA	E ²
ChargingVoltage	Ox15	read	mV	$\mathbf{E^2}$
BatteryStatus	Ox16	read	bit flags	0050h
CycleCount	0x17	read	count	0000h
DesignCapacity	0x18	read	mAh	E ²
DesignVoltage	0x19	read	mV	E ²
Specification Info	0x1a	read	unsigned int	E ²
ManufactureDate	Oxlb	read	unsigned int	E ²
SerialNumber	Oxlc	read	number	E ²
Reserved	0x1d - 0x1f			
ManufacturerName	0x20	read	string	E ²
DeviceName	0x21	read	string	
DeviceChemistry	0x22	read	string	E ²
ManufacturerData	0x23	read	string	 E ²

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	V	Current limited by R1 (see Figure 1)
$V_{ m SR}$	Relative to Vss	-0.3	+7.0	v	Minimum 100Ω series resistor should be used to protect SR in case of a shorted battery (see the bq2040 application note for details).
	Operating	0	+70	°C	Commercial
Tom	temperature	-40	+85	°C	,Industrial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational **limits** for extended **periods** of time may affect device reliability.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes	
EvsB	Battery voltage error relative to SB	-30mV		30mV	٧	See note	

Note:

The accuracy of the voltage measurement may be improved by adjusting the battery voltage offset, stored in external \mathbf{E}^2 PROM. For proper operation, \mathbf{V}_{CC} should be 1.5 \mathbf{V} greater than \mathbf{V}_{SB} .

26/30 Sept. 1996

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Note8
Vcc	Supply voltage	3.0	4.25	6.5	V	Vcc excursion from < 2.0V to ≥ 3.0V initializes the unit.
Vref	Reference at 25°C	5.7	6.0	6.3	V	I _{REF} = 5μA
V REF	Reference at -40°C to +85°C	4.5		7.5	V	I _{REF} = 5μA
RREF	Reference input impedance	2.0	5.0		MΩ	Vref = 3V
			90	135	μA	V _{CC} = 3.0V
Icc	Normal operation		120	180	μA	$V_{CC} = 4.25V$
			170	250	μA	V _{CC} = 6.5V
V _{SB}	Batteryinput	0		Vcc	V	
RsBmax	SB input impedance	10			MΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage			5	μA	V _{DISP} = V _{SS}
ILVOUT	Vom output leakage	-0.2		0.2	μA	E ² PROM off
V _{SR}	Sense resistor input	-0.3		2.0	v	V _{SR} < V _{SS} = discharge; V _{SR} > V _{SS} = charge
RsR	SR input impedance	10			MΩ	-200mV < V _{SR} < V _{CC}
V _{IH}	Logicinput high	1.4		5.5	V	SCL, SDA, SMBC, SMBD
v_{iL}	Logic input low	-0.5		0.6V	V	SCL, SDA, SMBC, SMBD
$\mathbf{v}_{\mathbf{oL}}$	Data, clock output low			0.4	V	Iol=350µA, SDA, SMBD
IoL	Sink current	100		350	μА	Vol≤0.4V, SDA, SMBD
Volsl	SEG _X output low, low Vcc		0.1		v	Vcc = 3V, IoLs ≤ 1.75mA SEG ₁ -SEG ₆
Volsh	SEG _X output low, high Vcc		0.4		v	$\begin{aligned} V_{CC} = 6.5V, I_{OLS} \leq 11.0 \text{mA} \\ SEG_1 - SEG_6 \end{aligned}$
VOHVL	Vour output, low Vcc	V cc • 0.3	•		V	Vcc = 3V, Ivout = -5.25mA
V _{ОНУН}	Vour output, high Vcc	Vcc • 0.6	•		V	Vcc = 6.5V, Ivout = -33.0mA
Ivout	Vom source current	-33			mA	At $V_{OHVH} = V_{CC} \cdot 0.6V$
IoLs	SEG _X sink current			11.0	mA	At V _{OLSH} = 0.4V

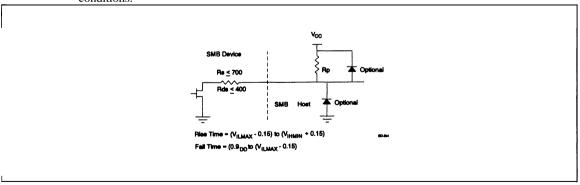
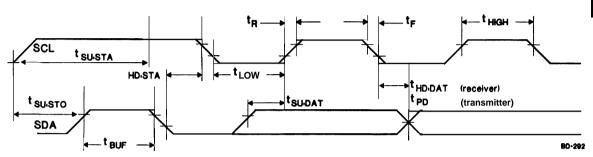
Note: All voltages relative to **Vss**.

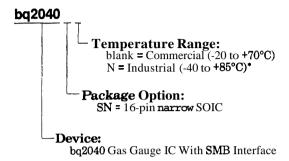
AC Specifications

Symbol	Parameter	Min	Max	Units	Notes
Fsmb	SMBus operating frequency	10	100	KHz	
T _{BUF}	Bus free time between stop and start condition	4.7		μв	
Thd:sta	Hold time after (repeated) start condition	4.0		μв	
Tsu:sta	Repeated start condition setup time	4.7		μв	
Tsu:sto	Stop condition setup time	4.0		μв	
THD:DAT	Data hold time	0		ns	
Tsu:dat	Data setup time	250		ns	
Ттімеост	Message timeout	25	35	ms	See note 1.
T_{PD}	Data output delay time	300	3500	ns	External memory only. See note 5.
TLOW	Clock low period	4.7		μв	
Тнісн	Clock high period	4.0	50	μв	See note 2.
TLOW: SEXT	Cumulative clock low extend time (slave device)		25	ms	See note 3.
TLOW:MEXT	Cumulative clock low extend time (master device)		10	ms	See note 4.
T_{F}	Clock/Data fall time		300	ns	
$T_{ m R}$	Clock/data rise time		1000	ns	

Notes:

- 1. A device times out when any clock low exceeds this value.
- 2. THIGH Max provides a simple guaranteed method for devices to detect bus idle conditions.
- Thow:sext is the cumulative time a slave device is allowed to extend the clock cycles in one message
 from the initial start to the stop. If a slave device exceeds this time, it is expected to release both its
 clock and data lines and reset itself.
- **4. Thow.mext** is the cumulative time a master device is allowed to **extend** its clock cycles within each byte of a **message** as defined from start-to-ack, **ack-to-ack**, or ack-to-stop.
- 5. The **external** memory must provide **this** internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.


Figure 6. AC Test Conditions

28/30

Bus Timing Data

Ordering Information

• Contact factory for availability.

30/30 _____ Sept. 1996

Lithium Ion Power GaugeTM IC

Features

- Conservative and repeatable measurement of available capacity in Lithium Ion rechargeable batteries
- Designed for battery pack integration
 - 120µA typical operating current
 - Small size enables implementations in as little as ½ square inch of PCB

Integrate within a system or as a stand-alone device

- Display capacity via singlewire serial communication port or direct drive of LEDs
- Measurements compensated for current and temperature
- Self-dischargecompensation using internal temperature sensor
- 16-pin narrow SOIC

General Description

The bq2050 Lithium Ion Power Gauge™ IC is intended for batterypack or in-system installation to maintain an accurate record of available battery capacity. The IC monitors a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery. Compensations for battery temperature and rate of charge or discharge are applied to the charge, discharge, and self-discharge calculations to provide available capacity information across a wide range of operating conditions. Battery capacity is automatically recalibrated, or 'learned," in the course of a discharge cycle from full to empty.

Nominal available capacity may be directly indicated using a **five-seg**ment **LED** display. These segments

are used to graphically indicate available capacity. The **bq2050** supports a simple single-line bidirectional serial link to an external processor (common ground). The **bq2050** outputs battery information in response to external commands over the serial link.

The **bq2050** may operate directly from one cell (VBAT > 30). With the **REF** output and an external transistor, a simple, inexpensive regulator can be built for **systems** with more than one series cell.

Internal registers include available capacity, temperature, scaled available energy, battery ID, battery status, and programming pin settings. To support subassembly teating, the outputs may also be controlled. The external processor may also overwrite some of the bq2050 power gauge data registers.

Pin Connections

16 1 Vcc SEG./PROG. d2 15 REF SEG/PROG. 3 14 | N/C SEG/PROG. 4 13 🗆 DQ SEG_/PROG_ 5 12 | RBI SEG/PROG. 11 D SB PROG 7 10 DISP V_{SS} ☐ 8 9 D SR 16-Pin Narrow SOIC PN.93

Pin Names

LCOM	LED common output	REF	Voltage reference output
SEG ₁ /PROG ₁	LED segment 1/ program 1 input	N/C	No connect
SEG ₂ /PROG ₂	LED segment 2/ program 2 input	DQ	Serial communications input/output
4=4 mp.00		RBI	Register backup input
SEG ₃ /PROG ₃	LED segment 3/ program 3 input	SB	Battery sense input
SEG4/PROG4	LED segment 4/ program 4 input	DISP	Display control input
ara mnoa	1 & 1	SR	Sense resistor input
SEG5/PROG5	LED segment 5/ program 5 input	Vcc	3.0-6.5V
PROG ₆	Program 6 input	V_{SS}	System ground

Sept. 1996 1/20

Pin De	scriptions	SR	Sense resistor input
LCOM	LED common output		The voltage drop (V_{SR}) across the sense resistor R_S is monitored and integrated over time
	Open-drain output switches Vcc to source current for the LEDs . The switch is off during initialization to allow reading of the soft pull-up or pull-down program resistors . LCOM is also high impedance when the display is off .		to interpret charge and discharge activity. The SR input is tied between the negative terminal of the battery and the sense resistor. Vsr < Vsr indicates discharge, and Vsr > Vsr indicates charge. The effective voltage drop, Vsro, as seen by the bq2050 is Vsr + Vos.
SEG ₁ - SEG ₅	LED display segment outputs (dual function with PROG1-PROG8)	DISP	Display control input
	Each output may activate an LED to sink the current sourced from LCOM .		DISP high disables the LED display. DISP tied to Vcc allows PROGx to connect directly to Vcc or Vss instead of through a pull-up or
PROG ₁ - PROG ₂	Programmed full count selection inputs (dual function with SEG1-SEG2)		pull-down resistor. DISP floating allows the LED display to be active during charge. DISP low activates the display. See Table 1.
	These three-level input pins define the programmed full count (PFC) thresholds	SB	Secondary battery input
PROG ₃ - PROG ₄	Power gauge rate selection inputs (dual function with SEG3-SEG4)		This input monitors the battery cell voltage potential through a high-impedance resistive divider network for end-of-discharge voltage (EDV) thresholds, and battery removed.
	These three-level input pins define the scale factor described in Table 2.	RBI	Register backup input
PROG ₅	Self-discharge rate selection (dual function with SEG ₅)		This pin is used to provide backup potential to the bq2050 registers during periods when Vcc ≤ 3V. A storage capacitor or a battery can be
	This three-level input pin defines the selfdis -charge and battery compensation factors as		connected to RBI.
	shown in Table 1.	DQ	Serial VO pin
PROG ₆	Capacity initialization selection		This is an open-drain bidirectional pin.
	This three-level pin defines the battery state	REF	Voltage reference output for regulator
N/C	of charge at reset as shown in Table 1. No connect		REF provides a voltage reference output for an optional micro-regulator.
		$\mathbf{v}_{\mathbf{c}\mathbf{c}}$	Supply voltage input
		$\mathbf{v_{ss}}$	Ground

Functional Description General Operation

The **bq2050** determines battery capacity by monitoring the amount of current input to or removed from a rechargeable battery. The **bq2050** measures discharge and charge currents, measures battery voltage, estimates **self-discharge**, monitors the battery for low battery voltage thresholds, and compensates for temperature and **charge/discharge rates**. The current measurement in made by monitoring the voltage **across** a mall-value series **sense** resistor between the negative battery terminal and ground. The estimate of scaled available energy is made using the remaining average battery voltage during the **discharge** cycle and the remaining nominal available charge. The scaled

available energy measurement is corrected for the environmental and operating **conditions**.

Figure 1 shows a typical battery pack application of the bq2050 using the LED display capability as a charge-state indicator. The bq2050 in configured to display capacity in relative display mode. The relative display mode uses the last measured discharge capacity of the battery as the battery full' reference. A push-button dieplay feature in available for momentarily enabling the LED display.

The **bq2050** monitors the charge and discharge currents as a voltage across a sense resistor (see Rs in Figure 1). A filter between the negative battery terminal and the SR pin may be required if the rate of change of the battery current is too great.

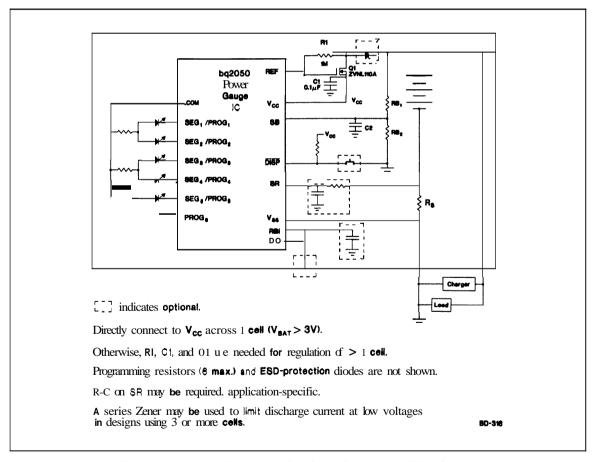


Figure 1. Battery Pack Application Diagram—LED Display

Sept. 1996 3/20

Voltage Thresholds

In conjunction with monitoring Vsn for charge/discharge currents, the bq2050 monitors the battery potential through the SB pin. The voltage is determined through a resistor-divider network per the following equation:

$$\frac{RB1}{RB2} = 2N - 1$$

where N is the number of cells, **RB1** is connected to the positive battery terminal, and RE2 is connected to the negative battery terminal. The single-cell battery voltage **is** monitored for the end-of-discharge voltage (EDV). EDV threshold levels are used to determine when the battery has reached an 'empty' state.

Two EDV thresholds for the **bq2050** are programmable with the default values **fixed** at:

EDV1 (early warning) = 1.52V

EDVF (empty) = 1.47V

If **VsB** is below either of the two EDV thresholds, the associated flag is latched and remains latched, independent of **VsB**, until the next valid charge. The **VsB** value is **also** available over the serial port.

During discharge and charge, the **bq2050** monitors VsR for various thresholds used to compensate the charge and discharge rates. Refer to the count compensation **sec**tion for details. EDV monitoring is disabled if the discharge rate **is** greater than 2C (typical) and resumes **1/2** second after the rate **falls** below 2C.

RBI Input

The **RBI** input pin **is intended** to be **used** with a storage capacitor or external supply to **provide** backup potential to the **internal** bq2050 registers when **V**_{CC} **drops** below **3.0V**. **V**_{CC} **is output** on **RBI** when **V**_{CC} is **above 3.0V**. A diode is required to isolate the external supply.

Reset

The **bq2050** can be reset either by removing Vcc and grounding the RBI pin for 15 seconds or by writing 0x80 to register 0x39,

Temperature

The bq2050 internally determines the temperature in 10°C steps centered from approximately -35°C to +85°C. The temperature steps are used to adapt charge and discharge rate compensations, self-discharge counting, and available charge display translation. The temperature range is available over the serial port in 10°C increments as shown in the following table:

TMP (hex)	Temperature Range
0x	<-30°C
1x	-30°C to -20°C
2x	-20°C to -10°C
3 x	-10°C to 0°C
4x	0°C to 10°C
5 x	10°C to 20°C
6x	20°C to 30°C
7x	30°C to 40°C
8x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Вх	70°C to 80°C
Cx	> 80°C

Layout Considerations

The **bq2050** measures the voltage differential between the SR and **Vss** pins. **Vos** (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the strict rule of a single-point ground return. Sharing **high-current** ground with small signal ground causes undesirable noise on the small signal nodes. Additionally:

- The capacitors (C1 and C2) should be placed as close as possible to the **Vcc** and SB pins, respectively, and their paths to Vss should be as short **as** possible. A high-quality ceramic capacitor of **0.1μf** is recommended for **Vcc**.
- The sense resistor capacitor should be placed as close as possible to the SR pin.
- The sense resistor (Rs) should be as close as possible to the bq2050.

4/20 Sept. 1996

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the **bq2050**. The bq2050 accumulates a measure of charge and discharge currents, as well as an estimation of self-discharge. Charge and discharge currents are temperature and rate compensated, whereas self-discharge is only temperature compensated.

The main counter, Nominal Available Capacity (NAC), represents the available battery capacity at any given time. Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC register and increment the DCR (Discharge Count Register).

The Discharge Count **Register** (DCR) is used to update the **Last** Measured Discharge (LMD) **register** only if a complete battery discharge **from** full to empty occurs without any partial battery **charges**. Therefore, the bq2050 adapts its capacity determination based on the actual conditions of discharge.

The battery'e initial capacity is equal to the Programmed Full Count (PFC) ehown in Table 2. Until LMD is updated, NAC counts up to but not beyond this threehold during subsequent charges. This approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.

 Last Measured Discharge (LMD) or learned battery capacity:

LMD is the last measur
tt On i itializatio (application of Vcc or battery replacement), LMD = During subsequent
discharges, the LMD:
measured capacity in the Discharge Count Register
(DCR) representing a discharge from full to below
EDV1. A qualified discharge is necessary for a
capacity transfer from the DCR to the LMD register.
The LMD also serves as the 100% reference threshold
used by the relative display mode.

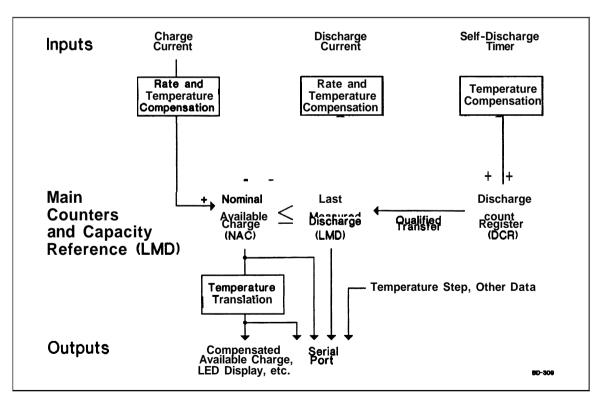


Figure 2. Operational Overview

Sept. 1996 5/20

2 Programmed Full Count (PFC) or initial battery capacity:

The initial LMD and gas gauge rate values are programmed by using **PROG1-PROG4**. The **bq2050** is **configured** for a given application by selecting a PFC value **from** Table 2. The correct PFC may be determined by multiplying the rated battery capacity in **mAh** by the **sense** resistor value:

Battery capacity (mAh) • sense resistor (Ω) =

PFC (mVh)

Selecting a **PFC** slightly leas than the rated capacity provides a conservative capacity reference until the bq2050 "learns" a new capacity reference.

Example: Selecting a PFC Value

Given:

Sense resistor = 0.05Ω

Number of cells = 2

Capacity = 1000mAh, Li-Ion battery, coke-anode

Current range = 50mA to 1A

Relative display mode

Serial port only

Self-discharge = NAC/512 per day @ 25°C

Voltage drop over **sense** resistor **= 2.5mV** to **50mV**

Nominal discharge voltage = 3.6V

Therefore:

 $1000 \text{mAh} \cdot 0.05 \Omega = 50 \text{mVh}$

Table 1. **bq2050** Programming

Pin Connection	PROG ₅ Compensation/ Self-Discharge	PROG ₆ NAC on Reset	DISP Display State
Н	Table 4/Disabled	PFC	LEDs disabled
Z	Table 4/ ^{NAC}/512	0	LEDs on when charging
L	Table 3/ NAC/512	0	LEDs on for 4 sec.

Note: PROG₅ and PROG₆ states are independent.

Table 2. bq2050 Programmed Full Count mVh Selections

PROG _x		Pro- grammed Full		PROG ₄ = L			PROG ₄ = Z		
1	2	Count (PFC)	PROG3 = H	PROG3 = Z	PROG3 - L	PROG3 = H	PROG3 - Z	PROG3 = L	Units
	-	-	SCALE = 1/80	SCALE = 1/160	SCALE = 1/320	SCALE = 1/640	SCALE = 1/1280	SCALE = 1/2560	mVh/ count
Н	Н	49152	614	307	154	76.8	38.4	19.2	mVh
Н	Z	45056	563	282	141	70.4	35.2	17.6	mVh
Н	L	40960	512	256	128	64.0	32.0	16.0	mVh
Z	Н	36864	461	230	115	57.6	28.8	14.4	mVh
Z	Z	33792	422	211	106	53.0	26.4	13.2	mVh
Z	L	30720	384	192	96.0	48.0	24.0	12.0	mVh
L	Н	27648	346	173	86.4	43.2	21.6	10.8	mVh
L	Z	25600	320	160	80.0	40.0	20.0	10.0	mVh
L	L	22528	282	141	70.4	35.2	17.6	8.8	mVh
		ivalent to 2 sec. (nom.)	90	45	22.5	11.25	5.6	2.8	mV

6/20 Sept. 1996

Select:

PFC = 30720 counts or 48mVh

PROG₁ = float

 $PROG_2 = low$

PROG₈ = high

PROG4 = float

PROG5 = float

PROG₆ = float

The initial full battery capacity is **48mVh** (960mAh) until the bq2050 'learns" a new capacity with a **qualified** discharge from full to EDVI.

Nominal Available Capacity (NAC):

NAC counts up during charge to a maximum value of LMD and down during discharge and self-discharge to 0. NAC is reset to 0 on initialization and on the first valid charge following discharge to EDV1. To prevent overstatement of charge during periods of overcharge, NAC stops incrementing when NAC = LMD.

4. **Discharge** Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to 0. Prior to NAC = 0 (empty battery), both discharge and self-discharge increment the DCR. After NAC = 0, only discharge increments the DCR. The DCR resets to 0 when NAC = LMD. The DCR does not roll over but stops counting when it reaches FFFFFh.

The DCR value becomes the new LMD value on the first charge after a valid discharge to V_{EDV1} if:

No valid charge initiations (charges greater than 256 NAC counts, where **Vsro > Vsro**) occurred during the period between NAC = LMD and EDV1 detected.

The self-discharge count is not more than 4096 counts (8% to 18% of PFC, specific percentage threshold determined by PFC).

The temperature is $\geq 0^{\circ}$ C when the EDV1 level is reached during discharge.

The valid diecharge flag (VDQ) **indicates** whether the present diecharge is valid for LMD update.

5. **Scaled** Available Energy **(SAE)**:

SAE is **useful** in determining the available energy within the battery, and may provide a more useful capacity reference in battery chemistries with sloped voltage **profiles** during diecharge. SAE may be converted to a **mWh** value using the following formula:

 $E(mWh) = (SAEH \cdot 256 + SAEL) \cdot$

2.4 * SCALE * (RBI + **RB2**)

where **R_{B1}**, **R_{B2}** and **R_S** are resistor values in ohms. SCALE is the selected scale from Table 2. **SAEH** and SAEL are digital values mad via DO.

6. Compensated Available Capacity (CAC)

CAC counts similar to NAC, but contains the available capacity compensated for discharge rate and temperature.

Charge Counting

Charge activity is **detected based** on a **positive** voltage on the VsR input. If charge activity is **detected, the bq2050 increments** NAC at a rate **proportional** to **VsR** and, if enabled, activates an LED display. Charge **actions** increment the NAC after **compensation** for temperature.

The **bq2050** determines charge activity sustained at a continuous rate equivalent to V_{SRQ} . A valid charge equates to sustained charge activity greater than **256** NAC counts. Once a valid charge is detected, charge counting continues until V_{SRQ} ($V_{SR} + V_{OS}$) falls below V_{SRQ} . V_{SRQ} is **210\muV**, and is described in the Digital Magnitude Filter section.

Discharge Counting

Discharge activity is **detected** based on a negative voltage on the V_{SR} input. **All discharge counts where V_{SRO} < V_{SRO}** cause the NAC register to decrement and the DCR to increment. V_{SRO} is **-200\mu V**, and is described in the Digital Magnitude **Filter section**.

Self-Discharge Estimation

The bq2050 continuously decrements NAC and increments DCR for self-discharge based on time and temperature. The self-discharge count rate is programmed to be a nominal \(\frac{1}{512} \)
• NAC per day or disabled. This is the rate for a battery whose temperature is between 20°-30°C. The NAC register cannot be decremented below 0.

Count Compensations

Discharge Compensation

Corrections for the rate of discharge, temperature, and anode type are made by adjusting an internal compensation factor. This factor is based on the measured rate of discharge of the battery. Tables 3A and 3B outline the matter factor typically used for graphite anode Li-Ion batteries, and Tables 4A and 4B outline the factors typically used for coke anode Li-Ion batteries. The compensation factor is applied to CAC and is based on discharge rate and temperature.

Table 3A. Graphite Anode

Approximate Discharge Rate	Discharge Compensation Factor	Efficiency
< 0.5C	1.00	100%
≥ 0.5C	1.05	95%

Table 3B.

Temperature	Temperature Compensation Factor	Efficiency
≥ 10°C	1.00	100%
0°C to 10°C	1.10	90%
-10°C to 0°C	1.35	74%
≤ -10°C	2.50	40%

Table 4A. Coke Anode

Approximate Discharge Rate	Discharge Compensation Factor	Efficiency		
<0.5C	1.00	100%		
≥ 0.5C	1.15	86%		

Table 4B.

Temperature	Temperature Compensation Factor	Efficiency
≥ 10°C	1.00	100%
0°C to 10°C	1.25	80%
-10°C to O°C	2.00	50%
≤-10°C	8.00	12%

Charge Compensation

The bq2050 applies the following temperature **compensation** to NAC during charge:

Temperature	Temperature Compensation Factor	Efficiency
< 10°C	0.95	95%
≥ 10°C	1.00	100%

This compensation applies to both types of Li-Ion cells.

Self-Discharge Compensation

The **self-discharge** compensation is programmed for a nominal rate of \$\mathbb{1}_{512}\cdot \text{NAC}\$ per day. **This** is the rate for a battery within the **20–30°C temperature range**. **This** rate **varies across** 8 **ranges** from **<10°C** to **>70°C**, changing with each higher temperature (approximately 10°C). **See** Table 5 below:

Table 5. Self-Discharge Compensation

	Typical Rate
Temperature Range	PROG5 = Z or L
< 10°C	NAC/ ₂₀₄₈
10-20°C	NAC/ ₁₀₂₄
20-30°C	NAC/512
30-40°C	NAC/256
40–50°C	NAC/ ₁₂₈
50-60°C	NAC/64
60-70°C	NAC/32
> 70°C	NAC/ ₁₆

Self-discharge may be disabled by connecting $PROG_5 = H$.

Digital Magnitude Filter

The bq2050 has a digital filter to eliminate charge and discharge counting below a set threshold. The bq2050 setting is $200\mu V$ for VsrD and $210\mu V$ for VsrQ.

Symbol	Parameter	Typical	Maximum	Units	Notes				
$\overline{v_{os}}$	Offset referred to VsR	± 50	± 180	μV	$\overline{\text{DISP}} = V_{CC}$.				
INL	Integrated non-linearity error	± 2	± 4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25V.				
INR	Integrated non- repeatability error	±1	± 2	%	Measurement repeatability given similar operating conditions.				

Table 6. bq2050 Current-Sensing Errors

Error Summary

Capacity Inaccurate

The LMD is susceptible to error on initialization or if no updates occur. **On** initialization, the LMD value includes the error between the programmed full capacity and the actual capacity. This error **is** present until a valid **discharge** occurs and LMD **is** updated (see the DCR **description** on page 7). The other cause of LMD error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

A Capacity Inaccurate counter (CPI) is maintained and incremented each time a valid charge occurs (qualified by NAC; see the CPI register description) and is reset whenever LMD is updated from the DCR. The counter does not wrap around but stops counting at 255. The capacity inaccurate flag (CI) is set if LMD has not been undated following 64 valid charges.

Current-Sensing Error

Table 5 illustrates the current-sensing error as a function of **Vsro**. A digital filter eliminates charge and **dis**charge **counts** to the NAC **register** when **Vsro** is between **Vsro** and **Vsro**.

Communicating With the bg2050

The **bq2050** includes a simple single-pin (DQ plus return) **serial** data interface. A host **processor uses** the interface to access various **bq2050** registers. Battery characteristics may be easily monitored by a ddii a single contact to the battery pack. The open-drain DQ pin on the **bq2050** should be pulled up by the **host** system, or may be left floating if the serial interface is not **used**.

The interface uses a command-based protocol, where the host **processor** sends a command byte to the **bq2050**. The command directs the **bq2050** to either store the next eight bits of data received to a register specified by the command byte or output the eight bits of data specified by the command byte.

Sept. 1986

The communication protocol is asynchronous return-toone. Command and data bytes consist of a stream of
eight bits that have a maximum transmission rate of 333
bits/sec. The leaat-significant bit of a command or data
byte is transmitted first. The protocol is simple enough
that it can be implemented by moet hoet processors using
either polled or interrupt processing. Data input from
the bq2050 may be sampled using the pulse-width capture timers available on some microcontrollers.

If a communication error occurs, e.g. tcyce > 6ms, the bq2050 should be sent a BREAK to reinitiate the aerial interface. A BREAK is detected when the DQ pin ia driven to a logic-low state for a time, ta or greater. The DQ pin should then be returned to its normal ready-high logic state for a time, tbr. The bq2050 is now ready to receive a command from the host processor.

The return-to-one data bit frame consists of three distinct sections. The first section is used to start the transmission by either the host or the bq2050 taking the DQ pin to a logic-low state for a period, tstrh.B. The next section is the actual data transmission, where the data should be valid by a period, tpsu, after the negative edge used to start communication. The data should be held for a period, tpv, to allow the host or bq2050 to sample the data bit.

The final section is used to stop the **transmission** by returning the DQ pin to a logic-high **state** by at least a period, tssu, after the negative edge used to start communication. The **final** logic-high state should be held until a period, tsy, to allow time to **ensure** that the bit **transmission** was stopped properly. The **timings** for data and break communication are given in **the** aerial communication timing specification and illustration **sections**.

Communication with the **bq2050** is always performed with the least-significant bit being transmitted first. Figure 3 shows an example of a communication sequence to read the **bq2050** NAC register.

9/20

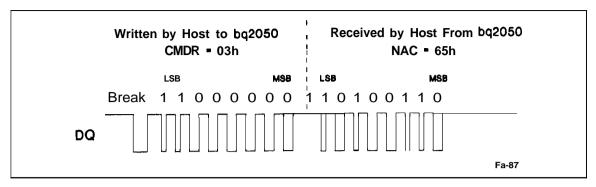


Figure 3. Typical Communication With the bg2050

bq2050 Registers

The **bq2050** command and status **registers** are listed in Table 7 and described below.

Command Register (CMDR)

The write-only CMDR register is accessed when eight valid command bits have been received by the bq2050. The CMDR register contains two fields:

- W/R bit
- Command address

The WR bit of the command register is used to select whether the received command is for a read or a write function.

The W/R values are:

CMDR Bits									
7	6	5	4	3	2	1	0		
W/R	-	-	-	-	-	-			

Where W/R is:

- The bq2050 outputs the requested register contents specified by the address portion of CMDR.
- The following eight bits should be written to the register specified by the address portion of CMDR

The lower seven-bit field of CMDR contains the address portion of the register to be **accessed**. **Attempts** to write to invalid **addresses** are ignored.

	CMDR Bib									
7 6 5 4 3 2 1 0										
-	AD6	AD5	AD4	AD3	AD2	AD1	AD0 (LSB)			

Primary Status Flags Register (FLGS1)

The read-only FLGS1 register (address=01h) contains the primary bq2050 flags.

The charge **status** flag (CHGS) is asserted when a valid charge rate is detected. Charge rate is deemed valid when **Vsro > Vsro**. A **Vsro** of less than **Vsro** or discharge **activity clears CHGS**.

The CHGS values are:

FLGSI Bib									
7	6	5	4	3	2	1	0		
CHGS	-	-	-		-	-	-		

Where CHGS is:

- Either discharge activity detected or Vsro
 VsrQ
- $1 V_{SRO} > V_{SRQ}$

The battery replaced flag (BRP) is asserted whenever the bq2050 is reset either by application of Vcc or by a serial port command. BRP is reset when either a valid charge action increments NAC to be equal to LMD, or a valid charge action is detected after the EDV1 flag is asserted. BRP = 1 signifies that the device has been reset.

The BRP values are:

FLGSI Bits									
7	6	5	4	3	2	1	0		
-	BRP	-	-	•	-	-	-		

10/20 Sept. 1996

Table 7. bq2050 Command and Status Registers

		Loc.	Read/	Contro	ol Field						
Symbol	Register Name	(hex)	Write	7(MSB)	6	5	4	3	2	1	O(LSB)
CMDR	Command register	00h	Write	W/R	AD6	AD5	AD4	AD3	AD2	AD1	AD0
FLGS1	Primary status flags register	01h	Read	CHGS	BRP	n/u	CI	VDQ	n/u	EDV1	EDVF
TMP	Temperature register	02h	Read	TMP3	TMP2	TMP1	TMP0	GG3	GG2	GG1	GG0
NACH	Nominal available capacity high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACH0
NACL	Nominal available capacity low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATID0
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
FLGS2	Secondary status flags register	06h	Read	n/u	DR2	DR1	DRO	n/u	n/u	n/u	OVLD
PPD	Program pin pull- down register	07h	Read	n/u	n/u	PPD6	PPD5	PPD4	PPD3	PPD2	PPD1
PPU	Program pin pull-up register	08h	Read	n/u	n/u	PPU6	PPU5	PPU4	PPU3	PPU2	PPU1
CPI	Capacity inaccurate count register	09h	Read	CPI7	CPI6	CPI5	CPI4	СРІЗ	CPI2	CPI1	CPI0
VSB	Battery voltage register	0Bh	Read	VSB7	VSB6	VSB5	VSB4	VSB3	VSB2	VSB1	VSB0
VTS	End-of-discharge threshold select register	0Ch	R/W	VTS7	VTS6	VTS5	VTS4	VTS3	VTS2	VTS1	VTS0
CACH	Compensated available capacity high byte register	0Dh	Read	CACH7	САСН6	CACH5	CACH4	САСНЗ	CACH2	CACH1	CACH0
CACL	Compensated available capacity low byte register	0Eh	Read	CACL7	CACL6	CACL5	CACL4	CACL3	CACL2	CACL1	CACLO
SAEH	Scaled available energy high byte register	0Fh	Read	SAEH7	SAEH6	SAEH5	SAEH4	SAEH3	SAEH2	SAEH1	SAEH0
SAEL	Scaled available energy low byte register	10h	Read	SAEL7	SAEL6	SAEL5	SAEL4	SAEL3	SAEL2	SAEL1	SAELO
RST	Reset register	39h	Write	RST	0	0	0	0	0	0	0

Note:

n/u = not used

Where BRP is:

- Battery is charged until NAC = LMD or discharged until the EDVI flag is asserted
- 1 **bq2050** is reset

The **capacity** inaccurate flag (CI) is used to warn the user that the battery has been charged a **substantial** number of times **since** LMD has been updated. The CI flag is asserted on the 64th charge after the last LMD update or when the bq2050 is reset. The flag is cleared after an LMD update.

The CI values are:

FLGSI Bits										
7	6	5	4	3	2	1	0			
-	-	-	CI	-	•	-	-			

Where CI is:

- When LMD is updated with a valid full discharge
- After the 64th valid charge action with no LMD updates or the bq2050 is reset

The *valid discharge* flag (VDQ) is asserted when the bq2050 is discharged from NAC=LMD. The flag remains set until either LMD is updated or one of three actions that can clear VDQ occurs;

- The self-discharge count register (SDCR) has exceeded the maximum acceptable value (4096 counts) for an LMD update.
- A valid charge action sustained at Vsro > Vsro for at least 256 NAC counts.
- The EDVI flag was set at a temperature below O°C

The **VDO** values are:

	FLGSI Bits											
7	6	5	4	3	2	1	0					
			-	VDQ		-						

Where VDQ is:

- 0 SDCR ≥ 4096, subsequent valid charge action detected, or EDVI is asserted with the temperature less than 0°C
- 1 On first discharge after NAC = LMD

The *first* end-of-discharge warning flag (EDVI) warns the user that the battery is almost empty. The first segment pin, SEG₁, is modulated at a 4Hz rate if the display is enabled once EDVI is asserted, which should

warn the **user** that loss of battery power is imminent. The EDVI flag **is** latched until a valid charge **has** been detected. The EDVI threshold is externally controlled via the VTS register (see Voltage **Threshold Register** on this **page**).

The EDVl values are:

	FLGS1 Bits										
7	7 6 5 4 3 2 1 0										
					•	EDVl	-				

Where EDV1 is:

- Valid charge action detected, $V_{SB} \ge V_{TS}$
- 1 V_{SB} < V_{TS} providing that the discharge rate is < 2C

The **final end-of-discharge warning** flag (EDVF) flag is **used** to warn that battery power is at a failure condition. All segment drivers are turned off. The EDVF flag is latched until a valid charge has been detected. The **EMPTY** pin **is** also forced to a high-impedance state on assertion of EDVF. The host system may pull EMPTY high, which may be used to **disable** circuitry to prevent deep-discharge of the battery. The EDVF threshold is set **50mV** below the EDVI threshold.

The EDVF values are:

FLGSI Bits											
7	6	5	4	3	2	1	0				
-	-	-			-	-	EDVF				

Where EDVF is:

- Valid charge action detected, $V_{SB} \ge (V_{TS} \cdot 50 \text{mV})$
- 1 VsB < (VTS · 50mV) providing the discharge rate is < 2C</p>

Temperature Register (TMP)

The read-only TMP register (address=02h) contains the battery temperature.

	TMP Temperature Bits											
7	7 6 5 4 3 2 1 0											
TMP4	ТМР3	TMP2	TMP1	•	-		-					

The bq2050 contains an internal temperature sensor. The temperature is used to set charge and discharge efficiency factors as well as to adjust the self-discharge coefficient. The temperature register contents may be translated as shown in Table 7.

12/20 Sept. 1996

Table 7. Temperature Register

TMP3	TMP2	TMP1	TMP0	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

The bq2050 calculates the gas gauge bits, GG3-GG0 as a function of CACH and LMD. The results of the calculation give available capacity in \(\frac{1}{16} \) increments from 0 to \(\frac{15}{16} \).

	TMPGG Gas Gauge Bits											
7	6	_										
-	-		-	GG3	GG2	GG1	GG0					

Nominal Available Charge Registers (NACH/NACL)

The read/write NACH high-byte register (address=03h) and the read-only NACL low-byte register (address=17h) are the main gas gauging register for the bq2050. The NAC registers are incremented during charge actions and decremented during discharge and self-discharge actions. The correction factors for charge/discharge efficiency are applied automatically to NAC. NACH and NACL are set to 0 during a bq2050 reset.

Writing to the NAC registers affects the available charge counts and, therefore, affects the bq2050 gas gauge operation. Do not write the NAC registers to a value greater than LMD.

Battery Identification Register (BATID)

The read/write BATID register (address=04h) is available for use by the system to determine the type of battery pack. The BATID contents are retained as long as VCc is greater than 2V. The contents of BATID have no effect on the operation of the bq2050. There is no default setting for this register.

Last Measured Discharge Register (LMD)

LMD is a read/write register (address=05h) that the bq2050 uses as a measured full reference. The bq2050 adjusts LMD based on the measured discharge capacity of the battery from full to empty. In this way the bq2050 updates the capacity of the battery. LMD is set to PFC during a bq2050 reset.

Secondary Status Flags Register (FLGS2)

The read-only **FLGS2** register (address=06h) contains the secondary bq2050 flags.

The discharge rate flags, DR2-0, are bits 6-4.

FLGS2 Bits											
7 6 5 4 3 2 1 0											
	DR2	DR1	DR0								

They are used to determine the current discharge regime as follows:

DR2	DR1	DRO	Discharge Rate
0	0	0	DRATE < 0.5C
0	0	1	0.5C ≤ DRATE < 2C

The overload flag (OVLD) is asserted when a discharge rate in excess of 2C is detected. OVLD remains asserted as long as the condition persists and is cleared 0.5 seconds after the rate drops below 2C. The overload condition is used to stop sampling of the battery terminal characteristics for end-of-discharge determination.

	FLGS2 Bits										
7	7 6 5 4 3 2 1 0										
							OVLD				

Program Pin Pull-Down Register (PPD)

The read-only PPD register (address=07h) contains some of the programming pin information for the bq2050. The segment drivers, SEG₁₋₆, have a corresponding PPD register location, PPD₁₋₈. A given location is set if a pull-down resistor has been detected on its corresponding segment driver. For example, if SEG₁ and SEG₄ have pull-down resistors, the contents of PPD are xx001001.

Program Pin Pull-Up Register (PPU)

The read-only PPU register (address=08h) contains the rest of the programming pin information for the bq2050. The segment drivers, SEG1-6, have a corresponding PPU register location, PPU1-6. A given location is set if a pull-up resistor has been detected on its corresponding segment

driver. For example, if SEGs and SEGs have pull-up resistors, the contents of PPU are xx100100.

	PPD/PPU Bits											
7	7 6 5 4 3 2 1 0											
	•	PPU ₆	PPU ₅	PPU4	PPU ₃	PPU ₂	PPU ₁					
	٠	PPD6	PPD5	PPD4	PPD3	PPD2	PPD ₁					

Capacity Inaccurate Count Register (CPI)

The read-only CPI register (address=09h) is used to indicate the number of times a battery has been charged without an LMD update. Because the capacity of a rechargeable battery varies with age and operating conditions, the bq2050 adapts to the changing capacity over time. A complete discharge from full (NAC=LMD) to empty (EDV1=1) is required to perform an LMD update assuming there have been no intervening valid charges, the temperature is greater than or equal to 0°C, and the self-dischargecounter is less than 4096 counts.

The CPI register is incremented every time a valid charge is detected. When NAC > 0.94 • LMD, however, the CPI register increments on the first valid charge; CPI does not increment again for a valid charge until NAC < 0.94 • LMC. This prevents continuous trickle charging from incrementing CPI if self-discharge decrements NAC. The CPI register increments to 255 without rolling over. When the contents of CPI are incremented to 64, the capacity inaccurate flag, CI, is asserted in the FLGS1 register. The CPI register is reset whenever an update of the LMD register is performed, and the CI flag is also cleared.

Battery Voltage Register (VSB)

The read-only battery voltage register is used to read the single-cell battery voltage on the SB pin. The VSB register (address = 0Bh) is updated approximately once per second with the present value of the battery voltage. VsB = 2.4V • (VSB/256).

VSB Register Bits							
7	6	5	4	3	2	1	0
VSB7	VSB6	VSB5	VSB4	VSB3	VSB2	VSB1	VSB0

Voltage Threshold Register (VTS)

14/20

The end-of-discharge threshold voltages (EDV1 and EDVF) can be set using the VTS register (address = 0Ch). The read/write VTS register sets the EDVI trip point. EDVF is set 50mV below EDV1. The default value in the VTS register is A2h, representing EDVI = 1.52V and EDVF = 1.47V. EDVI = 2.4V • (VTS/256).

VT\$ Register Bits							
7	6	5	4	3	2	1	0
VTS7	VTS6	VTS5	VTS4	VTS3	VTS2	VTS1	VTS0

Compensated Available Charge Registers (CACH/CACL)

The read-only CACH high-byte register (address = 0Dh) and the read-only CACL low-byte register (address = 0Eh) represent the available charge compensated for discharge rate and temperature. CACH and CACL use piece-wise corrections as outlined in Tables 3A, 3B, 4A, and 4B, and will vary as conditions change. The NAC and LMD registers are not affected by the discharge rate and temperature.

Scaled Available Energy Registers (SAEH/SAEL)

The read-only SAEH high-byte register (address = 0Fh) and the read only SAEL low-byte register (address = 10h) are used to scale battery voltage and CAC to a value which can be translated to watt-hours remaining under the present conditions. SAEL and SAEH may be converted to mWh using the formula on page 7.

Reset Register (RST)

The reset register (address = 39h) enables a software-controlled reset of the device. By writing the RST register contents from 00h to 80h, a bq2050 reset is performed. Setting any bit other than the most-significant bit of the RST register is not allowed and results in improper opentwn of the bq2050.

Resetting the **bq2050** sets the following:

- LMD = PFC
- CPI, YDQ, NACH, and NACL = 0
- CI and BRP = 1

Note: Self-discharge is disabled when PROG_{δ} = H.

Display

The **bq2050** can directly display capacity information using low-power **LEDs**. **If LEDs** are used, the program pins should be resistively tied to Vcc or Vss for a program high or program low, respectively.

The bq2050 displays the battery charge state in relative mode. In dative mode, the battery charge is represented as a percentage of the LMD. Each LED segment represents 20% of the LMD.

The capacity display is also adjusted for the present battery temperature. The temperature adjustment reflects

2

pacity at a given temperature but does **IAC** register. The temperature adjustiled in the CACH and CACL register

ed to Vcc, the SEG1-5 outputs are inactive. left floating, the display becomes active 2050 detects a charge in progress VsRo > led low, the segment outputs become actif four seconds, ± 0.5 seconds.

tputs are modulated as two banks, with nd 5 alternating with segments 2 and 4. **tputs** are modulated at approximately h segment bank active for 30% of the

SEG₁ blinks at a 4Hz rate whenever Vsb has been detected to be below V_{EDV1} (EDV1 = 1), indicating a low-battery condition. Vsb below V_{EDVF} (EDVF = 1) disables the display output.

Microregulator

The **bq2050** can operate directly from one **cell.** A micropower source for the **bq2050** can be **inexpensively** built using the FET and an external resistor to **accommodate** a greater number **cf** cells; **see Figure 1.**

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	٧	
All other pins	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	V	Current limited by R1
VsR	Relative to Vss	-0.3	+7.0	v	Minimum 100Ω aeries be used to protect SR in shorted battery (see th application note for det
Topr	Operating	0	+70	°C	Commercial
	temperature	-40	+85	°C	Industrial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functi should be **limited** to the **Recommended** DC Operating Conditions **detailed** in this data sheet. **ditions** beyond the operational limits for extended periods of time may affect device **reliabilit**.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	
VEDVF	Final empty warning	1.44	1.47	1.50	V	SB
V _{EDV1}	First empty warning	1.49	1.52	1.55	V	SB
Vsro	SR sense range	-300	-	+2000	mV	SR, V
Vsrq	Valid charge	210			μV	V _{SR} +
VSRD	Valid discharge			-200	μV	V _{SR} +
VMCV	Maximum single-cell voltage	2.20	2.25	2.30	v	SB

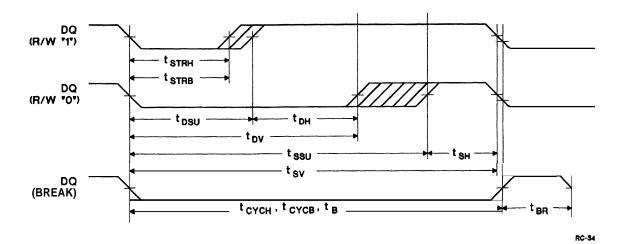
Note:

Vos is affected by PC board layout. Proper layout guidelines should be followed for **optim** See "LayoutConsiderations."

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5	v	Vcc excursion from < 2.0V to ≥ 3.0V initializes the unit.
Vref	Reference at 25°C	5.7	6.0	6.3	V	I _{REF} = 5µA
V REF	Reference at -40°C to +85°C	4.5	-	7.5	V	I _{REF} = 5µA
RREF	Reference input impedance	2.0	5.0	•	MΩ	V _{REF} = 3V
		•	90	135	μA	$V_{CC} = 3.0V, DQ = 0$
Icc	Normal operation	•	120	180	μА	$V_{CC} = 4.25V$, $DQ = 0$
			170	250	μА	$V_{CC} = 6.5V$, $DQ = 0$
VsB	Battery input	0	-	Vcc	v	
RsBmax	SB input impedance	10	-	•	MΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage	-	-	5	μA	$V_{DISP} = V_{SS}$
ILCOM	LCOM input leakage	-0.2	-	0.2	μА	$\overline{\text{DISP}} = V_{CC}$
I _{RBI}	RBI data retention current	•	-	100	nA	V _{RBI} > V _{CC} < 3V
R_{DQ}	Internal pulldown	500	-	•	ΚΩ	
$V_{ m SR}$	Sense resistor input	-0.3	-	2.0	v	V _{SR} < V _{SS} = discharge; V _{SR} > V _{SS} = charge
RsR	SR input impedance	10	-		ΜΩ	-200mV < V _{SR} < V _{CC}
VIH	Logic input high	Vcc - 0.2	-	•	v	PROG ₁ -PROG ₆
V_{IL}	Logic input low	-	-	$V_{SS} + 0.2$	V	PROG ₁ -PROG ₆
V _{IZ}	Logic input Z	float		float	v	PROG ₁ -PROG ₆
Volsl	SEGx output low, low VCC	-	0.1	•	v	$Vcc = 3V$, $IoLs \le 1.75mA$ SEG_1-SEG_5
Volsh	SEGx output low, high Vcc	-	0.4	•	v	$V_{CC} = 6.5V$, $I_{OLS} \le 11.0$ mA SEG ₁ -SEG ₅
Vohlel	LCOM output high, low Vcc	V _{CC} - 0.3	•	•	V	$V_{CC} = 3V$, $I_{OHLCOM} = -5.25$ mA
Vohlch	LCOM output high, high V _{CC}	V _{CC} - 0.6		-	v	$V_{CC} = 6.5V$, $I_{OHI,COM} = -33.0mA$
I _{IH}	PROG ₁₋₆ input high current	-	1.2	-	μA	$V_{PROG} = V_{CC}/2$
In	PROG ₁₋₆ input low current	-	1.2	•	μА	V _{PROG} = V _{CC} /2
Іоньсом	LCOM source current	-33	-	-	mA	At Vohlch = Vcc - 0.6V
Iols	SEG ₁₋₅ sink current	-	<u>-</u>	11.0	mA	At Volsh = 0.4V
IoL	Open-drain sink current	-	•	5.0	mA	At $V_{OL} = V_{SS} + 0.3V$ DQ
Vol	Open-drain output low		•	0.5	V	I _{OL} ≤ 5mA, DQ
V_{IHDQ}	DQ input high	2.5		-	V	DQ
VILDQ	DQ input low	•	•	0.8	V	DQ
RPROG	Soft pull-up or pull-down resistor value (for programming)			200	ΚΩ	PROG ₁ -PROG ₆
RFLOAT	Float state external impedance	-	5		MΩ	PROG ₁ -PROG ₆

Note: All voltages relative to Vss.


Sept. 1996 17/20

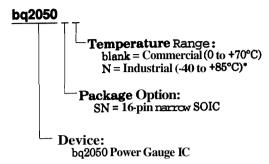
Serial Communication Timing Specification (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unlt	Notes
tcych	Cycle time, host to bq2050	3			ma	See note
tcycb	Cycle time, bq2050 to host	3		6	ms	
tstrh	Start hold, host to bq2050	5		-	ns	
tstrb	Start hold, bq2050 to host	500			μя	
tosu	Data setup			750	με	
t _{DH}	Data hold	750			μв	
t _D v	Data valid	1.50			ms	
tssu	Stop setup			2.25	ms	
tsh	Stop hold	700			με	
tsv	Stop valid	2.95			ms	
t _B	Break	3			ms	
tBR	Break recovery	1		-	ms	

Note: The open-drain DQ pin should be pulled to at least Vcc by the host system for proper DQ operation. DQ may be left floating if the serial interface is not used.

Serial Communication Timing Illustration

18/20 Sept. 1996


Data Sheet Revision History

Change No.	Page No.	Description		Nature of Change
1	4	Changed reset procedure	Was:	Reset by issuing command over serial port Reset by removing Voc and grounding RBI for 15 s.
1	11, 14	Deleted reset register		
2	16	Changed values	V _{RDVF} : V _{EDV1} :	Min. was 1.45; Max. was 1.49 Min. now is 1.44; Max. now is 1.50 Min. was 1.50; Min. now is 1.49
2	17	Changed values	Vcc:	Min. was 2.5; Min. now is 3.0
2	4, 11, 13, 14	Reinserted reset register		
2	9	Maximum offset	Vos:	Max. was 150 Max. now is 180

Note:

Change 1 = June 1995 changes from Dec. 1994. Change 2 = Sept. 1996 changes from June 1995.

Ordering Information

• Contact factory for availability.

20/20 Sept. 1996

Lithium Ion Power GaugeTM IC

Features

- Conservative and repeatable measurement of available capacity in Lithium Ion rechargeable batteries
- 16-pin narrow SOIC
- Designed for battery pack integration
 - 120µA typical operating current
 - Small size enables implementations in as little as ½ square inch of PCB
- Integrate within a system or as a stand-alone device
 - Display capacity via singlewire serial communication port or direct drive of LEDs
- Measurements compensated for current and temperature
- > Self-discharge ompensation using internal temperature sensor
- High-speed (5Kbit/sec.) DQ bus interface

General Description

The bq2050H Lithium Ion Power Gauge '' IC is intended for batterypack or in-system installation to maintain an accurate record of available battery capacity. The IC monitors a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery. **Compensations** for battery temperature and rate of charge or discharge are applied to the charge, discharge, and self-discharge calculatione to provide available capacity information across a wide range of operating conditions. Battery capacity is automatically recalibrated, or "learned," in the course of a discharge cycle from **full** to empty.

Nominal available capacity may be directly indicated using a **five-seg**ment LED display. These **segments**

are used to graphically indicate available capacity. The bq2050H supports a simple standard or high-speed single-line bidirectional serial link to an external processor (common ground). The 5Kbit/sec. DQ bus interface is 16-times faster than the bq2050, reducing communications overhead in the monitoring microcontroller. The bq2050H outputs battery information in response to external commands over the serial link.

The **bq2050H** may operate directly from one cell (VBAT > 3V). With the REF output and an **external transister**, a simple, inexpensive **regulator** can be built for **systems** with more than one series **cell**.

Internal **registers** include available capacity, temperature, **scaled** available energy, battery ID, **battery** status, and programming pin **settings**. The external processor may also overwrite some of the **bq2050H** power gauge data registers.

Pin Connections

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
16-Pin Nanow SOIC
PN-93

Pin Names

LCOM	LFD common output	REP	Voltage reference output
SEG ₁ /PROG ₁	LED segment 1/ program 1 input	PSTAT1	Protector status input
SEG ₂ /PROG ₂	LED segment 2/	HDQ	Serial communications input/output
SEC. MROC.	program 2 input	RBI	Register backup input
SEG ₃ /PROG ₃	LED segment 3/ program 3 input	SB	Battery sense input
SEG4/PROG4	LED segment 4/ program 4 input	DISP	Display control input
SEGs/PROGs	LED segment 5/	SR	Sense resistor input
32031 ROO3	program 5 input	Vcc	3.0-5.5V
PROG ₆	Program 6 input	V_{SS}	System ground

August 1996

Pin De	scriptions	SR	Sense resistor input
LCOM	LED common output Open-drain output switches Vcc to source current for the LEDs . The switch is off during initialization to allow reading of the soft pull-up or pull-down program resistors . LCOM is also high impedance when the display is off.		The voltage drop (VsR) across the sense resistor Rs is monitored and integrated over time to interpret charge and discharge activity. The SR input is tied between the negative terminal of the battery and the sense resistor. VsR < Vss indicates discharge, and VsR > Vss indicates charge. The effective voltage drop, VsRo, as seen by the bq2050H is VsR + Vos.
SEG ₁ - SEG ₅	LED display segment outputs (dual function with PROG1-PROG6) Each output may activate an LED to sink the current sourced from LCOM.	DISP	Display control input DISP high disables the LED display. DISP tied to Vcc allows PROGx to connect directly to Vcc or Vss instead of through a pull-up or
PROG ₁ - PROG ₂	Programmed full count selection inputs (dual function with SEG ₁ -SEG ₂)		pull-down resistor. DISP floating allows the LED display to be active during charge. DISP low activates the display. See Table 1.
PROG ₃ –	These three-level input pins define the programmed full count (PFC) thresholds described in Table 2.	SB	Secondary battery input This input monitors the battery cell voltage potential through a high-impedance resistive
PROG ₄	Power gauge rate selection inputs (dual function with SEG=SEG4) These three-level input pins define the scale factor described in Table 2	RBI	divider network for end-of-discharge voltage (EDV) thresholds, and battery removed. Register backup input
PROG ₅	factor described in Table 2. Selfdischarge rate selection (dual function with SEG ₆) This three-level input pin defines the self-		This pin is used to provide backup potential to the bq2050H registers during periods when Vcc ≤ 3V. A storage capacitor or a battery can be connected to RBI.
	discharge and battery compensation factors as well as the serial interface timing speed, shown in Table 1.	HDQ	Serial communication input/output This is an open-drain bidirectional pin oper-
$PROG_6$	Capacity initialization selection		ating at standard or high-speed timing.
	This three-level pin defines the battery state of charge at reset as shown in Table 1.	REF	Voltage reference output for regulator
PSTAT	Protector status input		REF provides a voltage reference output for an optional micro-regulator.
	This input provides overvoltage status from a	vcc	Supply voltage input
	Li-Ion protector circuit. It should connect to Vss when not used.	V_{SS}	Ground

Functional Description General Operation

The **bq2050H** determines battery capacity by monitoring the amount of current input to or removed from a rechargeable battery. The **bq2050H measures** discharge and charge currents, **measures** battery voltage, estimates self-discharge, monitors the battery for low battery voltage thresholds, and compensates for temperature and **charge/discharge rates**. The current measurement **is** made by monitoring the voltage **across** a small-value series sense resistor between the negative battery terminal and ground. The estimate of scaled available energy is made using the remaining average battery voltage during the discharge cycle and the remaining nomi-

nal available charge. The **scaled** available **energy meas**urement is corrected for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2050H using the LED display capability as a charge-state indicator. The bq2050H is configured to display capacity in relative display made. The dative display mode uses the last measured discharge capacity of the battery as the battery full reference. A push-button display feature is available for momentarily enabling the LED display.

The bq2050H monitors the charge and discharge currents as a voltage across a sense resistor (see Rs in Figure 1). A filter between the negative battery terminal and the SR pin may be required if the rate of change of the battery current is too great.

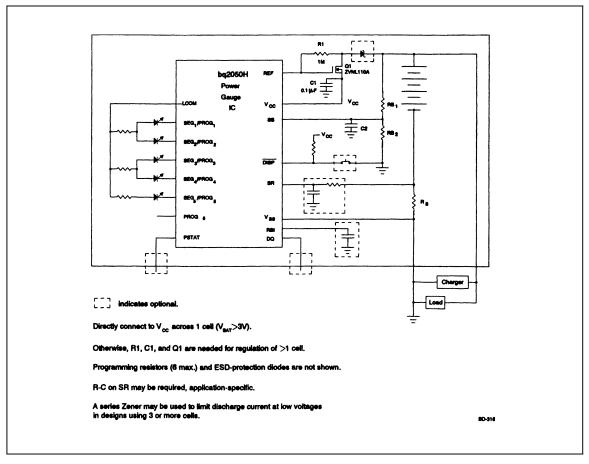


Figure 1. Battery Pack Application Diagram—LED Display

June 1996 3/20

Voltage Thresholds

In conjunction with monitoring VsR for charge/discharge currents, the bq2050H monitors the battery potential through the SB pin. The voltage is determined through a resistor-divider network per the following equation:

$$\frac{RB1}{RB2} = 2N - 1$$

where N is the number of cells, **RB1** is connected to the positive battery terminal, and RB2 is connected to the negative battery terminal. The single-cell battery voltage is monitored for the **end-of-discharge** voltage (**EDV**). EDV threshold levels **are used** to determine when the battery **has** reached an "**empty**" state.

Two EDV threaholds for the **bq2050H** are programmable with the default values fixed at:

EDVF (empty) =
$$1.47V$$

If VSB is below either of the two EDV thresholds, the associated **flag** is latched and remains latched, independent of **VSB**, until the next valid charge. The **VSB** value is also available over the serial port.

During discharge and charge, the **bq2050H** monitors VSR for various thresholds used to compensate the charge and discharge rates. Refer to the count **compensation sec**tion for details. EDV monitoring is disabled if the discharge rate is greater than 2C (typical) and **resumes** ½ second after the rate falls below 2C.

RBI Input

The RBI input pin is intended to be used with a storage capacitor or external supply to provide backup potential to the internal bq2050H registers when Vcc drops below 3.0V. Vcc is output on RBI when Vcc is above 3.0V. A diode is required to isolate the external supply.

Reset

The **bq2050H** can be reset either by removing **Vcc** and **grounding** the RBI pin for 15 seconds or by writing 0x80 **to register 0x39.**

Temperature

The **bq2050H** internally determines the temperature in 10°C steps centered from approximately -35°C to **+85°C**. The temperature steps **are** used to adapt charge and discharge rate compensations, self-discharge counting, and available charge **display** translation. The temperature range is available over the serial port in **10°C** increments **as** shown in the following table:

TMP (hex)	Temperature Range
0x	< -30°C
1x	-30°C to -20°C
2x	-20°C to -10°C
3x	-10°C to 0°C
4x	0°C to 10°C
5 x	10°C to 20°C
6x	20°C to 30°C
7x	30°C to 40°C
8x	40°C to 50°C
9x	50°C to 60°C
Ax	60°C to 70°C
Вх	70°C to 80°C
Сх	> 80°C

Layout Considerations

The bq2050H measures the voltage differential between the SR and V_{SS} pins. V_{OS} (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the strict rule of a single-point ground return. Sharing high-current ground with small signal ground causes undesirable noise on the small signal nodes. Additionally:

- The capacitors (C1 and C2) should be placed as close as possible to the Vcc and SB pins, respectively, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1μf is recommended for Vcc.
- The sense resistor capacitor should be placed as close as possible to the SR pin.
- The sense resistor (Rs) should be as close as possible to the bq2050H.

4/20 June 1996

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the ba2050H. The ba2050H accumulates a measure of charge and discharge currents, as well as an estimation of self-discharge. Charge and discharge currents are temperature and rate compensated. whereas self-discharge is only temperature compensated.

The main counter, Nominal Available Capacity (NAC). represents the available battery capacity at any given time. Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC register and increment the DCR (Discharge Count Register).

The Discharge Count Register (DCR) is used to update the Last Measured Discharge (LMD) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bg 2050H adapts its capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the **Programmed** Full Count (PFC) shown in Table 2. Until LMD is updated. NAC counts up to but not beyond thie threshold during **subsequent** charges. This approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.

Last Measured Discharge (LMD) or learned battery capacity.

LMD is the last measured discharge capacity of the battery. On initialization (application of Vcc or battery replacement), LMD = PFC. During subsequent discharges, the LMD is updated with the latest measured capacity in the Discharge Count Register (DCR) representing a discharge from full to below **EDV1.** A qualified discharge is **necessary** for a capacity transfer from the DCR to the LMD register. The LMD also serves as the 100% reference threshold used by the relative display mode.

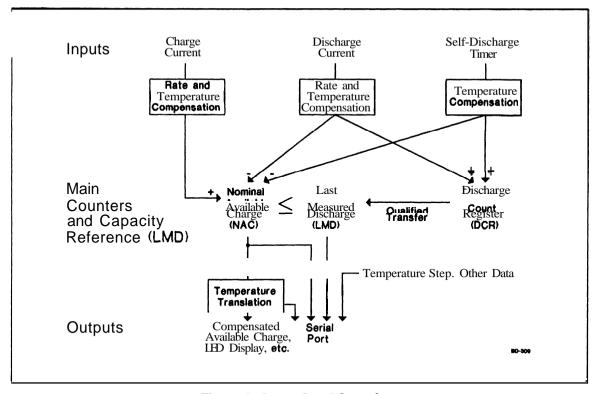


Figure 2. Operational Overview

5/20 June 1996

2. Programmed Full Count (PFC) or initial battery capacity:

The initial LMD and gas gauge rate values are programmed by using PROG1-PROG4. The bq2050H is configured for a given application by **se**lecting a PFC value from Table 2. The correct PFC may be **determined** by multiplying the rated battery capacity in **mAh** by the **sense** resistor value:

Battery capacity (mAh) • sense resistor (Q) = PFC (mVh)

Selecting a PFC slightly leas than the rated capacity provides a conservative capacity reference until the bq2050H "learns" a new capacity reference.

Example: Selecting a PFC Value

Given:

Sense resistor = 0.05Ω
Number of cells = 2
Capacity = 1000mAh, Li-Ion battery, coke-anode
Current range = 50mA to 1A
Relative display mode
Serial port only
Self-discharge = NAC/612 per day @ 25°C
Voltage drop over sense resistor = 2.5mV to 50mV
Nominal discharge voltage = 3.6V
High speed DQ

Table 1. bq2050H Programming

Pin Connection	PROG ₅ Compensation/ Self-Discharge	PROG ₆ NAC on Reset	DISP Display State
Н	Table 4/Disabled	PFC, standard speed	LEDs disabled
Z	Table 4/ NAC/512	0, high speed	LEDs on when charging
L	Table 3/ NAC/512	0, standard speed	LEDs on for 4 sec.

Note: PROG₅ and PROG₆ states are independent.

Table 2. bq2050H Programmed Full Count mVh Selections

PRO	OG _x	Pro- grammed Full		PROG4 = L		PROG ₄ = Z			
1	2	Count (PFC)	PROG3 = H	PROG3 - Z	PROG3 - L	PROG3 = H	PROG3 = Z	PROG3 = L	Units
-	-	•	SCALE = 1/80	SCALE = 1/160	SCALE = 1/320	SCALE = 1/640	SCALE = 1/1280	SCALE = 1/2560	mVh/ count
Н	Н	49152	614	307	154	76.8	38.4	19.2	mVh
Н	Z	45056	563	282	141	70.4	35.2	17.6	mVh
Н	L	40960	512	256	128	64.0	32.0	16.0	mVh
Z	Н	36864	461	230	115	57.6	28.8	14.4	mVh
Z	Z	33792	422	211	106	53.0	26.4	13.2	mVh
Z	L	30720	384	192	96.0	48.0	24.0	12.0	mVh
L	Н	27648	346	173	86.4	43.2	21.6	10.8	mVh
L	Z	25600	320	160	80.0	40.0	20.0	10.0	mVh
L	L	22528	282	141	70.4	35.2	17.6	8.8	mVh
		ivalent to 2 sec. (nom.)	90	45	22.5	11.25	5.6	2.8	mV

6/20

Therefore:

 $1000 \text{mAh} \cdot 0.05 \Omega = 50 \text{mVh}$

Select:

PFC = 30720 counts or 48mVh

 $PROG_1 = float$

 $PROG_2 = low$

PROG3 = high

PROG4 = float

PROG5 = float

 $PROG_6 = float$

The initial full battery capacity is **48mVh** (960mAh) until the **bq2050H** ?earns° a new capacity with a qualified discharge from full to EDV1.

3. Nominal Available Capacity (NAC):

NAC counts up during charge to a maximum value of LMD and down during discharge and self-discharge to 0. NAC is reset to 0 on initial and on the first valid charge following discharge to EDV1. To prevent overstatement of charge during periods of overcharge, NAC stops incrementing when NAC = LMD.

4. Discharge Count Register (DCR):

The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to 0. Prior to NAC = 0 (empty battery), both discharge and self-discharge increment the DCR. After NAC = 0, only discharge increments the DCR. The DCR resets to 0 when NAC = LMD. The DCR coes not roll over but stops counting when it reaches FFFFh.

The DCR value becomes the new LMD value on the first charge after a valid **discharge to V_{EDV1} if**:

- No valid charge initiations (charges greater than 256
 NAC counts, where Vsno > Vsno) occurred during the period between NAC = LMD and EDV1 detected.
- The self-discharge count is not more than 4096 counts (8% to 18% of PFC, specific percentage threshold determined by PFC).
- The temperature is ≥ 0°C when the EDVI level is reached during discharge.

The valid discharge flag **(VDQ)** indicates whether the **present** discharge is valid for LMD update. If the DCR update value is **less** than LMD by greater than 4096 counts, LMD will only be **modified** by 4096 counts. This prevents invalid **DCR** values from corrupting LMD.

5. Scaled Available Energy (SAE):

SAE is useful in determining the available energy within the battery, and may provide a more useful capacity reference in battery chemistries with

eloped voltage **profiles** during discharge. SAE may be converted **to** a **mWh** value using the following **formula**:

E(mWh) = (SAEH * 256 + SAEL)

where RBI, RR2 and R3 are resistor values in ohms. SCALE is the selected scale from Table 2. SAEH and SAEL are digital values read via DQ.

6. Compensated Available Capacity (CAC)

CAC counts similar to NAC, but contains the available capacity compensated for discharge rate and temperature.

Charge Counting

Charge activity is detected based on a positive voltage on the Vsn input. If charge activity is detected, the bq2050H increments NAC at a rate proportional to Vsn and, if enabled, activates an LED display. Charge actions increment the NAC after compensation for temperature.

The **bq2050H** determines charge activity **sustained** at a continuoue rate equivalent **to Vsro > Vsrq.** A valid charge **equates to sustained** charge activity greater than 256 NAC counts. Once a valid charge is detected, charge counting continues until **Vsro (Vsr + Vos)** falls below **Vsrq. Vsrq is 210µV**, and is described in the Digital Magnitude Filter **section.**

Discharge Counting

Discharge activity is **detected based** on a negative voltage on the **VsR** input. All **discharge** counts where **VsRO < VsRD** cause the **NAC** register to decrement and the **DCR** to increment. **VsRD** is **-200µV**, and is described in the Digital Magnitude Filter section.

Self-Discharge Estimation

The **bq2050H** continuously decrements **NAC** and **increments** DCR for **self-discharge** based on time and **temperature**. The self-discharge count **rate** is **programmed** to be a-nominal 1/512 • **NAC** per day or disabled. This is the rate for a battery whose temperature is between 20°-30°C. The NAC register cannot be decremented below 0.

Count Compensations

Discharge Compensation

Corrections for the rate of discharge, temperature, and anode type are made by adjusting an internal compensation factor. This factor is based on the measured rate of discharge of the battery. Tables 3A and 3B outline the correction factor typically used for graphite anode Li-Ion batteries, and Tables 4A and

lune 1996 7/20

4B outline the **factors** typically used for **coke** anode Li-Ion batteries. The compensation **factor is** applied to CAC and is **based** on **discharge rate** and temperature.

Table 3A. Graphite Anode

Approximate Discharge Rate	Discharge Compensation Factor	Efficiency
< 0.5C	1.00	100%
≥ 0.5C	1.05	95%

Table 3B.

Temperature	Temperature Compensation Factor	Efficiency
≥ 10°C	1.00	100%
0°C to 10°C	1.10	90%
-10°C to 0°C	1.35	74%
≤-10°C	2.50	40%

Table 4A. Coke Anode

Approximate Discharge Rate	Discharge Compensation Factor	Efficiency
<0.5C	1.00	100%
≥ 0.5C	1.15	86%

Table 4B.

Temperature	Temperature Compensation Factor	Efficiency
≥ 10°C	1.00	100%
0°C to 10°C	1.25	80%
-10°C to 0°C	2.00	50%
≤-10°C	8.00	12%

8/20

Charge Compensation

The bq2050H applies the following temperature compensation to NAC **during** charge:

Temperature	Temperature Compensation Factor	Efficiency
< 10°C	0.95	95%
≥ 10°C	1.00	100%

This compensation applies to both types of Li-Ion cells.

Self-Discharge Compensation

The **self-discharge** compensation is programmed for a nominal rate of ½12 • NAC per day. This is the rate for a battery within the 20–30°C temperature range. This rate varies across 8 ranges from <10°C to >70°C, changing with each higher temperature (approximately 10°C). See Table 5 below.

Table 5. Self-Discharge Compensation

	Typical Rate
Temperature Range	PROG ₅ ≈ Z or L
<10°C	NAC/ ₂₀₄₈
10-20°C	NAC/ ₁₀₂₄
20–30°C	NAC/512
30–40°C	NAC/ ₂₅₆
40-50°C	NAC/ ₁₂₈
50-60°C	NAC/64
60-70°C	NAC/32
> 70°C	NAC/ ₁₆

Self-discharge may be disabled by connecting **PROG**₅ = H.

Digital Magnitude Filter

The bq2050H has a digital filter to eliminate charge and discharge counting below a set threshold. The bq2050H setting is $200\mu V$ for V_{SRD} and $210\mu V$ for V_{SRD} .

Symbol	Parameter	Typical_	Maximum	Unib	Notes
Vos	Offset referred to VsR	± 50	± 180	μV	$\overline{\text{DISP}} = V_{CC}$.
INL	Integrated non-linearity error	± 2	± 4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25V.
INR	Integrated non-repeatability e——	± 1	± 2	%	Measurement repeatability given similar operating conditions.

Table 6. bq2050H Current-Sensing Errors

Error Summary

Capacity Inaccurate

The LMD is susceptible to error on initialization or if no updates occur. On initialization, the LMD value includes the error between the programmed full capacity and the actual capacity. This error is present until a valid diecharge occurs and LMD is updated (see the DCR description on page 7). The other cause of LMD error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity.

A Capacity Inaccurate counter **(CPI)** is maintained and **incremented** each time a valid charge occurs (qualified by NAC; see the CPI **register description**) and is reset whenever LMD is updated **from** the DCR. The counter does not wrap around but stops counting at 255. The capacity **inaccurate** flag (CI) is set if LMD has not been updated following 64 valid charges.

Current-Sensing Error

Table 5 illustrates the current-sensing error as a function of Vsro. A digital filter eliminates charge and discharge counts to the NAC register when Vsro is between Vsro and Vsro.

Communicating With the bg2050H

The **bq2050H** includes a simple single-pin (DQ plus return) serial data interface. A host **processor** uses the interface to access various **bq2050H** registers. Battery characteristics may be easily monitored by adding a single contact to the battery pack. The open-drain DQ pin on the **bq2050H** should be pulled up by the host system, or may be left floating if the **serial** interface is not used.

The interface **uses** a command-based protocol, where the host **processor** sends a command byte to the **bq2050H**. The command directs the **bq2050H** to either store the next eight bits of data received to a register specified by the command byte or output the eight bite of data specified by the command byte.

June 1996

The communication protocol is asynchronous return-toone. Command and data bytes consist of a stream of
eight bits that have a maximum transmission rate of 333
bits/sec in standard communication mode and 5K bits/sec
in high-speed mode (PROG6 = Z). The least-significant
bit of a command or data byte is transmitted first. The
protocol is simple enough that it can be implemented by
moat host processors using either polled or interrupt
processing. Data input from the bq2050H may be sampled using the pulse-width capture timers available on
some microcontrollers.

If a communication error occurs, e.g. tcycb > 6ma (or 250µs for "H"specification), the bq2050H should be sent a BREAK to reinitiate the serial interface. A BREAK is detected when the HDQ pin is driven to a logic-low state for a time, tb or greater. The HDQ pin should then be returned to its normal ready-high logic state for a time, tbR. The bq2050H is now ready to receive a command from the host processor.

The **return-to-one** data bit frame **consists** of three **die**tinct sections. The first section is **used** to start the transmission by either the host or the **bq2050H** taking the HDQ pin to a logic-low state for a period, **tstrhib**. The next **section** is the **actual** data transmission, where the data **should** be valid by a period, **tpsu**, after the negative edge used to **start** communication. The data should be held for a period, **tpv**, to allow the **host** or **bq2050H** to sample the data bit.

The **final** section is used to stop the transmission by returning the HDQ pin to a logic-high state by at least a period, **tssu**, after the negative edge used to start communication. The **final** logic-high state should be held until a period, tsv, to allow time to ensure that the bit **transmission was** stopped properly. The timings for data and break communication are given in the aerial communication timing specification and illustration sections.

Communication with the **bq2050H** is **always** performed with the **least-significant** bit being **transmitted** first. Figure 3 **shows** an example of a **communication** sequence to read the **bq2050H** NAC register.

9/20

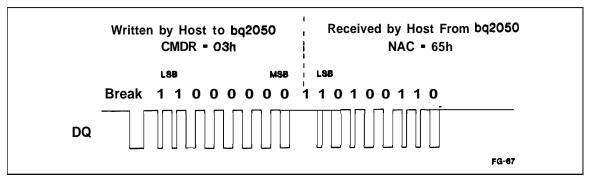


Figure 3. Typical Communication With the bq2050H

bq2050H Registers

The **bq2050H** command and **status** registers are **listed** in Table 7 and described below.

Command Register (CMDR)

The write-only CMDR register is **accessed** when eight valid command bits have been received by the **bq2050H**. The CMDR **register contains** two **fields**:

- W/R bit
- Command address

The $W\overline{R}$ bit of the command register is used to select whether the received command is for a read or a write function.

The $\mathbf{W}/\mathbf{\overline{R}}$ values are:

CMDR Bits									
7	6	5	4	3	2	1	0		
W/R	•								

Where W/\overline{R} is:

- 0 The bq2050H outputs the requested register contents specified by the address portion of CMDR.
- The following eight bits should be written to the register specified by the address portion of CMDR

The lower seven-bit field of CMDR contains the address portion of the register to be accessed. Attempts to write to invalid addresses are ignored.

	CMDR Bits									
7	7 6 5 4 3 2 1 0									
•	AD6	AD5	AD4	AD3	AD2	AD1	ADO (LSB)			

Primary Status Flags Register (FLGS1)

The read-only **FLGS1** register (address=01h) contains the primary bq2050H flags.

The charge status flag (CHGS) is asserted when a valid charge rate is detected. Charge rate is deemed valid when Vsro > Vsro. A Vsro of less than Vsro or discharge activity clears CHGS.

The CHGS valuee are:

FLGS1 Bits

	T			
CHGS ·		-	-	•

Where CHGS is:

- 0 Either discharge activity detected or Vsm < VsrQ</p>
- 1 Vsro > Vsrq

The battery replaced flag (BRP) is asserted whenever the bq2050H is reset either by application of Vcc or by a serial port command. BRP is reset when either a valid charge action increments NAC to be equal to LMD, or a valid charge action is detected after the EDV1 flag is asserted. BRP = 1 signifies that the device has been reset.

The BRP valuee are:

FLGS1 Bits										
7	6	5	4	3	2	1	0			
-	BRP	•	-	-	-	-				

Table 7. bq2050H Command and Status Registers

		Loc.	Read/	Contro	ol Field						
Symbol	Register Name	(hex)	Write	7(MSB)	6	5	4	3	2	1	O(LSB)
CMDR	Command register	00h	Write	W/R	AD6	AD5	AD4	AD3	AD2	AD1	AD0
FLGS1	Primary status flags register	01h	Read	CHGS	BRP	PSTAT	CI	VDQ	n/u	EDV1	EDVF
TMP	Temperature register	02h	Read	ТМР3	TMP2	TMP1	TMP0	GG3	GG2	GG1	GG0
NACH	Nominal available capacity high byte register	03h	R/W	NACH7	NACH6	NACH5	NACH4	NACH3	NACH2	NACH1	NACH0
NACL	Nominal available capacity low byte register	17h	Read	NACL7	NACL6	NACL5	NACL4	NACL3	NACL2	NACL1	NACLO
BATID	Battery identification register	04h	R/W	BATID7	BATID6	BATID5	BATID4	BATID3	BATID2	BATID1	BATID0
LMD	Last measured discharge register	05h	R/W	LMD7	LMD6	LMD5	LMD4	LMD3	LMD2	LMD1	LMD0
FLGS2	Secondary status flags register	06h	Read	n/u	DR2	DR1	DRO	n/u	n/u	PSTAT1	OVLD
PPD	Program pin pull- down register	07h	Read	n/u	n/u	PPD6	PPD5	PPD4	PPD3	PPD2	PPD1
PPU	Program pin pull-up register	08h	Read	n/u	n/u	PPU6	PPU5	PPU4	PPU3	PPU2	PPU1
CPI	Capacity inaccurate count register	09h	Read	CPI7	CPI6	CPI5	CPI4	СРІЗ	CPI2	CPI1	CPI0
VSB	Battery voltage register	0Bh	Read	VSB7	VSB6	VSB5	VSB4	VSB3	VSB2	VSB1	VSB0
VIS	End-of-discharge threshold select register	0Ch	R/W	VTS7	VTS6	VTS5	VTS4	VTS3	VTS2	VTS1	VTS0
CACH	Compensated available capacity high byte register	0Dh	Read	CACH7	САСН6	CACH5	CACH4	САСНЗ	CACH2	CACH1	CACH0
CACL	Compensated available capacity low byte register	0Eh	Read	CACL7	CACL6	CACL5	CACL4	CACL3	CACL2	CACL1	CACLO
SAEH	Scaled available energy high byte register	0Fh	Read	SAEH7	SAEH6	SAEH5	SAEH4	SAEH3	SAEH2	SAEH1	SAEH0
SAEL	Scaled available energy low byte register	10h	Read	SAEL7	SAEL6	SAEL5	SAEL4	SAEL3	SAEL2	SAEL1	SAELO
RST	Reset Register	39h	W	RST	0	0	0	0	0	0	0
RNAC	Relative NAC	11h	R	-	RNAC6	RNAC5	RNAC4	RNAC3	RNAC2	RNAC1	RNAC0

Note:

n/u = not used

Where BRP is:

- Battery is charged until NAC = LMD or discharged until the EDVI flag is asserted
- 1 bq2050H is reset

The protector status flag (PSTAT) provides information on the state of the overvoltage protector within the Li-Ion battery pack. The PSTAT flag is asserted whenever this input is high and is cleared when the input is low.

The PSTAT values are:

	 F	LGS	Bits			
7				2	1	0
-	PSTAT		1		-	

Where PSTAT is:

- 0 PSTAT input is low
- 1 PSTAT input is high

The **capacity inaccurate** flag (CI) is used to warn the **user** that the battery has been charged a **substantial** number of **times** since **LMD** has been updated. **The** CI flag is asserted on the 64th charge after the last **LMD** update or when the **bq2050H** is reset. The flag is cleared after an LMD update.

The CI values are:

FLGSI Bits									
7	6	5	4	3	2	1	0		
		•	CI	-					

Where CI is:

- When LMD is updated with a valid full discharge
- 1 After the 64th valid charge action with no LMD updates or the bq2050H is reset

The **valid discharge** flag (VDQ) is asserted when the **bq2050H** is **discharged** from **NAC=LMD**. The flag remains set until either LMD **is** updated or one of three actions that can clear VDQ occurs:

- The self-discharge count register (SDCR) has exceeded the maximum acceptable value (4096 counts) for an LMD update.
- A valid charge action sustained at V_{SRO} > V_{SRQ} for at least 256 NAC counts.
- The **EDV1** flag was set at a temperature below 0°C

The VDQ valuea are:

FLGSI Bib										
7 6 5 4 3 2 1 0										
•	VDQ									

Where VDQ is:

- O SDCR ≥ 4096, subsequent valid charge action detected, or EDVI is asserted with the temperature less than 0°C
- 1 On **first** discharge after NAC = LMD

The **first end-of-discharge warning** flag (EDVI) warns the user that the battery is almost empty. The **first** segment pin, **SEG1**, is modulated at a 4Hz rate if the **display** is enabled once EDVI is asserted, which should warn the user that loss of battery power is imminent. The EDVI flag **is** latched until a valid charge has been detected. The EDVI threshold **is** externally controlled via the VTS **register** (see Voltage Threshold Register on this **page)**.

The EDV1 values are:

	FLGSI Bits								
7	6	5	4	3	2	1	0		
					-	EDVl	•		

Where EDV1 is:

- 0 Valid charge action detected, VsB ≥ VTS
- $V_{SB} < V_{TS}$ providing that the discharge rate is < 2C

The *final end-of-discharge warning* flag (EDVF) flag is used to warn that battery power is at a failure condition. All segment drivers are turned off. The EDVF flag is latched until a valid charge has been detected. The EMPTY pin is also forced to a high-impedance state on assertion of EDVF. The host system may pull EMPTY high, which may be used to disable circuitry to prevent deep-discharge of the battery. The EDVF threshold is set omy below the EDVI threshold.

The EDVF values are:

	FLGSI Bits								
7	6	5	4	3	2	1	0		
-			-	-			EDVF		

Where EDVF is:

- 0 Valid charge action detected, VsB ≥ (VTs · 50mV)
- 1 VsB < (Vts 50mV) providing the discharge rate is < 2C</p>

12/20 June 1996

Table 7. Temperature Register

TMP3	TMP2	TMP1	TMP0	Temperature
0	0	0	0	T < -30°C
0	0	0	1	-30°C < T < -20°C
0	0	1	0	-20°C < T < -10°C
0	0	1	1	-10°C < T < 0°C
0	1	0	0	0°C < T < 10°C
0	1	0	1	10°C < T < 20°C
0	1	1	0	20°C < T < 30°C
0	1	1	1	30°C < T < 40°C
1	0	0	0	40°C < T < 50°C
1	0	0	1	50°C < T < 60°C
1	0	1	0	60°C < T < 70°C
1	0	1	1	70°C < T < 80°C
1	1	0	0	T > 80°C

Temperature Register (TMP)

The read-only TMP register (address=02h) contains the battery temperature.

TMP Temperature Bits

TMP4 T	MP3 TM	P2, TMP1	 	-	-

The bq2050H contains an internal temperature sensor. The temperature is used to set charge and discharge efficiency factors as well as to adjust the self-discharge coefficient. The temperature register contents may be tramlated as shown in Table 7.

The **bq2050H** calculates the **gas gauge** bits. **GG3-GG0** as a function of CACH and LMD. The **results** of the calculation give available capacity in 1/16 increments from 0 to 15/16.

	TMPGG Gas Gauge Bits								
7	6	5	4	3	2	1	0		
-		-	-	GG3	GG2	GG1	GG0		

Nominal Available Charge Registers (NACH/NACL)

The **read/write** NACH high-byte register (address=03h) and the read-only NACL low-byte register (address=17h) are the main **gas** gauging register for the **bq2050H**. The NAC **registers** are incremented during charge actions and decremented during discharge and self-discharge actions.

The **correction factors for charge/discharge** efficiency are applied automatically to NAC. NACH and NACL are set to 0 during a **bq2050 reset**.

Whiting to the NAC registers affects the available charge counts and, therefore, affects the bq2050H gas gauge operation. Do not write the NAC registers to a value greater than LMD.

Battery Identification Register (BATID)

The read/write BATID register (address=04h) is available for use by the system to determine the type of battery pack. The BATID contents are retained as long as V cc is greater than 2V. The contents of BATID have no effect on the operation of the bq2050H. There is no default setting for this register.

Last Measured Discharge Register (LMD)

LMD is a read/write register (address=05h) that the bq2050H uses as a measured full reference. The bq2050H adjusts LMD based on the measured discharge capacity of the battery from full to empty. In this way the bq2050H updates the capacity of the battery. LMD is set to PFC during a bq2050H reset.

Secondary Status Flags Register (FLGS2)

The read-only FLGS2 register (address=06h) contains the secondary bq2050H flags.

The discharge rate flags, DR2-0, are bits 6-4,

	FLGS2 Bits									
7	6	5	4	3	2	1	0			
-	DR2	DR1	DR0			•				

They are used to determine the current diecharge regime as follows:

DR2	DR1	DRO	Discharge Rate
0	0	0	DRATE < 0.5 C
0	0	1	0.5C ≤ DRATE < 2C

The overload flag (OVLD) is asserted when a discharge rate in excess of 2C is detected. OVLD remains asserted as long as the condition persists and is cleared 0.5 seconds after the rate drops below 2C. The overload condition is used to stop sampling of the battery terminal characteristics for end-of-discharge determination.

FLGS2 Bits									
7	6	5	4	3	2	1	0		
•						-	OVLD		

Program Pin Pull-Down Register (PPD)

The read-only PPD register (address=07h) contains some of the programming pin information for the bq2050H. The segment drivers, SEG1-6, have a corresponding PPD register location. PPD1-6. A given location is set if a pull-down resistor has been detected on its corresponding segment driver. For example, if SEG1 and SEG4 have pull-down resistors, the contents of PPD are xx001001.

Program Pin Pull-Up Register (PPU)

The read-only PPU register (address=08h) contains the rest of the programming pin information for the bq2050H. The segment drivers, SEG1-6, have a corresponding PPU register location, PPU1-8. A given location is set if a pull-up resistor has been detected on its corresponding segment driver. For example, if SEG3 and SEG6 have pull-up resistors, the contents of PPU are xx100100.

	PPD/PPU Bib									
7	6	5	4	3	2	. 1	0			
-	-	PPU ₆	PPU ₅	PPU4	PPU ₃	PPU ₂	PPU ₁			
•	•	PPD6	PPD ₅	PPD4	PPD3	PPD ₂	PPD ₁			

Capacity Inaccurate Count Register (CPI)

The read-only CPI register (address=09h) is used to indicate the number of times a battery has been charged without an LMD update. Because the capacity of a rechargeable battery varies with age and operating canditions, the bq2050H adapts to the changing capacity over time. A complete discharge from full (NAC=LMD) to empty (EDV1=1) is required to perform an LMD update assuming there have been no intervening valid charges, the temperature is greater than or equal to 0°C, and the self-discharge counter is less than 4096 counts.

The CPI register is incremented every time a valid charge is detected. When NAC > 0.94 • LMD, however, the CPI register increments on the first valid charge; CPI does not increment again for a valid charge until NAC < 0.94 • LMC. This prevents continuous trickle charging from incrementing CPI if self-diecharge decrements NAC. The CPI register increments to 255 without rolling over. When the contents of CPI are incremented to 64, the capacity inaccurate flag, CI, is asserted in the FLGS1 register. The CPI register is reset whenever an update of the LMD register is performed, and the CI flag is also cleared.

Battery Voltage Register (VSB)

The read-only battery voltage register is used to read the single-cell battery voltage on the SB pin. The VSB register (address = 0Bh) is updated approximately once per second

with the **present** value of the **battery** voltage. **V**_{SB} = 24V • (VSB/256).

VSB Register Bits							
7	6	5	4	3	2	1	0
VSB7	VSB6	VSB5	VSB4	VSB3	VSB2	VSB1	VSBO

Voltage Threshold Register (VTS)

The end-of-discharge threshold voltages (EDV1 and EDVF) can be set using the VTS register (address = 0Ch). The read/write VTS register sets the EDVI trip point. EDVF is set 50mV below EDV1. The default value in the VTS register is A2h, representing EDVI = 1.52V and EDVF = 1.47V. EDVI = 2.4V • (VTS/256).

	VTS Register Bits							
7	6	5	4	3	2	1	0	
VTS7	VTS6	VTS5	VTS4	VTS3	VTS2	VTS1	VTS0	

Compensated Available Charge Registers (CACH/CACL)

The read-only CACH high-byte register (address = **0Dh**) and the read-only CACL low-byte register (address = **0Eh**) represent the available charge **compensated** for diecharge rate and temperature. CACH and CACL use **piece-wise** corrections **as** outlined in Tables 3A, **3B**, 4A, and **4B**, and will vary as conditions change. The NAC and LMD **registers** are not affected by the **discharge** rate and temperature.

Scaled Available Energy Registers (SAEH/SAEL)

The read-only SAEH high-byte register (address = 0Fh) and the read only SAEL low-byte register (address = 10h) are used to scale battery voltage and CAC to a value which can be translated to watt-hours remaining under the present conditions. SAEL and SAEH may be converted to mWh using the formula on page 7.

Reset Register (RST)

The reset register (address = 39h) provides a means via software of initializing the bq2050H. A fill bq2050H reset can be accomplished over the serial port by writing 80h to register 39h. Setting any other bit in the reset register is not allowed and will result in improper bq2050H operation. Resetting the bq2050H sets the following

- LMD = PFC
- CPI, VDQ, RNAC, NACH/L, CACH/L, SAEH/L=0
- CI and BRP = 1

Note: NACH = PFC if $PROG_6 = H$

14/20

Relative NAC Register

The RNAC register (address = 11h) provides the relative battery etate-of-charge by dividing NACH by LMD. RNAC varies from 0 to 64h representing relative state-of-charge from 0 to 100%.

Reset Register (RST)

The reset register (address = 39h) enablea a software-controlled reset of the device. By writing the RST register contents from 00h to 80h, a bq2050H reset is performed. Setting any bit other than the most-significant bit of the RST register is not allowed and results in improper operation of the bq2050H.

Resetting the **bq2050H** seta the following:

- LMD = PFC
- CPI, VDQ, NACH, and NACL = 0
- CI and BRP = 1

Note: Self-discharge is disabled when PROG₅ = H.

Display

The bq2050H can directly display capacity information using low-power LEDs. If **LEDs** are **used**, the program pins should be resistively tied to **Vcc** or **Vss** for a program high or program low, respectively.

The bq2050H displays the battery charge state in relative mode. In relative mode, the battery charge is represented as a percentage of the LMD. Each LED segment represents 20% of the LMD.

The capacity display is also adjusted for the present battery temperature. The temperature adjustment reflects the available capacity at a given temperature but does not affect the NAC register. The temperature adjustments are detailed in the CACH and CACL register descriptions.

When \overline{DISP} is tied to Vcc, the SEG1-5 outputs are inactive. When \overline{DISP} is left floating, the display becomes active whenever the bq2050H detects a charge in progress Vsro > Vsrq. When pulled low, the segment outputs become active for a period of four seconds, ± 0.5 seconds.

The segment outputs are modulated as two banks, with segments 1, 3, and 5 alternating with segments 2 and 4. The segment outputs are modulated at approximately 100Hz with each segment bank active for 30% of the period.

SEG₁ blinks at a **4Hz** rate whenever **VsB** has been detected to be below **VgDV1** (**EDV1 = 1**), indicating a low-battery condition. **VsB** below **VgDVF** (**EDVF = 1**) disables the display output.

Microregulator

The **bq2050H** can operate directly **from** one cell. A micropower **source** for the **bq2050H** can be inexpensively built using the FET and an external **resistor** to accommodate a greater number of **cells**; see Figure 1.

June 1995 15/20

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	v	Current limited by R1 (see Figure 1)
$\mathbf{v}_{\mathbf{s}\mathbf{r}}$	Relative to Vss	-0.3	+7.0	v	Minimum 100Ω series resistor should be used to protect SR in case of a shorted battery (see the bq2050H application note for details).
σ	Operating	0	+70	°C	Commercial
Topr	temperature	-40	+85	°C	Industrial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational **limits** for extended periods of time may affect device reliability.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 6.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning	1.44	1.47	1.50	V	SB, default
V _{EDV1}	First empty warning	1.49	1.52	1.55	V	SB, default
V_{SRO}	SR sense range	-300		+2000	mV	SR, V _{SR} + V _{OS}
Vsrq	Valid charge	210			μV	Vsr + Vos (see note)
V _{SRD}	Valid discharge			-200	μV	VSR + Vos (see note)
V _{MCV}	Maximum single-cell voltage	2.20	2.25	2.30	V	SB

Note:

Vos is affected by PC board layout. Roper layout guidelines should be followed for optimal performance. See "LayoutConsiderations."

16/20

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	6.5	v	Vcc excursion from < 2.0V to ≥ 3.0V initializes the unit.
Vref	Reference at 25°C	5.7	6.0	6.3	V	IREF = 5µA
V REF	Reference at -40°C to +85°C	4.5	-	7.5	V	I _{REF} = 5µA
RREF	Reference input impedance	2.0	5.0	-	ΜΩ	$V_{REF} = 3V$
		•	90	135	μА	$V_{CC} = 3.0V$, $DQ = 0$
Icc	Normal operation	-	120	180	μA	$V_{CC} = 4.25V, DQ = 0$
			170	250	μА	$V_{CC} = 6.5V$, $DQ = 0$
VsB	Battery input	0	-	Vcc	v	
RsBmax	SB input impedance	10	-	•	MΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage	-	-	5	μA	$V_{DISP} = V_{SS}$
ILCOM	LCOM input leakage	-0.2	•	0.2	μA	$\overline{\text{DISP}} = V_{CC}$
I _{RBI}	RBI data retention current			100	nA	V _{RBI} > V _{CC} < 3V
R_{DQ}	Internal pulldown	500	-		ΚΩ	
Vsr	Sense resistor input	-0.3	-	2.0	V	V _{SR} < V _{SS} = discharge; V _{SR} > V _{SS} = charge
RsR	SR input impedance	10	-	-	ΜΩ	-200mV < V _{SR} < V _{CC}
V _{IH}	Logic input high	Vcc - 0.2	•	-	V	PROG ₁ -PROG ₆
VIL	Logic input low	•	-	Vss + 0.2	v	PROG ₁ -PROG ₆
V _{IZ}	Logic input Z	float	-	float	v	PROG ₁ -PROG ₆
Volsl	SEGx output low, low VCC	-	0.1	-	v	$Vcc = 3V$, $IoLs \le 1.75mA$ SEG_1-SEG_5
Volsh	SEGx output low, high Vcc	-	0.4	•	V	$V_{CC} = 6.5V$, $I_{OLS} \le 11.0$ mA SEG ₁ -SEG ₅
Vohlcl	LCOM output high, low VCC	V _{CC} - 0.3	-	•	V	$V_{CC} = 3V$, $I_{OHLCOM} = -5.25$ mA
Vohlch	LCOM output high, high Vcc	Vcc - 0.6	•	•	v	$V_{CC} = 6.5V$, $I_{OHI,COM} = -33.0$ mA
Im	PROG ₁₋₆ input high current	-	1.2	-	μA	V _{PROG} = V _{CC} /2
IIL	PROG ₁₋₆ input low current	•	1.2	-	μA	V _{PROG} = V _{CC} /2
IOHLCOM	LCOM source current	-33	-	•	mA	At Vohlich = Vcc - 0.6V
Iols	SEG ₁₋₅ sink current	-	-	11.0	mA	At Volsh = 0.4V
IoL	Open-drain sink current	-	-	5.0	mA	At $V_{OL} = V_{SS} + 0.3V$ DQ
Vol	Open-drain output low	-	-	0.5	V	I _{OL} ≤ 5mA, DQ
VIHDQ	DQ input high	2.5	-	•	V	DQ
V_{ILDQ}	DQ input low	-	-	0.8	V	DQ
RPROG	Soft pull-up or pull-down resistor value (for programming)	-	•	200	ΚΩ	PROG ₁ -PROG ₆
RFLOAT	Float state external impedance		5		ΜΩ	PROG ₁ -PROG ₆

Note: All voltages relative to Vss.

June 1996 17/20

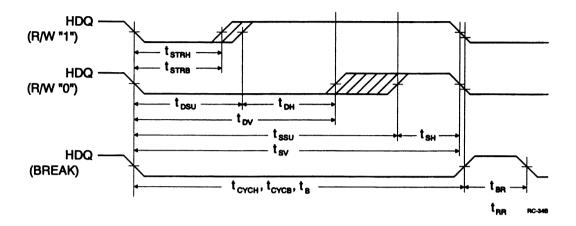
Standard Serial Communication Timing Specification (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcych	Cycle time, host to bq2050H	3	-		ms	See note
tcycb	Cycle time, bq2050H to host	3		6	ms	
tstrh	Start hold, host to bq2050H	5		•	ns	
tstrb	Start hold, bq2050H to host	500	•	-	με	
tosu	Data setup	-	-	750	μв	
tDH	Data hold	750	•	•	με	
t _{DV}	Data valid	1.50	-	•	ms	
tssu	Stop setup	-	-	2.25	ms	
tsh	Stop hold	700			μв	
tsv	Stop valid	2.95	-	-	ms	
tB	Break	3		•	ms	
tbr	Break recovery	11		-	ms	

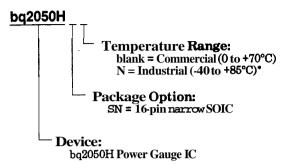
Note:

The open-drain DQ pin should be pulled to at least Vcc by the host system for proper DQ operation. DQ may be left floating if the serial interface is not used.

High-Speed Serial Communication Timing Specification (TA = TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcych	Cycle time, host to bq2050H (write)	190	•	•	μв	See note
tcycb	Cycle time, bq2050H to host (read)	190	-	250	μв	
tstrh	Start hold, host to bq2050H (write)	5		•	ns	
tstrb	Start hold, bq2050H to host (read)	32	-	-	με	
tosu	Data setup	-	•	50	μв	
tDH	Data hold	50	-	-	μв	
tov	Data valid	95	-		μв	
tssu	Stop setup	-	-	145	με	
tsh	Stop hold	45		-	μв	
tsv	Stop valid	185	-	-	με	
tB	Break	190	-	-	μв	
tbr	Break recovery	40	-		μв	
trr	Read recovery	40		-	μв	Last bit of read to start of new cycle

Note:


The open-drain DQ pin should be pulled to at least V_{CC} by the host system for proper DQ operation. DQ may be left floating if the serial interface is not used.

18/20 _______ June 1996

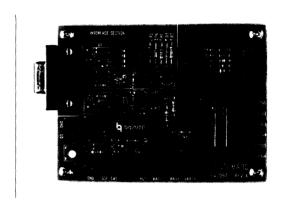
Serial Communication Timing Illustration

Ordering Information

• Contact factory for availability.

20/20 June 1996

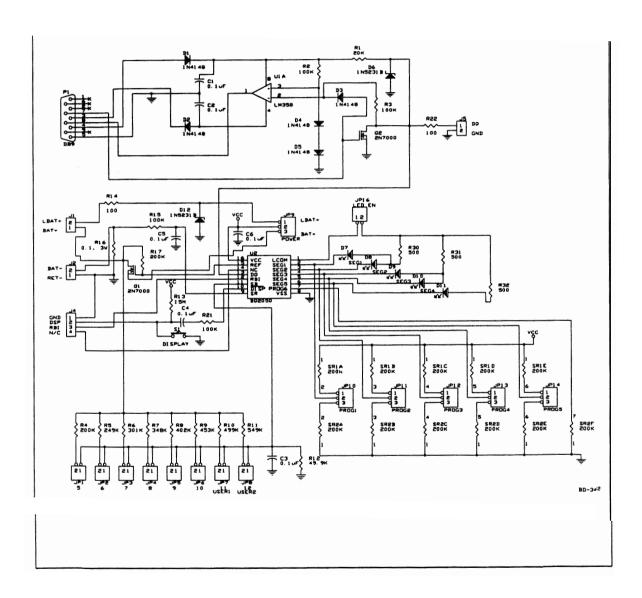
Power Gauge™ Evaluation Board


Features

- bq2050 Power Gauge™ IC evaluation and development system
- ➤ RS-232 interface hardware for easy access to state-of-charge information via the serial port
- Alternative terminal block for direct connection to the serial port
- ➤ Battery state-of-charge monitoring for 1- to 5-cell (series) applications
- ➤ On-board voltage regulator for Power Gauge™ operation
- State-of-charge information displayed on bank of 5 LEDs
- > Nominal capacity jumper-configurable
- Cell anode type (coke or graphite) jumper-configurable

General Description

The EV2050/H Evaluation System provides a development and evaluation environment for the bq2050 or bq 2050H Power GaugeTM IC. The EV2050/H incorporates a bq2050, a sense resistor, and all other hardware necessary to provide a power monitoring function for 1 to 5 series Li-Ion cells.


Hardware for an RS-232 interface is included on the EV2050/H so that easy access to the state-of-charge information can be achieved via the serial port of the bq2050/H. Direct connection to the serial port of the bq2050/H is also made available for check-out of the final hardware/software implementation.

The menu-driven software provided with the EV2050/H displays chargeidischarge activity and allows user interface to the bq2050 from any standard DOS PC.

A full data sheet for this product is available on our web site (http://www.benchmarq.com), or you may contact the factory for one.

EV2050/H Board Schematic

Gas Gauge IC With SMBus-Like Interface

Features

- Provides conservative and repeatable meaeurement of available charge in NiCd, NiMH, and Lithium Ion rechargeable batteries
- Designed for battery pack integration
 - 120µA typical operating current
 - Small size enables implementations in as little ae
 1/2 square inch of PCB
- Two-wire SMBus-like interface
- ➤ Measurements compensated for current and temperature
- ➤ Contains self-discharge compensation using internal temperature sensor
- ➤ 16-pin narrow SOIC

General Description

The **bq2090** Gae Gauge IC With SMBus like Interface is intended for battery-pack or in-eyetam installation to maintain an accurate record of available battery **charge**, The bq2090 directly **supports** capacity **monitoring** for NiCd, NiMH, and Lithium Ion bat-

The bq2090 uses the SMBus protocol that supports many of the Smart Battery Data (SBData) commands. Battery state-of-charge, capacity remaining, remaining time and chemistry are available over the serial link Battery-charge state can be directly indicated using a four-segment LED display to graphically depict battery full-to-empty in 25% increments.

The bq2090 estimates battery self-discharge based on an internal timer and temperature sensor. The bq2090 also automatically recalibrates, or "learns" battery capacity in the full course of a discharge cycle from full to empty.

The **bq2090** may operate directly **from** three or four **nickel chemistry cells**. With the REF output and an external **transistor**, a **simple**, inexpensive regulator can be built to provide Vcc for other battery cell **configurations**.

An external E²PROM ie **used** to program initial values into the bq2090 and is necessary for proper operation.

Pin Connections

16 | Vout V_{CC} □1 SCL ☐2 15 REF SDA 3 14 D SCC SEG , 4 13 🗆 SCD SEG , □ 5 12 D NC SEG₃ □6 11 🗆 SB SEG₄ □ 7 10 DISP V_{SS} □ 8 9 🗆 SR 16-Pin Narrow SOIC PN-110

Pin Names

Vour	E ² PROM supply output	SB	Battery sense input
SEG ₁	LED segment 1	DISP	Display control input
SEG ₂	LED segment 2	SR	Sense resistor input
SEG ₃	LED segment 3	SCC	Serial communication clock
SEG ₄	LED segment 4	SCD	Serial communication
SCL	Serial memory clock	505	data input/output
SDA	Serial memory data	Vcc	3.0-5.5V
REF	Voltage reference cutput	v_{ss}	System ground

May 1996

1/24

Pin De	escriptions	SR	Sense resistor input
SEG ₁ - SEG ₄	LED display segment outputs		The voltage drop (Vsr.) across pins SR and Vss is monitored and integrated over time to interpret charge and discharge activity.
	Each output may activate an external LED to sink the current sourced from Vcc .		The SR input is connected to the sense resistor and the negative terminal of the bat-
SCC	Serial communication clock		tery. VsR < Vss indicates diecharge, and VsR > Vss indicates charge. The effective volt-
	This open-drain bidirectional pin is used to clock the data transfer to and from the		age drop, Vsro , as seen by the bq2090 is Vsr + Vos (see Table 3).
	bq2090.	DISP	Display control input
SCD	Serial communication data		DISP high disables the LED display. DISP
	This open-drain bidirectional pin is used to transfer address and data to and from the bq2090 .		floating allows the LED display to be active during charge or during discharge if the rate is greater than a user-programmable threshold. DISP low activates the display.
SCL	Serial memory clock	SB	Secondary battery input
	This output is used to clock the data transfer between the bq2090 and the external non-volatile configuration memory.		This input monitors the single-cell voltage potential through a high-impedance resistor divider network for end-of-discharge voltage
SDA	Serial memory data and address		(EDV) thresholds and maximum charge voltage (MCV).
	This bi-directional pin is used to trans- fer address and data to and from the	REF	Reference output for regulator
	bq2090 and the external configuration memory.		REF provides a reference output for an optional micro-regulator.
NC	No connect	V_{CC}	Supply voltage input
Vout	Supply output	V_{SS}	Ground
	This output supplies power to the external EPROM configuration memory.		

Functional Description

General Operation

The **bq2090** determines battery capacity by monitoring the amount of charge input to or removed from a rechargeable battery. The **bq2090** measures discharge and charge currents, estimates self-discharge and monitors the battery for low-battery voltage thresholds. The charge measurement is made by monitoring the voltage across a small-value series sense resistor between the negative battery terminal and ground. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2090 using the LED capacity display, the serial port. and an external E2PROM for battery pack programming information. The bq2090 must be configured and calibrated for the battery-specific information to ensure proper operation. Table 1 outlines the externally programmable functions available in the bq2090. Refer to the Programming the bq2090 section for further details.

An internal temperature sensor eliminates the need for an external thermistor—reducing **cost** and components. An internal, temperature-compensated time-base eliminates the need for an external resonator, **further** reducing cost and components. The entire circuit in **Figure 1** can occupy less than ¾ square inch of board **space**.

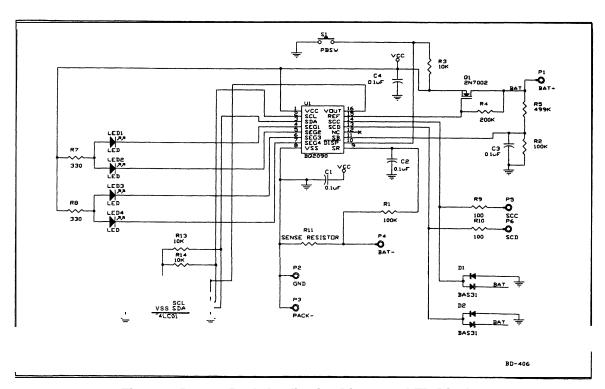


Figure 1. Battery Pack Application Diagram—LED Display

May 1996 3/24

Table 1. Configuration Memory Programming Values

Parameter Name	Address	Length	Units	
Design capacity	0x00/0x01	16 bits: low byte, high byte	mAh	
Initial battery voltage	0x02/0x03	8 bits	N/A	
Reserved	0x04/0x05	-	_	
Reserved	0x06/0x07	-	-	
Remaining Capacity Alarm	0x08/0x09	16 bits: low byte, high byte	mAh	
FLAGS1	0x0a	8 bits	N/A	
FLAGS2	0x0b	8 bits	N/A	
Current measurement gain	0x0c/0x0d	16 bits: low byte, high byte	N/A	
EDV ₁	0x0e/0x0f	16 bits: low byte, high byte	mV	
EDVF	0x10/0x11	16 bits: low byte, high byte	mV	
Temperature offset	0x12/0x13	16 bits: low byte, high byte	0.1°K	
Self-discharge rate	0x14	16 bits: low byte, high byte	N/A	
Digital filter	0x15	8 bits	mV	
Current integration gain	0x16/0x17	16 bits: low byte, high byte	N/A	
Discharge display threshold	0x18	8 bits	N/A	
Battery voltage offset	0x19	8 bits	mV	
Battery voltage gain	0x1a/0x1b	16 bits	N/A	
Reserved	0x1c/0x31	-	_	
Design voltage	0x32/0x33	16 bite: low byte, high byte	mV	
Specification Information	0x34/0x35	16 bite: low byte , high byte	N/A	
Manufacturer Date	0x36/0x37	16 bits: low byte, high byte	N/A	
Serial number	0x38/0x39	16 bits: low byte, high byte	N/A	
Reserved	0x3a/0x3f	-		
Manufacturer name	0x40/0x4f	8 + 120 bits	N/A	
Device name	0x50/0x5f	8 + 120 bits	N/A	
Chemistry	0x60/0x6f	8 + 120 bits	Ν⁄Α	
Manufacturer data	0x70/0x7f	8 +120 bits	N/A	

Note: N/A=Not applicable; data packed or coded. See Programming the bq2090 section for details.

4/24 May 1996

Voltage Thresholds

In conjunction with monitoring VsR for charge/discharge currents, the bq2090 monitors the battery potential through the SB pin. The voltage potential is determined through a resistor divider network per the following equation:

$$\frac{R_6}{R_2} = \frac{MBV}{2.25} - 1$$

where MBV is the maximum battery voltage. Rs is connected to the positive battery terminal, and & is connected to the negative battery terminal. should be rounded to the next highest integer. The battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV) and for alarm warning conditions. EDV threshold levels are used to determine when the battery has reached an "empty' state, and the MCV threshold is wed for fault detection during charging. The battery voltage gain and two EDV thresholds are programmed via EPROM. See the Programming the bq2090 section for further details.

If **VsB** is below either **of** the two **EDV thresholds**, the **associated flag** is latched and remains latched, independent of **VsB**, until the next valid charge.

EDV monitoring may be disabled under certain conditions. If the discharge current is greater than 3A, EDV monitoring is disabled and resumes after the current falls below 1.5A.

Reset

The bq2090 is recet when f i t connected to the battery pack. The bq2090 can also be reset with a command wer the serial port, as described in the Software Reset section.

Temperature

The **bq2090** monitors temperature using an internal sensor. The temperature is used to adapt **charge/discharge** and self-dischargecompensations. Temperature may also be **accessed** over the serial port. **See the Programming** the bq2090 section for **further** details.

Layout Considerations

The **bq2090 measures** the voltage differential between the SR and **Vss** pins. **Vos** (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the **strict** rule of a single-point ground return. **Sharing** high-current ground with small signal ground causes undesirable noise on the small signal **nodes**. Additionally, in reference to Figure 1:

- The capacitors (C1, C3, and C4) should be placed as close as possible to the SB and Vcc pins, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1µf is recommended for Vcc.
- The sense resistor capacitor (C2) should be placed as close as possible to the SR pin.
- The sense resistor (R₁₁) should be as close as possible to the bq2090.
- The IC should be close to the cells for the beat temperature measurement.

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the bq2000. The **bq2000** accumulates a **measure** of charge and diecharge currents, as well as an estimation of self-discharge. Charge and discharge currents are temperature-compensated, and charge is rate-compensated. Self-discharge is only temperature-compensated.

The main counter, Remaining Capacity (RM), representa the available battery capacity at any given time. Battery charging increments the RM register, whereas battery discharging and self-discharge decrement the RM register and increment the DCR (Discharge Count Register).

The Discharge-Count Register (DCR) is used to update the Full-Charge Capacity (FCC) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2090 adapts ita capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the Design Capacity (DC). Until FCC is updated, RM counts up to, but not beyond, this threshold during subsequent charges.

Full-Charge Capacity or learned-battery capacity:

FCC is the last measured discharge exacity of the battery. On initialization (application of Vcc or reset), FCC = DC. During subsequent discharges, the FCC is updated with the latest measured capacity in the Discharge Count Register (DCR), representing a discharge from full to below EDV1. A qualified discharge is necessary for a capacity transfer from the DCR to the FCC register. The FCC also serves as the 100% reference threshold used by the relative state-of-charge calculation and display.

2 Design Capacity (DC):

The DC is the user specified battery capacity and is programmed by using an external E²PROM. The DC also provides the 100% reference for the absolute display mode.

May 1996 5/24

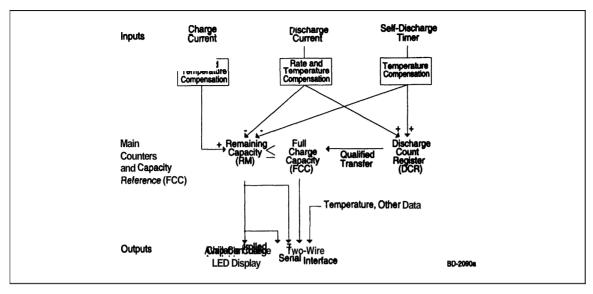


Figure 2. Operational Overview

3. Remaining Capacity (RM):

RM counts up during charge to a maximum value of FCC and down during discharge and self-discharge to 0. RM is reset to 0 on initialization and when a valid charge is detected and EDV₁=1. To prevent overstatement of charge during periods of overcharge, RM stops incrementing when RM = FCC.

4. Discharge Count Register (DCR):

The DCR counts up during discharge independent of RM and can continue **increasing** after RM has decremented to **0**. Prior to RM = 0 (empty battery), both discharge and self-discharge increment the DCR. After RM = 0, only discharge **increments** the DCR. The DCR resets to **0** when RM = FCC. The DCR does not roll over but stops counting when it reaches **FFFFh**.

The DCR value becomes the new FCC value on the first charge after a valid diecharge to V_{EDV_1} if:

- No valid charge initiations (charges greater than 10mAh, where Vsro > Vsrq) occurred during the period between RM = FCC and EDV1 detected.
- The self-discharge count is not more than 256mAh.

The temperature is $\geq 273^{\circ}$ K when the EDV1 level is reached during discharge.

The valid discharge flag (VDQ) indicates whether the present discharge is valid for FCC update.

Charge Counting

Charge activity is detected based on a positive voltage on the V_{SR} input. If charge activity is detected, the bq2090 increments RM at a rate proportional to V_{SRO} and, if enabled, activates an LED display. Charge actions increment the RM after compensation for charge rate and temperature.

The bq2090 determines charge activity sustained at a continuous rate equivalent to Vsro > Vsrq. A valid charge equates to sustained charge activity greater than 10 mAh. Once a valid charge is detected, charge counting continues until Vsro falls below Vsrq. Vsrq is a programmable threshold as described in the Digital Magnitude Filter section.

Discharge Counting

All discharge counts where Vsro < VsrD cause the RM register to decrement and the DCR to increment.

Exceeding the user-programmable discharge display threshold, stored in external **E**²**PROM**, activates the dieplay, if enabled. **VsrD** is a programmable threshold as described in the Digital Magnitude Filter section.

Self-Discharge Estimation

The **bq2090** continuously decrements RM and increments DCR for self-discharge based on time and temperature. The self-discharge rate is dependent on the battery chemistry. The **bq2090** self-discharge estimation rate is externally programmed in **E**²PROM

6/24 May 1996

and can be programmed from **0** to 25% per day at **20°C. This** rate doubles every 10°C from **0°C** to 70°C.

Count Compensations

The **bq2090** determines fast discharge when the discharge rate exceeds the **programmed fast discharge** rate. Charge activity is **compensated** for temperature and rate before updating the RM **and/or** DCR. Discharge rate is compensated for **temperature** before updating the RM **register**. **Self-discharge estimation is** compensated for temperature before updating RM or DCR.

Charge Compensation

Charge **efficiency** is **compensated** for rate, temperature, and battery chemistry. For **Li-ion chemistry** œlls, the charge efficiency is unity for all **cases**. However, the **charge efficiency** for nickel **chemistry** cells is adjusted **using** the following equation:

$$Q_{EFF} = Q_{EB} + 0.125 * \frac{AverageCurrent()}{FullCapacity()}$$

where $Q_{EB} = 0.80$ if T < 30°C

 $Q_{EB} = 0.75 \text{ if } 30^{\circ}\text{C} \le T < 40^{\circ}\text{C}$

 $Q_{EB} = 0.60 \text{ if } T \ge 40^{\circ}\text{C}$

and AverageCurrent() < FullCapacity()

Q_{EFF} = Q_{EB} + 0.125 if AverageCurrent() > FullCapacity ()

Remaining Capacity Compensation

The bq2090 adjusts the RM ae a function of temperature. This adjustment accounts for the reduced capacity of the battery at colder temperatures. The following equation is used to adjust RM:

If T ≥ 6°C

RemainingCapacity() = NominalAvailableCapacity

If T < 5°C

 $RC() = NAC() (1 + TCC \cdot (T - 5^{\circ}C))$

where T = temperature °C

TCC = 0.016 for Li-Ion cells

TCC = 0.0004 for Ni chemistry cells

Digital Magnitude Filter

The **bq2090** has a programmable digital filter to eliminate charge and discharge counting below a **set** threshold. Table 2 shows typical digital filter settings. The proper digital filter setting can be calculated using the following equation.

 $V_{SRD} (mV) = -45/DMF$ $V_{SRQ} (mV) = -1.25 \cdot V_{SRD}$

Table 2. Typical Digital Filter Settings

DMF	DMF Hex.	VsRD (mV)	VsRQ (mV)
75	4B	-0.60	0.75
100	64	-0.45	0.56
150 (default)	96	-0.30	0.38
175	AF	-0.26	0.32
200	C8	-0.23	0.28

Error Summary

Capacity Inaccurate

The FCC is susceptible to error on initialization or if no updates occur. On initialization, the FCC value includes the error between the design capacity and the actual capacity. This error is present until a valid discharge occurs and FCC is updated (see the DCR description). The other cause of FCC error is battery wear-out. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity. Periodic discharges from full to empty will minimize errors in FCC.

Current-SensingError

Table 3 illustrates the current-sensing error as a function of VsR. A digital filter eliminates charge and discharge counts to the RM register when VsRo is between VsRQ and VsRD.

Display

The **bq2090** can directly display capacity information using low-power LEDs. The **bq2090** displays the battery charge state in either absolute or relative mode. In relative mode, the battery charge is represented as a percentage of the FCC. Each LED segment **represents 25**% of the FCC.

In absolute mode, each segment represents a **fixed** amount of charge, based on the initial design capacity. In absolute mode, each segment represents **25%** of the design **capacity**. As the battery **wears** out over time, it is possible for the **FCC** to be below the initial design capacity. In this case, **all** of the **LEDs** may not turn on in absolute mode, representing the reduction in the actual battery capacity.

The displayed capacity is compensated for the present battery temperature. The displayed capacity **varies as** temperature varies, indicating the available charge at the present conditions.

When DISP is tied to Vcc, the SEG1-4 outputs are inactive. When DISP is left floating, the display becomes active whenever the bq2090 recognizes a valid charge or if the discharge rate exceeds the programmed fast discharge display threshold. When pulled low, the segment outputs become active immediately for a period of approximately 4 seconds.

The segment outputa are modulated **as** two **banks** of three, with segments 1 and 3 alternating with **segments** 2 and 4. The segment outputa **are** modulated at approximately **100Hz** with each segment bank active for 30% of the period.

SEG₁ blinks at a 4Hz rate whenever V_{SB} has been detected to be below V_{EDV_1} (EDV₁ = 1), indicating a low-battery condition. V_{SB} below V_{EDVF} (EDV_F = 1) disables the display output.

Microregulator

The bq2090 can operate **directly** from three or four nickel chemistry cells. To facilitate the power rupply **requirements** of the **bq2090**, an REF output is provided to regulate an external low-threshold **n-FET**. A micropower source for the **bq2090** can be inexpensively built using the FET and an **external** resistor; see Figure 1.

Communicating With the bq2090

The **bq2090** includes a simple two-pin (SCC and SCD) bidirectional serial data interface. A host **processor uses** the interface to **access** various **bq2090 registers**; see Table 4. This allows battery **characteristics** to be **easily** monitored. **The** open-drain SCD and SCC pine on the **bq2090** are pulled up by the host **system**, or may be connected to **Vss.** if the serial interface is not **wed**.

The interface **uses** a command-based protocol, where the host **processor sends** the battery **address** and an eight-bit command byte to the **bq2090**. The command directs the **bq2090** to either store the next data received to a register specified by the command byte or output the data specified by the command byte.

bq2090 Data Protocols

The **host** system, acting in the role of a Bus master, uses the read word and write word **protocols** to communicate integer data with the **bq2090** (see Figure 3).

Host-to-bq2090 Message Protocol

The **Bus** Host communicates with the bq2090 using one of three protocols:

- Read word
- Writeword
- Read block

The particular protocol **used** is a function of the command. The protocols **wed** are shown in Figure 3.

Table 3. bq2090 Current-Sensing Errors

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offset referred to VsR	± 50	± 150	μV	DISP = Vcc.
INL	Integrated non-linearity error	± 2	±4	%	Add 0.1% per °C above or below 25°C and 1% per volt above or below 4.25 V.
INR	Integrated non- repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

8/24

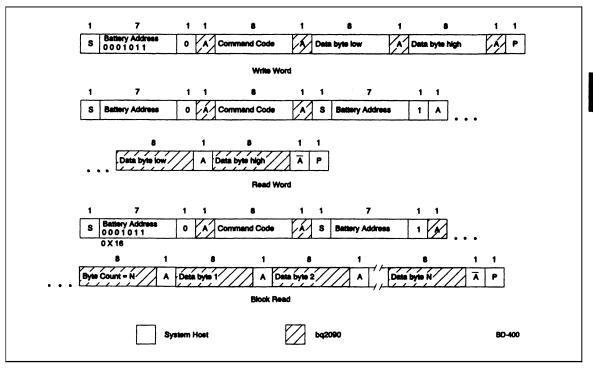


Figure 3. Host Communication Protocols

Host-to-bq2090 Messages (see Table 4)

Temperature() (0x08)

This read-only word returns the cell-pack's internal temperature (0.1°K).

Output: unsigned integer. Returns cell temperature in tenths of degrees Kelvin increments

unite: 0.1°K

Range: 0 to +500.0°K
Granularity: 0.5°K or better

Accuracy: ±3°K after calibration

Voltage() (0x09)

This read-only ward returns the cell-pack voltage (mV).

Output: unsigned integer. Returns battery terminal voltage in mV

May 1996

Units: mv

Range: 0 to 65,535 mV

Granularity: 0.2% of design voltage

Accuracy: ±1% of design voltage after calibration

Current() (0x0a)

This read-only word returns the current through the battery's terminals (mA).

Output: signed integer. Returns the charge/discharge rate in mA, where positive is for charge and negative is for-didurge

Units: mA

Range: 0 to 32,767 mA for charge or 0 to -32,768 mA for discharge

Granularity: 0.2% of the DesignCapacity() or better

Accuracy: ±1% of the Design Capacity after calibration

9/24

Table 4. bq2090 Register Functions

Function	Code	Access	Units	Defaults ¹
Temperature	0x08	read	0.1°K	
Voltage	0x09	read	mV	
Current	0x0a	read	mA	0000h
AverageCurrent	0x0b	read	mA	0000h
MaxError	0x0c	read	percent	2
RelativeStateOfCharge	0x0d	read	percent	0000h
AbsoluteStateOfCharge	0x0e	read	percent	0000h
RemainingCapacity	0x0f	read	m Ah	0000h
FullChargeCapacity	0x10	read	mAh	$\mathbf{E^2}$
RunTimeToEmpty	0x11	read	minutes	
AverageTimeToEmpty	0x12	read	minutes	
AverageTimeToFull	0x13	read	minutes	
Error Codes	0x16	read	number	0000h
CycleCount	0x17	read	count	0000h
DesignCapacity	0x18	read	mAh	E ²
DesignVoltage	0x19	read	mV	$\mathbf{E^2}$
ManufactureDate	0x1b	read	unsignedint	E ²
SerialNumber	0x1c	read	number	E ²
Reserved	0x1d ⋅ Oxlf			
ManufacturerName	0x20	read	string	E^2
DeviceName	0x21	read	string	\mathbf{E}^{2}
DeviceChemistry	0x22	read	string	$\mathbf{E^2}$
ManufacturerData	0x23	read		$\mathbf{E^2}$
FLAGS1 and FLAGS2	0x2c	read	unsigned int.	E ²

Note: 1. Defaults after reset or power-up.

10/24 May 1996

AverageCurrent() (0x0b)

This read-only word returns a rolling average of the current through the battery's terminals. The AverageCurrent() function returns meaningful values after the battery's first minute of operation.

Output: signed integer. Returns the charge/discharge rate in mA, where positive is for charge and negative is for discharge

Units: mA

Range: 0 to 32,767 mA for charge or 0 to -32.768 mA for discharge

Granularity: 0.2% of the DesignCapacity() or

better

Accuracy: ±1% of the Design Capacity after cali-

bration

RelativeStateOfCharge() (0x0d)

This read-only word returns the predicted remaining battery capacity expressed as a percentage of FullChargeCapacity() (%). RelativeStateOfCharge() is only valid for battery capacities less than 5,000mAh.

Output: unsigned integer. Returns the percent of remaining capacity

units: %

Range: 0 to 100%

Granularity: 1% or better

AbsoluteStateOfCharge() (0x0e)

This read-only word returns **the** predicted **remaining** battery capacity expressed as a percentage of **DesignCapacity()** (%). Note that **AbsoluteStateOfCharge** can return values greater than 100%. Absolute **StateOfCharge** is only valid for battery capacities less than **5,000mAh**.

Output: unsigned integer. Returns the percent of remaining capacity

units: %

Range: 0 to **65,535** %
Granularity: 1% or better
Accuracy: **±MaxError()**

RemainingCapacity() (0x0f)

This read-only word **returns** the predicted remaining battery capacity. The **RemainingCapacity()** value is expressed in mAh.

Apressed in main

Output: unsigned integer. Returns the estimated remaining capacity in mAh

Unite: mAh

Range: 0 to 65,535 mAh

Granularity: 0.2% of Design Capacity() or better

FullChargeCapacity() (0x10)

This read-only word returns the predicted pack capacity when it is fully charged. **FullChargeCapacity()** defaults to the value **programmed** in the external **E*PRO**M until a new pack capacity is learned.

Output: unsigned integer. Returns the estimated full charge capacity in mAh

Unite: mAh

Range: 0 to 65,535 mAh

Granularity 0.296 of design capacity or better

RunTimeToEmpty() (0x11)

This **read-only word returns** the predicted remaining battery life at the present rate of discharge (minutes). The RunTimeToEmpty() value is calculated based on Current().

Output: unsigned integer, Returns the minutes of operation left

Unite: minutes

Range: 0 to 65,534 minutes

Granularity 2 minutes or better

Invalid data indication: 65.535 indicates battery

is being charged

AverageTimeToEmpty() (0x12)

This read-only word **returns** the **predicted** remaining battery life at the present average discharge rate (minutes). The **AverageTimeToEmpty** is calculated **based** on AverageCurrent().

Output: **unsigned** integer, Returns the minutes of operation left

Units: minutes

Range: 0 to **65,534** minutes

Granularity: 2 minutes or better

Invalid data indication: **65,535** indicates battery

is being charged

May 1996

AverageTimeToFull() (0x13)

This **read-only** word returns the predicted time until the Smart Battery reaches **full** charge at the **present** average charge rate (minutes). The **AverageTimeToFull()** is calculated based on **AverageCurrent()**.

Output: unsigned integer. Returns the remaining time in minutes

Units: minutes

Range: 0 to **65,534 minutes**Granularity: 2 **minutes** or better

Invalid data indication: 65,535 indicates battery

is not being charged

Battery Status() (0x16)

This read-only word returns the battery statue word.

Output: unsigned integer. Returns the status register with alarm conditions bitmapped as shown in Table 5.

Some of the Battery **Status()** flags **(Remaining_Capacity_Alarm** and Remaining-Time-Alarm) are calculated based on current. See Table 8 for definitions.

Table 5. Status Register

Alarn	n Bits			
0x8000	Not Meaningful			
0x4000	Not Meaningful			
0x2000	Not Meaningful			
0x1000	Over_Temp_Alarm			
0x0800	Terminate_Discharge_Alarm			
0x0400	Reserved			
0x0200	Remaining_Capacity_Alarm			
0x0100	Remaining_Time_Alarm			
Statu	s Bits			
0x0080	Initialized			
0x0040	Discharging			
0x0020	Not Meaningful			
0x0010	Fully Discharged			
Error	Code			
0x0000- 0x000f	Reserved for error codes			

CycleCount() (0x17)

This mad-only word returns the number of charge/discharge cycles the battery has experienced A charge/discharge cycle starts from a base value equivalent to the battery's state-of-charge, upon completion of a charge cycle. The bq2090 increments the cycle counter during the current charge cycle, if the battery has been discharged to below 85% of the state-of-charge at the end of the last charge cycle. A discharge > 0.5% is needed, preventing false reporting of small charge/discharge cycles.

Output: unsigned integer. Returns the count of charge/discharge cycles the battery has experienced.

Units: cycles

Range: 0 to 65,535 cycles; 65,535 indicates battery has experienced 65,535 or more cycles

Granularity: 1 cycle

DesignCapacity() (0x18)

This read-only word returns the theoretical capacity of a new pack. The **DesignCapacity()** value is expressed in mAh at the nominal **discharge** rate.

Output: unsigned integer. Returns the battery

capacity in mAh

unite: mAh

Range: 0 to **65,536 mAh**

DesignVoltage() (0x19)

This read-only word returns the theoretical voltage of a new pack (mV).

Output: **unsigned** integer. Returns the battery's normal terminal voltage in **mV**

Units: mV

Range: 0 to 65,535 mV

ManufactureDate() (0x1b)

This read-only word returns the date the cell was manufactured in a packed integer word. The date is packed as follows: (year · 1980), month, day.

12/24 May 1996

Field	Bits Used	Formal	Allowable Vdue
Day	0-4	5-bit binary value	1–31 (corresponds to date)
Month	5–8	4bit binary value	1–12 (corresponds to month number)
Year	9–15	7-bit binary value	0 • 127 (corresponds to year biased by

SerialNumber() (Oxlc)

This read-only word returns a serial number. This number, when combined with the ManufacturerName(), the DeviceName(), and the ManufactureDate(), uniquely identifies the battery.

Output: unsigned integer

ManufacturerName() (0x20)

This read-only string returns a character string where the first byte is the number of characters available. The maximum number of characters is 15. The character string contains the battery manufacturer's name. For example, "Benchmarq" identifies the battery pack manufacturer as Benchmarq.

Output: string or ASCII character string

DeviceName() (0x21)

This read-only string returns a character string where the first byte is the number of characters available. The maximum number of characters is 15. The 15-byte character string contains the battery's name. For example, a DeviceName() of "bo2090" indicates that the battery is a model bo2090.

Output: string or ASCII character string

DeviceChemistry() (0x22)

This read-only string returns a character string where the first byte is the number of characters available. The maximum number of characters is 15. The 15-byte character string contains the battery's chemistry. For example, I the DeviceChemistry() function returns "NiMH," the battery pack contains nickel-metal hydride cells.

Output: string or ASCII character string

FLAGS1&2() (0x2c)

This read-only register returns an unsigned integer representing the internal status registers of the bq2090. The MSB represents FLAGS2, and the LSB represents FLAGS1. See Table 6 for the bit description for FLAGS1&2.

FLAGS2

The Display **Mode** flag **(DMODE)**, Bit 7, **determines** whether the bq2090 **displays** Relative or **Absolute capac**ity.

The DMODE values are:

FLAGS2 Bits										
7	6	5	4	3	2	1	0			
DMODE	-	•	•	•		-				

Where DMODE is:

- 0 Selects Absolute display
- 1 Selects Relative display

The Fast Discharge flag (FDQ), Bit 6, is set when the discharge rate exceeds the programmed level and is cleared when the rate drops below this level.

The FDQ values are:

	FLAGS2 Bits										
7	6	5	4	3	2	1	0				
	FDQ	•					-				

Table 6. Bit Description for FLAGS1 and FLAGS2

	(MSB) 7	6	5	4	3	2	1	0 (LSB)
FLAGS2	DMODE	FDQ	СНМ			•	LTF	
FLAGS1	-		VQ	WRINH	VDQ	SEDV	EDV1	EDVF

^{- =} Reserved

May 1996

13/24

Where FDQ is:

- O AverageCurrent < Discharge display threshold</p>
- 1 AverageCurrent > Discharge display threshold

The *Chemistry* flag **(CHM)**, Bit 5, **selects** Li-Ion or Nickel compensation **factors**.

The **CHM** values are:

	FLAGS2 Bits									
7 6 5 4 3 2 1 0										
-	-	CHM	-		•	-				

Where CHM is:

0 Selects Nickel

1 Selects Li-Ion

Bit 4 is reserved and should be initialized to zero for proper bq2090 operation.

Bit 3 is reserved.

Bit 2 is reserved.

The Low-Temperaturn Fault flag (LTF), Bit 1, is set when temperature<0°C and cleared when temperature>5°C.

The LTF values are:

	FLAGS2 Bits									
7 6 5 4 3 2 1 0										
-				•	•	LTF				

Where LTF is:

- 0 Temperature >5°C
- 1 Temperature <0°C

Bit 0 is reserved.

FLAGS1

Bit 7 is reaewed.

Bit 6 is reaerved.

The Valid *Charge* flag (VQ), Bit 5, is set when Vsro≥VsrQ and 10mAh of charge has accumulated. This bit is cleared during a discharge and when Vsro≤VsrQ.

The VQ values are:

FLAGS1 Bits									
7 6 5 4 3 2 1 0									
-		VQ				-	•		

Where VQ is:

 $0 V_{SR0} \le V_{SRQ}$

1 VSRO ≥ VSRQ and 10mAh of charge has accumulated

The Write Inhibit flag (WRINH), Bit 4, allows or inhibits writes to all registers.

The WRINH valuea are:

FLAGS1 Bits									
7	7 6 5 4 3 2 1 0								
		-	WRINH	•	-	-	•		

Where WRINH is:

- 0 Allows writes to all registers
- 1 Inhibits all writes and secures the bq2090 from invalid/undesired writes.

WRINH may be cleared by writing Manufacturer Access0=0xXX37 and forcing the SB pin to ground.

The Valid Discharge flag (VDQ), Bit 3, is set when a valid discharge is occurring (discharge cycle valid for learning new full charge capacity) and cleared if a partial charge is detected, EDVI is asserted when T<0°C, or self-discharge accounts for more than 256mAh of the discharge.

The VDQ values are:

			FLAC	S1 Bits			
7	6	5	4	3	2	1	0
		-		VDQ		•	-

Where VDQ is:

- Self-discharge is greater than 256mAh, EDVI = 1 when T<0°C or VQ = 1</p>
- 1 On first discharge after RM=FCC

The **Step EDV** flag (SEDV), Bit 2, is set when the discharge **current>3A** and cleared when the discharge current **falls** below **1.5A**.

The SEDV values are:

	FLAGS1 Bits									
7	6	5	4	3	2	1	0			
				•	SEDV	•				

Where SEDV is:

0 Current < 1.5A

1 Current > 3A

The First *End-of-Discharge Voltage* flag (EDV1), Bit 1, is set when Voltage()<EDV1=1 if SEDV=0 and cleared when VQ=1 and Voltage()>EDV1.

The EDVI values are:

FLAGS1 Bits									
7	7 6 5 4 3 2 1 0								
						EDVl			

Where EDV1 is:

0 VQ = 1 and Voltage ()> EDV1

1 Voltage() < EDVl and SEDV = 0

The Final End-of-Discharge Voltage flag (EDVF). Bit 0, is set when Voltage()<EDVF=1 if SEDV=0 and cleared when VQ=1 and Voltage()>EDVF.

The EDVF values are:

FLAGS1 Bits							
7_	6	5	4	3	2	1	0.
							EDVF

Where EDVF is:

0 VQ = 1 and Voltage > EDVF

1 Voltage < EDVF and SEDV = 0</p>

ManufacturerData() (0x23)

This read-only string allows access to an up to 15-byte manufacturer data string.

Output: block data—data whose meaning is assigned by the Smart Battery's manufacturer

Software Reset

The **bq2090** can be reset over the serial port by **confirming** that the **WRINH** bit is set to **zero** in **FLAGS1**, writing **MaxError()** (**DxOc)** to any value other than 2, and **writing** the **reset register (0x44)** to **8000**, **causing** the **bq2090** to **rejnitialize** and read the default values from the external **E*****PROM**. **See** the WRINH bit description if WRINH is **set** to 1.

Error Codes and Status Bits

Error **codes** and **status** bite **are** listed in Table 7 and Table 8, respectively,

bq2090 Critical Messages

Whenever the bq2090 detects a critical condition, it becomes a bus master and sends Alarm Warning() messages to the Bus Host, as appropriate, notifying it of the critical condition(s). The message sent by the Alarm Warning() function is similar to the message returned by the BatteryStatus() function. The bq2090 continues broadcasting the AlarmWarning() messages at 8-second intervals until the critical condition(s) has been corrected.

AlarmWarning() (0x16)

The **bq2090**, acting **as** a bus master device to the Bus Host, sends **this** message to notify it that one or more alarm **conditions exist**. Alarm Warning() is repeated at 8-second intervals until the **condition(s)** causing the alarm has been **corrected**.

May 1**996** 15/24

Table 7. Error Codes (BatteryStatus() (0x16))

Error	Code	Access	Description
ОК	0x0000	read/write	bq2090 processed the function code without detecting any errors
Busy	0x0001	read/write	bq2090 is unable to process the function code at this time
NotReady	0x0002	read/write	bq2090 cannot read or write the data at this time-try again later
UnsupportedCommand	0x0003	read/write	bq2090 does not support the requested function code
AccessDenied	0x0004	write	bq2090 detected an attempt to write to a read-only function code
Overflow/Underflow	0x0005	read/write	bq2090 detected a data overflow or underflow
BadSize	0x0006	write	bq2090 detected an attempt to write to a function code with an incorrect size data block
UnknownError	0x0007	read/write	bq2090 detected an unidentifiable error

Note: Reading the **bq2090 after an** error clears the error code.

16/24 May 1996

Table 8. Status Bits

	Alarm Bits			
BR Name	Set When:	Rent When:		
OVER_TEMP_ALARM	bq2090 detects that its internal temperature is greater than 60°C	Internal temperature falls back into the acceptable range		
TERMINATE_DISCHARGE_ALARM	bq2090 determines that it has supplied all the <i>charge</i> that it can without being damaged (that is, continued use will result in permanent capacity loss to the battery)	Battery reaches a state of charge sufficient for it to once again safely supply power		
REMAINING_CAPACITY_ALARM	bq2090 detects that the RemainingCapacity() is lees than that set by the RemainingCapacity() function	Either the value set by the RemainingCapacityAlarm() function is lower than the Remaining Capacity() or the RemainingCapacity() is increased by charging		
REMAINING_TIME_ALARM	bq2090 detects that the eetimated remaining time at the preeent discharge rate is less than that set by the Remaining Time Alarm() function	Either the value set by the Remaining Time Alarm () function is lower than the Average Time To Empty () or the Average I me I o Empty () is increased by charging		
	Status Bits			
Bit Name	Set When:	Reset When:		
INITIALIZED	bq2090 is set when the bq2090 has reached a full or empty state	Battery detects that power-on or user-initiated reset has occurred		
DISCHARGING	bq2090 determines that it is not being charged	Battery detects that it is being charged		
FULLY_DISCHARGED	bq2090 determines that it has supplied all the charge that it can without being damaged (that is, continued use will result in permanent capacity loss to the battery)	RelativeStateOfCharge() is greater than or equal to 20%		

Programming the **bq2090**

The **bq2090 requires** the proper programming of an **external EPROM for** proper device operation. Each module can be calibrated for the **greatest** accuracy, or **general** "default" values can be **used.** A programming kit (interface board, software, and cable) for an IBM-compatible **PC** is available from **Benchmarq**. Please contact Benchmarq for further detail

The bq2090 uses a 24C01 or equivalent serial E^2 PROM for storing the various initial values, calibration data, and string information. Table 1 outlines the parameters and addresses for this information. Tables 9 and 10 detail the various register contents and show an example program value for an 1800mAh NiMH battery pack, using a $50m\Omega$ sense resistor.

Table 9. Example Register Contents

		ROM ress		ROM ontents				
Description	Low Byte			High Byte	Example Values	Notes		
Design Capacity	0x00	0x01	08	07	1800mAh	This sets the initial full charge battery capacity stored in FCC. FCC is updated with the actual full to empty discharge capacity after a valid discharge from RM = FCC to Voltage() = EDV1.		
Initial Battery Voltage	0x02	0x03	30	2a	10800mV	This register is used to adjust the battery voltage. Comparing the value read from the bq2090 to two known input voltages allows the bq2090 to calibrate the battery voltage to within 1%. This action adjusts for errors in the resistor-dividersused for the SB input and bq2090 offset errors.		
Reserved	0x04	0x05	ff	ff		This register function is reserved.		
Reserved	0x06	0x07	ff	ff		This register function is reserved.		
Remaining Capacity Alarm	0x08	0x09	b4	00	180mAh	This value represents the low capacity alarm value.		
FLAGS1	0x0a		10			This enables writes to all registers and should be set to 10h prior to pack shipment to inhibit undesirable writes to the bq2090.		
FLAGS2	0x0b		80		Li-Ion = a0h NiMH = 80h	See FLAGS 2 register for the bit description and the proper value for programming FLAGS 2. Selects relative display mode and Lithium Ion compensation factors.		
Current Measurement Gain ¹	0x0c	0x0d	77	01	18.75/.05	The current gain measurement and current integration gain are related and defined for the bq2090 current measurement. 0x0c = 18.75/sense resistor value in ohms.		
EDV1	0x0e	0x0f	16	db	9450mV (1.05V/cell)	The value programmed is the two's complement of the threshold voltage in mV .		
EDVF	0x10	0x11	d8	dc	9000mV (1.0V/cell)	The value programmed is the two's complement of the threshold voltage in mV .		

Note:

1. Can be adjusted to calibrate the battery pack.

18/24

$\textbf{Table 9 Example Register} \, (Continued) \\$

		ROM Iress		ROM ontents		
Description	Low Byte	High Byte	Low Byte	High Byte	Example Values	Notes
Temperature Offset ¹	0x12	0x13	28	15	541.6	The default value is 540.1K.
Self- Discharge Rate	0x14		fO		.15C	This packed field is the 2s complement of ((RM/4)(RM/x)) where RM/x is the desired self-discharge rate per day at room temperature.
Digital Filter	0x15		fa		.18mV	This field is used to set the digital magnitude filter as described in Table 2.
Current Integration Gain	Ox16	0x17	40	00	3.2/.05	This field represents the following: 3.2/sense resistor in ohms. It is used by the bq2090 to scale the measured voltage values on the SR pin in mA and mAh. This register also compensates for variations in the reported sense resistor value.
Discharge Display Threshold	0x18		fb		Ifd = C/10 = 180mA 45/(180 * .05) = 5 2s (5) = fb	This packed field is the 2's complement of the desired voltage on SR which activates the LED display. fdqthr = 2's(-45/(lfd*Rs)) where Ifd is the desired fast discharge current and Rs is the sense resistor value in ohms. This is only valid when DISP = Z.
Battery Voltage Offset	0x19		00		0mV	This value is used to adjust the voltage offset measured at the SB input.
Voltage Gain	0x1a	0x1b	09	05	9.02	Voltage gain is packed as two units. For example, R5/R2 = 9.09 would be stored as : whole number stored in 0x1a (= 09h) and the decimal component stored in 0x1b as 256 • 0.02 = 05.
Reserved	0x1c 0x1e	Oxld 0x1f	ff 00	ff 00		This register is reserved.
Design Voltage	0x32	0x33	30	2a	10800mV	This is nominal battery pack voltage.
Specification Information	0x34	0x35	00	00		This is the default value for this register.
Manufacturer Date	0x36	0 x 37	al	20	May 1,1996 = 8353	Packed per the ManufactureDate() description, which represents May 1,1996 in this example.
Serial Number	0x38	0x39	12	27	10002	This contains the pack serial number, if desired.

Note:

1. Can be adjusted to calibrate the battery pack.

May 1996 19/24

Table 10. Example Program Values

String Description	Address	0x ?0	Ox ?1	Ox ?2	Ox ?3	Ox ?4	0x 75	0x 76	0x ?7	0x ?8	0x ?9-?1
Reserved	0x3a- 0x3f	00	00	00	00	00	00	00	00	00	00
Manufacturer's Name	0x40- 0x4f	09	42 B	45 E	4e N	43 C	48 H	4d M	41 A	52 R	51 Q
Device Name	0x50- 0x5f	08	42 B	51 Q	32 2	30 0	39 9	30 0	41 A	33 3	00- 00
Chemistry	0x60- 0x6f	04	4e N	69 I	4d M	48 H	00	00	00	00	00- 00
Manufacturer's Data	0x70- 0x7f	04	44 D	52 R	31 1	35 5	00	00	00	00	00- 00

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	V	Current limited by R1 (see Figure 1)
$V_{ m SR}$	Relative to Vss	-0.3	+7.0	V	Minimum 100 Ω aeries resistor should be used to protect SR in case of a shorted battery (see the $\log 2090$ application note for details).
TOPR	Operating temperature	0	+70	ပ္	Commercial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. **Functional** operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. **Exposure** to conditions beyond the operational **limits** for extended periods of time may **affect** device reliability.

DC Voltage Thresholds (TA = TOPR; V = 3.0 to 5.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
EvsB	Battery voltage error relative to SB	-50mV		50mV	V	See note

Note:

The accuracy of the **voltage** measurement may be improved by adjusting the battery voltage **offset** and **gain**, stored in external E^2PROM . For proper operation, Vcc ahould be 1.5V greater than Vsb.

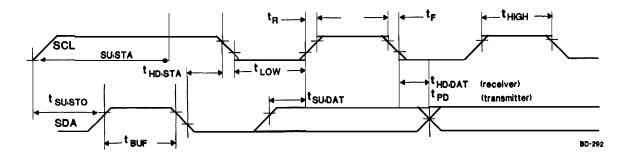
20/24 May 1996

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unlt	Notes
Vcc	Supply voltage	3.0	4.25	5.5	v	Voc excursion from < 2.0V to > 3.0V initializes the unit.
Vref	Reference at 25°C	5.7	6.0	6.3	V	I _{REF} = 5μA
V KEF	Reference at -40°C to +85°C	4.5		7.5	V	I _{REF} = 5μA
Rref	Reference input impedance	2.0	5.0		Ma	V _{REF} = 3V
			90	135	μА	V _{CC} = 3.0V
Icc	Normal operation		120	180	μА	$V_{CC} = 4.25V$
			170	250	μA	Vcc = 5.5V
V _{SB}	Battery input	0		Vcc	V	
RsBmax	SB input impedance	10			MΩ	0 < V _{SB} < V _{CC}
IDISP	DISP input leakage			5	μА	$V_{\rm DISP} = V_{88}$
ILVOUT	Vow output leakage	-0.2		0.2	μA	E ² PROM off
VsR	Sense resistor input	-0.3		2.0	v	V _{SR} < V _{SS} = discharge; V _{SR} > V _{SS} = charge
RsR	SR input impedance	10			Ma	-200mV < V _{SR} < V _{CC}
V _{IH}	Logic input high	1.4		5.5	v	SCL, SDA, SCC, SCD
V_{IL}	Logic input low	-0.5		0.6V	V	SCL, SDA, SCC, SCD
V_{OL}	Data, clock output low			0.4	v	Iol=350μA, SDA, SCD
IOL	Sink current	100		350	μA	Vol≤0.4V, SDA, SCD
Volsl	SEG _X output low, low Vcc		0.1		v	$Vcc = 3V, I_{OLS} \le 1.75mA$ SEG ₁ SEG ₄
Volsh	SEGx output low, high Vcc		0.4		v	$V_{CC} = 5.5V$, $I_{OLS} \le 11.0$ mA SEG ₁ -SEG ₄
Vohvl	Vour output, low Vcc	Vcc · 0.3	-		V	Vcc = 3V, Ivour = -5.25mA
Vohvh	Vour output, high Vcc	Vcc · 0.6	-		V	Vcc = 5.5V, Ivour = -33.0mA
Ivout	Vow source current	-33			mA	At Vohvh = Vcc · 0.6V
Iols	SEG _X sink current			11.0	mA	At V OLSH = 0.4V

Note: All voltages relative to Vss.

May 1996 21/24


AC Specifications

Symbol	Parameter	Min	Max	Units	Notes
F _{SMB}	SMBus operating frequency	10	100	KHz	
T _{BUF}	Bus free time between stop and start condition	4.7			
T _{HD:STA}	Hold time after (repeated) start condition	4.0		μs	
	Deposted start condition setup	250		ns	SCD
T _{SU:STA}	Repeated start condition setup	4. 7		μs	External Memory
T _{SU:STO}	Stop condition setup time	4.0		μs	
THD:DAT	Data hold time	0		ns	
TSU:DAT	Data setup time	250	40	ns	
T _{EXT1}	Data buffering time addresses 0x00-0x18 per character		40	ms	
T _{EXT2}	String buffering time addresses 0x19-0x23per character		15	me	40 ms for first character
T _{PD}	Data output delay time	300	3500	ns	External memory only. See Note.
TLOW	Clock low period	4.7		μв	
THIGH	Clock high period	4.0		μя	
T_{F}	Clock/Data fall time		300	ns	
T_R	Clock/data rise time		1000	ns	

Note:

The external memory must provide **this** internal minimum delay time to bridge the **undefined** region (minimum 300 ns) of the fallingedge of SCL to avoid unintended generation of START or **STOP** conditions.

Bus Timing Data

22/24

May 1996

Ordering Information

May 1996 23/24

24/24 May 1996

Gas Gauge IC With SMBus-Like Interface

Features

- Provides conservative and repeatable measurement of available charge in NiCd,
 NiMH, and Li-Ion rechargeable batteries
- Supports SBData charge control commands for Li-Ion, NiMH, and NiCd chemistries
- Designed for battery pack integration
 - 120µA typical operating current
 - Small size **enables** implementations in as little as ³/₄ square inch of PCB
- Two-wire SMBus-like interface
- Measurements compensated for current and temperature
- Programmable self-discharge and charge compensation
- 16-pin narrow SOIC

General Description

The **bq2091** Gas Gauge IC with **SMBus-Like** Interface is intended for battery-pack or in system installation to maintain an accurate record of available **battery** charge. The **bq2091** directly supports capacity monitoring for NiCd, NiMH, and Li-Ion battery **chemistries**.

The **bq2091 uses** the **SMBus** protocol that supports many of the Smart **Battery** Data (SBData) commands. The **bq2091 also** supports SBData charge control. Battery state-of-charge, capacity remaining, remaining time and **chemistry are** available over the serial link. Battery-charge **state** can be **directly** indicated using a four-segment LED display to graphically depict battery **full-to**empty in 25% increments.

The bq2091 estimates battery selfdischarge based on an internal timer and temperature sensor and user programmable rate information stored in external E'PROM. The bq2091 also automatically recalibrates, or 'learns' battery capacity in the full course of a discharge cycle from full to empty.

The **bq2091** may operate directly from three or four nickel chemistry cells. With the REF output and an external transistor, a simple, inexpensive regulator can be built to provide $V\infty$ for other battery cell configurations.

An external **E**²**PROM** is used to program initial **values** into the **bq2091** and is **necessary** for proper operation.

Pin Connections

16 □ Vout V_{CC} □1 SCL 2 15 REF SDA 3 14 D SCC SEG, ☐4 13 | SCD SEG , 5 12 D NC SEG, 🗆 6 11 🗆 SB SEG, □7 10 DISP 9 🗆 SR 16-Pin Narrow SOIC PN-110

Pin Names

Vout	E ² PROM supply output	SB	Battery sense input
SEG ₁	LED segment 1	DISP	Display control input
SEG ₂	LED segment 2	SIR	Sense resistor input
SEG ₃	LED segment 3	SCC	Serial communication clock
SEG ₄	LFD segment 4	SCD	Serial communication
SCL	Serial memory clock	502	data input/output
SDA	Serial memory data	Vcc	3.0-5.5V
REF	Voltage reference output	V_{SS}	System ground

Aug. 1996 1/26

Pin De	escriptions	SR	Sense resistor input			
SEG ₁ - SEG ₄	LED display segment outputs		The voltage drop (VsR) across pins SR and Vss is monitored and integrated over time to interpret charge and discharge activity			
5204	Each output may activate an external LED to sink the current sourced from $\mathbf{V}_{\mathbf{CC}}$.		The SR input is connected to the sense resistor and the negative terminal of the bat-			
SCC	Serial communication clock		tery. Vsr < Vss indicates discharge, and Vsr > Vss indicates charge. The effective volt-			
	This open-drain bidirectional pin is used to clock the data transfer to and from the bq2091 .		age drop, VsRo , as seen by the bq2091 is VsR + Vos (see Table 3 on page 8).			
SCD	Serial communication data	DISP	Display control input			
	This open-drain bidirectional pin is used to transfer address and data to and from the bq2091.		DISP high disables the LED display. DISP floating allows the LED display to be active during charge if the rate is greater than			
SCL	Serial memory clock		100mA. DISP low activates the display.			
	This output is used to clock the data trans-	SB	Secondary battery input			
	fer between the bq2091 and the external non-volatile configuration memory.		This input monitors the cell pack voltage as single-cell potential through a high-impe			
SDA	Serial memory data and address		ance resistor divider network. The cell pack voltage is reported in the SBD register func-			
	This bi-directional pin is used to transfer address and data to and from the bq2091 and the external configuration		tion Voltage 0 (0x09) and is compared to end- of-discharge voltage and charging voltage pa- rameters.			
NG	memory.	REF	Referenceoutput for regulator			
NC	No connect		REF provides a reference output for an			
Vout	Supply output		optional micro-regulator.			
	This output supplies power to the external E ² PROM configuration memory.	$\mathbf{v}_{\mathbf{c}\mathbf{c}}$	Supply voltage input			
	nui 2 11011 configuration memory.	$\mathbf{v_{ss}}$	Ground			

Functional Description

General Operation

The bq2091 determines battery capacity by monitoring the amount of charge input to or removed from a rechargeable battery. The bq2091 measures discharge and charge currents, estimates self-discharge and monitors the battery for low-battery voltage thresholds. The charge measurement is made by monitoring the voltage across a small-value series sense resistor between the battery's negative terminal and ground. The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the environmental and operating conditions.

Figure 1 shows a typical battery pack application of the bq2091 using the LED capacity display, the aerial port, and an external E PROM for battery pack programming information. The bq2091 muet be configured and calibrated for the battery-specific information to ensure proper operation. Table 1 outlines the externally programmable functions available in the bq2091. Refer to the Programming the bq2091 section for further details.

An internal temperature sensor eliminates the need for an external thermistor—reducing cost and components. An internal, temperature-compensated time-base $^{\rm eli}{\rm m}^{\rm l}$ - ${\rm na}^{\rm te}{\rm s}$ the need for an external resonator, further reducing cost and components. The entire circuit in Figure 1 can occupy less than 3_4 square inch of board space.

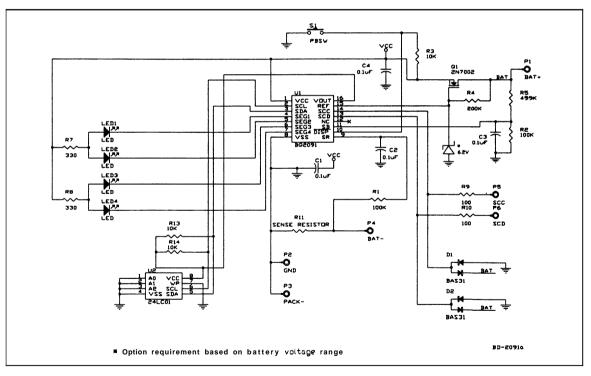


Figure 1. Battery Pack Application Diagram—LED Display

Aug. 1996

Table 1. Configuration Memory Programming Values

Parameter Name	Address	Length	Unb
Design capacity	0x00/0x01	16 bite: low byte, high byte	mAh
Initial battery voltage	0x02/0x03	16 bite: low byte, high byte	mV
Fast charging current	0x04/0x05	16 bite: low byte, high byte	mA
Fast charging voltage	0x06/0x07	16 bit: low byte, high byte	mV
Remaining capacity alarm	0x08/0x09	16 bite: low byte, high byte	mAh
FLAGS1	0x0a	8 bits	N/A
FLAGS2	0x0b	8 bite	N/A
Current measurement gain	0x0c/0x0d	16 bits: low byte, high byte	N/A
EDV ₁	0x0e/0x0f	16 bits: low byte, high byte	mV
$EDV_{\mathbf{F}}$	0x10/0x11	16 bits: low byte, high byte	mV
Temperature offset	0x12	8 bite	0.1°K
Maximum charge temperature/ΔT/Δt	0x13	8 bits	°C
Self-discharge rate	0x14	8 bits	N/A
Digital filter	0x15	8 bits	mV
Current integration gain	0x16/0x17	16 bits: low byte, high byte	N/A
Full charge percentage	0x18	8 bits	N/A
Charge compensation	0x19	8 bite	N/A
Battery voltage offset	0x1 a	8 bits	mV
Battery voltage gain	0x1b/0x1c	16 bits: high byte, low byte	N/A
Serial number	0x1d/0x1e	16 bite: low byte, high byte	N/A
Charge cycle count	0x1f/0x20	16 bite: low byte, high byte	N/A
Maintenance charge current	0x22/0x23	16 bite: low byte, high byte	mA
Reserved	0x24/0x31	_	_
Design voltage	0x32/0x33	16 bits: low byte, high byte	mV
Specification information	0x34/0x35	16 bits : low byte, high byte	N/A
Manufacturer date	0x36/0x37	16 bits: low byte, high byte	N/A
Reserved	0x38/0x3f	_	_
Manufacturer name	0x40/0x4f	8 + 120 bits	N/A
Device name	0x50/0x5f	8 + 120 bits	N/A
Chemistry	0x60/0x6f	8 + 120 bite	N/A
Manufacturer data	0x70/0x7f	8 +120 bite	N/A

Note: N/A=Not applicable; data packed or coded. See Programming the **bq2091 section** for details.

Voltage Thresholds

In conjunction with monitoring Vsn for charge/discharge currents, the bq2091 monitors the battery potential through the SB pin. The voltage potential is determined through a resistor divider network per the following equation:

$$\frac{R_5}{R_2} = \frac{MBV}{2.25} - 1$$

where MBV is the maximum battery voltage, R_5 is connected to the positive battery terminal, and R_2 is connected to the negative battery terminal. R_5/R_2 should be rounded to the next highest integer. The battery voltage is monitored for the end-of-discharge voltage (EDV) and for maximum cell voltage (MCV) and for alarm warning conditions. EDV threshold levels are used to determine when the battery has reached an 'empty' state, and the MCV threshold is used for fault detection during charging. The battery voltage gain and two EDV thresholds are programmed via EPROM. See the Programming the bq2091 section for further details.

If **VsB** is below either of the two **EDV** thresholds, the associated flag is latched and remains latched, independent of **VsB**, until the next valid charge.

EDV monitoring may be disabled under certain conditions. If the discharge current is greater than approximately 6A, EDV monitoring is disabled and resumes after the current falls below 6A.

Reset

The **bq2091** is reset when f i i connected to the battery pack. The **bq2091** can **also** be **reset** with a command over the serial port, as **described** in the Software Reset section.

Temperature

The **bq2091** monitors temperature using an internal sensor. The temperature is used to adapt **charge/discharge** and self-discharge compensations as well as maximum temperature and $\Delta T/\Delta t$ during **bq2091 controlled** charge. Temperature may **also** be accessed over the serial port. See the **Programming** the **bq2091 section** for further details.

Layout Considerations

The **bq2091 measures** the voltage differential between the **SR** and Vss pins. **Vos** (the offset voltage at the SR pin) is greatly affected by PC board layout. For optimal results, the PC board layout should follow the **strict** rule of a single-point ground return. Sharing high-current ground with small signal ground causes undesirable noise on the small signal **nodes**. Additionally, in reference to *Figure* 1:

- The capacitors (C1, C3, and C4) should be placed as close as possible to the SB and Vcc pins, and their paths to Vss should be as short as possible. A high-quality ceramic capacitor of 0.1µf is recommended for Vcc.
- The sense resistor capacitor (C2) should be placed as close as possible to the SR pin.
- The sense resistor (R₁₁) should be as close as possible to the bq2091.
- The IC should be close to the cells for the best temperature measurement.
- An optional zener may be necessary to ensure Vcc is not above the maximum rating during operation.

Gas Gauge Operation

The operational overview diagram in Figure 2 illustrates the operation of the bq2091. The bq2091 accumulates a measure of charge and discharge currents, as well as an estimation of self-discharge. Charge currents are compensated for temperature and state-of-charge. Self-discharge is only temperature-compensated.

The main counter, Remaining Capacity (RM), represents the available battery capacity at any given time. Battery charging increments the RM register, whereas battery discharging and self-discharge decrement the RM register and increment the DCR (Discharge Count Register).

The Diharge-Count Register (DCR) is used to update the Full-Charge Capacity (FCC) register only if a complete battery discharge from full to empty occurs without any partial battery charges. Therefore, the bq2091 adapta its capacity determination based on the actual conditions of discharge.

The battery's initial capacity is equal to the Design Capacity (DC). Until FCC is updated, RM counts up to, but not bewond, this threshold during subsequent charges.

Full-Charge Capacity or learned-battery capacity:

FCC is the last measured discharge capacity of the battery. On initialization (application of VCC or reset), FCC = DC. During subsequent discharges, the FCC is updated with the latest measured capacity in the Discharge Count Register (DCR), representing a discharge from full to below EDV1. A qualified discharge is necessary for a capacity transfer from the DCR to the FCC register. The FCC also serves as the 100% reference threshold wed by the relative state-of-charge calculation and display.

5/26

2. Design Capacity (DC):

The DC is the user specified battery **capacity** and is programmed by **wing** an **external E*PROM**. The **DC also** provides the **100%** reference for the absolute display mode.

3. Remaining Capacity (RM):

RM counts up during charge to a **maximum** value of FCC and down during **discharge** and **self-discharge** to **0.** RM is reset to 0x0A when EDVI = 1 and a valid charge is detected. To prevent overstatement of charge during periods of overcharge, RM stops incrementing when RM = FCC. RM may optionally be written to a user-defined value when fully charged when the battery pack is under **bq2091** charge control. See **bq2091** charge control for further details.

4. Discharge Count Register (DCR):

The DCR counts up during discharge independent of RM and can continue increasing after RM has decremented to **0**. Prior to RM = **0** (empty battery), both discharge and self-discharge increment the DCR. After RM = **0**, only discharge increments the **DCR**. The DCR **resets** to **0** when RM = FCC. The DCR does not roll over but stops counting when it reaches FFFFTh.

The DCR value becomes the new FCC value on the **first** charge after a valid discharge to **VgDv1** if:

- No valid charge initiations (charges greater than 10mAh, where V_{SRO} > V_{SRQ}) occurred during the period between RM = FCC and EDV1 detected.
- The self-discharge count is not more than 256mAh.
- The temperature is ≥ 273°K when the EDVI level is reached during discharge.

The valid discharge flag (VDQ) indicates whether the **present** discharge is valid for FCC update. FCC cannot be **modified** by greater than **-512mAh** during any single cycle.

Charge Counting

Charge activity is detected based on a positive voltage on the VSR input. If charge activity is detected, the **bq2091** increments RM at a rate proportional to **VsRo** and, if enabled, activates an LED display. Charge actions increment the RM after compensation for charge rate and temperature.

The **bq2091** determines charge activity sustained at a continuous rate equivalent to **Vsro > Vsro**. A valid charge equates to sustained charge activity greater than 10 mAh. Once a valid charge is detected,

charge counting continues until **Vsro** falls below **Vsro**. **Vsro** is a programmable **threshold** as **described** in the Digital Magnitude Filter section.

Discharge Counting

All discharge **counts** where **V**_{SRO} < **V**_{SRD} cause the RM **register** to decrement and the DCR to increment. **V**_{SRD} is a programmable threshold as described in the Digital Magnitude Filter **section**.

Self-Discharge Estimation

The **bq2091** continuously decrements RM and increments DCR for self-discharge based on time and temperature. The self-discharge rate is dependent on the battery chemistry. The **bq2091** self-discharge estimation rate is externally programmed in **E**²PROM and can be programmed from **0** to 25% per day at **20°C**. This rate doubles every **10°C** from O°C to **70°C**.

Charge Control

The bq2091 supports SBD charge control by broadcasting ChargingCurrent() and ChargingVoltage() to the Smart Charger address. Smart Charger broadcasts can be disabled by writing bit 14 of BatteryStatus() to 1. The bq2091-based charge control can be disabled by setting bit 4 in Flags2 (MSB of 0x2f) to 1. See Programming the bq2091 for further details. If RM is below the full charge percentage, the bq2091 will broadcast the fast charge current and voltage to the Smart Charger, if enabled. The bq2091 will broadcast the maintenance current valuea (trickle rate) if Voltage() is below EDVF.

The **bq2091** internal charge control is compatible with Li-Ion and Nickel-based chemistries. For Li-Ion, the **bq2091** will broadcast the required charge current and **voltage** according to the values programmed in the external **E*PROM.** During a valid charge (VQ = 1), if Current (0x0a) falls below 50mA while Voltage (0x09) is within 256mV of the charging voltage, the **bq2091** will signal a valid charge termination where the Terminate-Charge and Fully-Chargedbit is set in Battery Status.

For nickel-based chemistries, the **bq2091** will broadcast the required charge current and voltage according to the programmed values in the external E*PROM. Maximum Temperature and AT/& are used as valid charge termination methods. Note: Nickel-based chemistries require a charge voltage higher than the maximum cell voltage during charge to ensure constant current charging. **During** a valid charge (VQ = 1), if the **bq2091** determines a **maximum** temperature or AT/& rate greater than the programmed value, the Terminate Charge and **Fully**-Charged bit will be set in Battery Status.

Once the **bq2091** determines a valid charge termination condition, charging current is set to **0** until this condition ceases ($\Delta T/\Delta t$, ΔT , min. current). After a valid charge

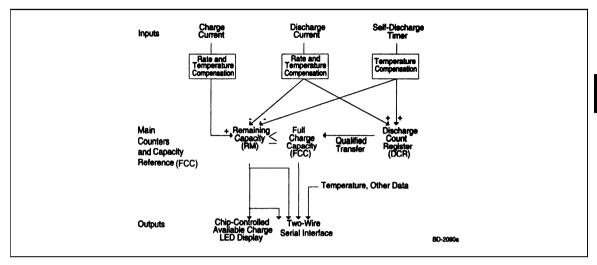


Figure 2. Operational Overview

termination and the terminate condition ceases, maintenance (trickle) charge current and voltage will be broadcast to the Smart Charger. This process continues until RM falls below the full charge percentage. The bq2091 will then request the fast charge current and voltage to the Smart Charger.

During fast charge, the bq2091 will suspend charge by requesting zero current and setting the Terminate-Charge-Alarm bit in Battery Statue. Charge is suspended if the actual charge current is 25% greater than the programmed charged current. If the programmed charge current is less than 1024mA, overcurrent suspend will occur if the actual charge current is 256mA greater than the programmed value. Charge is also suspended if

the actual battery voltage is 5% greater than the programmed charge voltage. If the battery temperature is greater than the programmed maximum temperature prior to charge, then the **bq2091 will** suspend charge requests until the temperature falls below 50°C.

After a valid charge termination, RM may optionally be set to a value **from 0** to 100% of the Full Charge **Capac**ity. If RM is below the value programmed in **Full Charge**

Percent, RM will be set to Full Charge Percent upon valid charge termination. If RM is above the Full Charge Percent, RM is not mo ed. This value also is used to determine when the bq2091 broadcasts fast charge or maintenance charge information.

Count Compensations

Charge activity is compensated for temperature and state-of-charge before updating the RM and/or DCR. RM is compensated for temperature before updating the RM Aug. 1996

register. Self-discharge estimation **is** compensated for temperature before updating RM or DCR.

Charge Compensation

Charge efficiency is compensated for state-of-charge. temperature, and battery chemistry. For **Li-ion chemis**try cells, the charge efficiency is unity for **all cases**. However, the charge efficiency for nickel **chemistry** cells is adjusted using the following equation:

$$RM = RM * (Q_{EFC} - Q_{ET})$$

where RelativeStateofCharge ≤ FullChargePercentage

and **QEFF** is the programmed fast charge efficiency varying from .75 to .99.

$$RM = RM (Q_{ETC} - Q_{ET})$$

where RelativeStateofCharge > FullChargePercentage

and **QETC** is the programmed maintenance (trickle) charge **efficiency** varying **from** .50 to .97.

QET is used to adjust the charge efficiency as the battery temperature increases according to the following:

$$Q_{ET} = 0 \text{ if } T < 30^{\circ}\text{C}$$

 $Q_{ET} = 0.02 \text{ if } 30^{\circ}\text{C} \le T < 40^{\circ}\text{C}$

$$Q_{ET} = 0.05 \text{ if } T \ge 40^{\circ}\text{C}$$

7/26

Remaining Capacity Compensation

The **bq2091 adjusts** the RM as a function of temperature. This **adjustment accounts** for the reduced capacity of the battery at colder **temperatures**. The following equation is used to adjust RM:

If T ≥ 5°C

RemainingCapacity () = NominalAvailableCapacity()

IfT < 5°C

RM() = NAC() (1 + TCC * (T - 5°C))

where $T = temperature ^{\circ}C$

TCC = 0.016 for Li-Ion cells

TCC = 0.0004 for Ni chemistry cells

RM will adjust upward to Nominal Available Capacity() as the temperature increases.

Digital Magnitude Filter

The **bq2091** has a programmable digital filter to eliminate charge and discharge counting below a set threshold. Table 2 shows typical digital filter settings. The **proper** digital **filter** setting can be calculated using the following equation.

 $V_{SRD}(mV) = -45/DMF$

 $V_{SRQ} (mV) = -1.25 \cdot V_{SRD}$

Table 2. Typical Digital Filter Settings

DMF	DMF Hex.	V _{SRD} (mV)	VsRQ (mV)
75	4B	-0.60	0.75
100	64	-0.45	0.56
150 (default)	96	-0.30	0.38
175	AF	-0.26	0.32
200	C8	-0.23	0.28

Error Summary

Capacity Inaccurate

The FCC is susceptible to error on initialization or if no updates occur. On initialization, the FCC value includes the error between the design capacity and the actual capacity. This error is present until a valid discharge ocsaya

curs and FCC is updated (see the DCR description on page 6). The other cause of FCC error is battery wearout. As the battery ages, the measured capacity must be adjusted to account for changes in actual battery capacity. Periodic diecharges from full to empty will minimize errors in FCC.

Current-Sensing Error

Table 3 illustrates the current-sensing error as a function of **Vsr.** A digital **filter eliminates** charge and discharge counts to the RM register when **Vsro** is between **Vsro** and Vsro.

Display

The bq2091 can directly display capacity information using low-power LEDs. The bq2091 displays the battery charge state in either absolute or relative mode. In relative mode, the battery charge is represented as a percentage of the FCC. Each LED segment represents 25% of the FCC.

In absolute mode, each segment represents a **fixed** amount of charge, based on the initial design capacity. In absolute mode, each segment **represents** 25% of the **design** capacity. As the battery **wears** out over time, it is possible for the FCC to be below the initial design capacity. In **this case**, all of the **LEDs** may not **turn** on in **absolute** mode, representing the reduction in the actual battery capacity.

The displayed capacity **is** compensated for the present battery temperature. The displayed capacity varies **as** temperature varies, indicating the available charge at the present conditions.

When DISP is tied to Vcc, the SEG1-4 outputs are inactive. When DISP is left floating, the display becomes active whenever the bq2091 recognizes a valid charge. When pulled low, the segment outputs become active immediately for a period of approximately 4 seconds.

The **segment outputs** are modulated as two banks of three, with segments 1 and 3 alternating with segments 2 and 4. **The segment** outputs are modulated at **approximately 100Hz** with each segment bank active for 30% of the period.

SEG₁ blinks at a 4Hz rate whenever VSB has been detected to be below **VEDV1** (**EDV₁ = 1**), indicating a low-battery condition. **VSB** below **VEDVF** (**EDVF = 1**) disables the display output.

Microregulator

The **bq2091** can operate d i i l y from three or four nickel chemistry cells. To facilitate the power supply requirements of the **bq2091**, an REF output is provided to regulate an external low-threshold n-FET. A micropower source for the **bq2091** can be inexpensively built using the FET and an external resistor; see Figure 1.

Aug. 199

Note that an optional **zener** diode may be necessary to limit **Voc** during **charge**.

Communicating With the bq2091

The bq2091 includes a simple two-pin (SCC and SCD) bidirectional eerial data interface. A hoet processor uses the interface to access various bq2091 registers; see Table 4. This allows battery characteristics to be easily monitored. The open-drain SCD and SCC pins on the bq2091 are pulled up by the host system, or may be connected to Vss, if the serial interface b not used.

The **interface uses** a command-baaed protocol, where the **host processor sends** the **battery address** and an eight-bit command byte to the **bq2091**. The command **directs** the **bq2091** to either store the next data received to a **register specified** by the **command** byte or output the data specified by the command byte.

bq2091 Data Protocols

The host system, acting in the role of a Bue master, uses the read word and write word protocols to communicate integer data with the bq2091(see Figure 3).

Host-to-bg2091 Message Protocol

The Bus **Host communicates** with the **bq2091** using one of three **protocols**:

- Read word
- Writeword
- Read block

The particular protocol used is a function of the command. The **protocols** used **are shown** in **Figure 3**.

Host-to-bq2091 Messages (see Table 4)

ManufacturerAccess() (0x00)

This optional function is not operational fur the bg2091.

RemainingCapacityAlarm() (0x01)

This function sets or returns the low-capacity alarm value. When RM falls below the RemainingCapacity-Alarm() value programmed from the external EPROM, the RemainingCapacityAlarm bit is set in BatteryStatus()(0x16). The system may alter this alarm during operation.

Input/Output: unsigned integer. This sets/returns the value where the Remaining Capacity Alarm bit is set in Battery Status.

RemainingTimeAlarm() (0x02)

This function **sets** or returns the low remaining time alarm value. When the **AverageTimeToEmpty()** (0x12) falls below **this** value, the Remaining Time Alarm bit in Battery Status is set. The default value fur thie register is ten **minutes**. The system may alter this alarm during operation.

Input/Output: unsigned integer. This sets/ret w the value where the Remaining Time Alarm bit is set in Battery Status.

BatteryMode() (0x03)

This read/write word selects the various battery operational modes. The bq2091 supports the battery capacity information specified in mAh. This function also determines whether the bq2091 charging values are broadcasted to the Smart Battery Charger address when the battery requires charging.

Table 3	. bq2091	Current-SensingErrors
---------	----------	------------------------------

Symbol	Parameter	Typical	Maximum	Units	Notes
Vos	Offset referred to VsR	± 50	± 150	μV	$\overline{\text{DISP}} = V_{\text{CC}}.$
INL	Integrated non-linearity error	±2	±4	%	Add 0.1% per °C above or below 25°C and 1%per volt above or below 4.25V.
INR	Integrated non -repeatability error	± 1	± 2	%	Measurement repeatability given similar operating conditions.

Aug. 1996

Temperature() (0x08)

This read-only word returns the cell-pack's internal temperature (0.1°K).

Output: unsigned integer. Returns cell temperature in tenths of degrees Kelvin increments

Units: 0.1°K

Range: 0 to +500.0°K

Granularity: **0.5°K** or better

Accuracy: ±3°K after calibration

Voltage() (0x09)

This read-only word returns the cell-pack voltage (mV).

Output: unsigned integer. Returns battery termi-

nal voltage m mV

Units: mV

Range: 0 to 65,535 **mV**

Granularity: 0.2% of design voltage

Accuracy: ±1% of design voltage after calibration

Current() (0x0a)

This read-only word returns the current through the battery's terminals (mA).

Output: signed integer. Returns the charge/discharge rate in mA, where positive is for charge and negative is for discharge

Units: mA

Range: 0 to 32,767 mA for charge or **0** to -32,768 **mA** for discharge

Granularity 0.2% of the DesignCapacity() or better

Accuracy: ±1% of the Design Capacity after calibration

AverageCurrent() (0x0b)

This read-only word **returns** a rolling average of the current through the battery's terminals. The **AverageCurrent()** function **returns** meaningful values after the battery's first minute of operation.

Output: signed integer. Returns the charge/discharge rate in mA, where positive is for charge and negative is for discharge

units: mA

Range: **0** to 32,767 mA for charge or **0** to 92,768 mA for discharge

Granularity: 0.2% of the DesignCapacity() or

better

Accuracy: *1% of the Design Capacity after cali-

bration

RelativeStateOfCharge() (0x0d)

This read-only word returns the predicted remaining battery capacity expressed as a percentage of FullCharge Capacity (%). Relative State Of Charge () is only valid for battery capacities less than 10,400mAh.

Output: unsigned integer. Returns the percent of

remaining capacity

Unite: %

Range: 0 to 100%

Granularity: 1% or better

AbsoluteStateOfCharge() (0x0e)

This read-only word returns the predicted remaining battery capacity expressed as a percentage of DesignCapacity() (%). Note that AbsoluteStateOfCharge can return values greater than 100%. Absolute StateOfCharge is only valid for battery capacities less than 10,400mAh.

Output: **unsigned** integer. Returns the percent of remaining capacity

Units: %

Range: 0 to 65,535 % Granularity. 1% or better

Accuracy: **±MaxError()**

RemainingCapacity() (0x0f)

This read-only word returns the predicted remaining battery capacity. The Remaining Capacity() value is expressed in mAh.

Output: unsigned integer. Returns the estimated remaining capacity in mAh

Units: mAh

Range: 0 to 65,535 mAh

Granularity 0.2% of **DesignCapacity()** or better

FullChargeCapacity() (0x10)

This read-only word returns the predicted pack capacity when it is fully charged. **FullChargeCapacity()** defaults

Aug. 1996

10/26

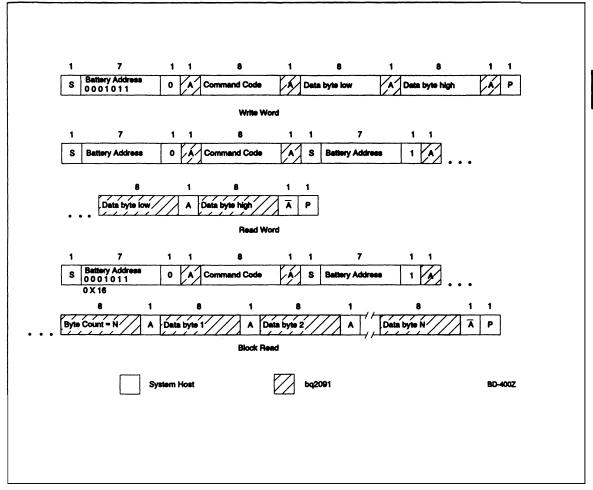


Figure 3. Host Commun cation Protocols

Table 4. bq2091 Register Functions

Function	Code	Access	Units	Defaults ¹
ManufacturerAccess	0x00	read/write		
RemaningCapacityAlarm	0x01	read/write	unsigned int.	E^2
Remaining Time Alarm	0x02	read/write	unsigned int.	10
BatteryMode	0x03	read	bit flag	
Temperature	0x08	read	0.1°K	
Voltage	0x09	read	mV	
Current	0x0a	read	mA	0000h
AverageCurrent	0x0b	read	mA	0000h
MaxError	0x0c	read	percent	100
RelativeStateOfCharge	0x0d	read	percent	0000h
AbsoluteStateOfCharge	0x0e	read	percent	0000h
RemainingCapacity	0x0f	read	mAh	0000h
FullChargeCapacity	0x10	read	mAh	E ²
RunTimeToEmpty	0x11	read	minutes	
AverageTimeToEmpty	0x12	read	minutes	
Reserved	0x13			
ChargingCurrent	0x14	read	mA	E^2
ChargingVoltage	0x15	read	mV	E^2
Battery Status	0x16	read	number	0000h
CycleCount	0x17	read	count	$\mathbf{E^2}$
DesignCapacity	0x18	read	mAh	E^2
DesignVoltage	Ox19	read	mV	$\mathbf{E^2}$
ManufactureDate	0x1b	read	unsigned int	E ²
SerialNumber	Oxlc	read	number	E ²
Reserved	0x1d • Oxlf			
ManufacturerName	0x20	read	string	E ²
DeviceName	0x21	read	string	E ²
DeviceChemistry	0x22	read	string	E ²
ManufacturerData	0x23	read	string	$\mathbf{E^2}$
FLAGS1 and FLAGS2	0x2f	read	bit fla g	E ²
Endof DischargeVoltage1	0x3e	read	mV	E ²
EndofDischargeVoltageFinal	0x3f	read	mV	E ²

Note: 1. Defaults after reset or power-up.

2

to the value programmed in the external **E**²**PROM** until a new pack capacity is learned.

Output: unsigned integer. Returns the estimated full charge capacity in mAh

Units: mAh

Range: 0 to 65,536 mAh

Granularity: 0.2% of design capacity or better

RunTimeToEmpty() (0x11)

This read-only word returns the predicted remaining battery life at the present rate of discharge (minutes). The RunTimeToEmpty() value is calculated based on Current().

Output: unsigned integer. Returns the minutes of operation left

Unite: minutes

Range: 0 to 65,534 minutes

Granularity: 2 minutes or better

Invalid data indication: 65,535 indicates battery

is being charged

AverageTimeToEmpty() (0x12)

This read-only word **returns** the predicted remaining battery life at the present average **discharge** rate (**minutes**). The **AverageTimeToEmpty** is calculated based on AverageCurrent().

Output: unsigned integer. Returns the minutes of operation left

Unite: minutes

Range: 0 to 65,534 minutes
Granularity: 2 minutes or better

Invalid data indication: 65,535 indicates battery

is being charged

ChargingCurrent() (0x14)

If enabled, the **bq2091** sends the desired charging rate in mA to the Smart Battery Charger.

Output: unsigned integer. Transmits/returns the maximum charger output current in mA

Units: mA

Range: 0 to 65,534 mA

Granularity: 0.2% of the design capacity or better

Accuracy: ±0.2% of the design capacity

Invalid data indication: 65,535 indicates that the Smart Charger should operate as a voltage source outside its maximum regulated current.

Charging Voltage() (0x15)

If enabled, the bq2091 **sends** the **desired** voltage in **mV** to the Smart Battery Charger.

Output: unsigned integer. **Transmits/returns** the charger voltage output in **mV**

Units: mV

Range: 0 to 65,534mV

Granularity: 0.2% of the design voltage or better

Accuracy: ±0.2% of the design voltage

Invalid data indication: **65,535** indicate that the Smart Battery Charger should operate as a **current** source outside its maximum regulated voltage **range**.

BatteryStatus() (0x16)

This read-only word returns the battery status word.

Output: unsigned integer. Returns the status register with alarm conditions bitmapped as shown in Table 6.

Some of the Battery **Status()** flags **(Remaining_Capacity_Alarm** and Remaining—Time—Alarm) are calculated **based** on current. **See** Table 8 for **definitions**.

CycleCount() (0x17)

This read-only word returns the number of charge/discharge cycles the battery has experienced. A charge/discharge cycle starts from a base value equivalent to the battery's state-of-charge, upon completion of a charge cycle. The bq2091 increments the cycle counter during the current charge cycle, if the battery has been discharged to below 86% of the state-of-charge at the end of the last charge cycle. A discharge > 0.5% is needed, preventing false reporting of small charge/discharge cycles.

Output: unsigned integer. Returns the count of charge/discharge cycles the battery has experienced

Units: cycles

Range: 0 to **65,535** cycles; 66,535 indicates battery has experienced 65,535 or more cycles

Granularity 1 cycle

Aug. 1996

DesignCapacity() (0x18)

This read-only word **returns** the theoretical capacity of a new pack. The **DesignCapacity()** value is expressed in mAh at the nominal **discharge** rate.

Output: unsigned integer. Returns the battery capacity in mAh

Units: mAh

Range: 0 to 65,535 mAh

DesignVoltage() (0x19)

This read-only word returns the theoretical voltage of a new pack (mV).

Output: unsigned integer. Returns the battery's normal terminal voltage in **mV**

Units: mV

Range: 0 to 65,535 mV

ManufactureDate() (0x1b)

This read-only word returns the date the cell was manufactured in a packed integer word. The date is packed as follows: (year · 1980), month, day.

Field	Bits Used	Format	Allowable Value
Day	0-4	5-bit binary value	1-31 (corresponds to date)
Month	5–8	4-bit binary value	1–12 (corresponds to month number)
Year	9–15	7-bit binary value	0 • 127 (corresponds to year biased by 1980)

SerialNumber() (0x1c)

This read-only word returns a serial number. **This** number, when combined with the **ManufacturerName()**, the **DeviceName()**, and the **ManufactureDate()**, uniquely identifies the battery.

Output: unsigned integer

ManufacturerName() (0x20)

This read-only string **returns** a character string where the first byte is the number of charactera available. The maximum number of characters is 15. The character string **contains** the battery manufacturer's name. For example, "Benchmarq" identifii the battery pack **manufacturer** as Benchmarq.

Output: string or ASCII character string

Table 5. Status Register

Alarm Bits						
0x8000	Overcharge Alarm					
0x4000	Terminate Charge Alarm					
0x2000	Reserved					
0x1000	Over Temp Alarm					
0x0800	Terminate Discharge Alarm					
0x0400	Reserved					
0x0200	Remaining Capacity Alarm					
0x0100	Remaining Time Alarm					
Statu	s Bits					
0x0080	Initialized					
0x0040	Discharging					
0x0020	Fully Charged					
0x0010	Fully Discharged					
Error	Code					
0x0000- 0x000f	Reserved for error codes					

DeviceName() (0x21)

This read-only string returns a character string where the first byte is the number of characters available. The maximum number of characters is 15. The 15-byte character string contains the battery's rame. For example, a DeviceName() of "bq2091" indicates that the battery is a model bq2091.

Output: string or ASCII character string

DeviceChemistry() (0x22)

This read-only **string** returns a character **string** where the **first** byte is the number of characters available. The maximum number of charactere is 15. The 15-byte character **string** contains the battery's chemistry. For example, if the **DeviceChemistry()** function returns "NiMH," the battery pack contains nickel-metal **hydride** cells.

Output: string or ASCII character string

ManufacturerData() (0x23)

This read-only **string** allows access to an up to 15-byte manufacturer data **string**.

Output: block data—data whose meaning is assigned by the Smart Battery's manufacturer

EndofDischargeVoltage1() (0x3e)

This read-only word returns the first end of discharge voltage programmed for the pack.

Output: unsigned integer. Returns battery endof-discharge voltage programmed in E²PROM in mV.

EndofDischargeVoltageF() (0x3f)

This read-only word returns the final end-of-discharge voltage programmed for the pack.

Output: unsigned integer. Returns battery final end-of-discharge voltage programmed in E²PROM in mV.

FLAGS1&2() (0x2c)

This read-only register returns an unsigned integer representing the internal statue registers of the bq2091. The MSB represents FLAGS2, and the LSB represents FLAGS1. See Table 6 for the bit description for FLAGS1&2.

FLAGS2

The *Display* Mode flag @MODE), Bit 7, **determines** whether the **bq2091** displays Relative or **Absolute capac**ity.

The DMODE values are:

FLAGS2 Bits									
7	6	5	4	3	2	1	0		
DMODE		-							

Where DMODE is:

- 0 Selects Absolute display
- 1 Selects Relative display

Bit 6 is reserved.

The Chemistry flag (**CHM**), Bit 5, selects Li-Icn or $N \ i \ l$ compensation factors.

The CHM values are:

FLAGS2Bib									
7	6	5	4	3	2	1	0		
		CHM		•	-	_ •	-		

Where CHM is:

- O Selects Nickel
- 1 Selects Li-Ion

Bit 4, the Charge Control flag (CC), determines whether a bq2091-based charge termination will set RM to a user-defined programmable full charge capacity.

The CC values are:

FLAGS2 Bib									
7	6	5	4	3	2	1	0		
	-	•	CC			•	•		

Where CC is:

- RM is not modified on valid bq2091 charge termination
- 1 RM is set to a programmable percentage of the FCC when a valid bq2091 charge termination occurs

Bit 3 is received.

Bit 2, the *Overvoltage flag* (OV), is set when the bq2091 detects a peck voltage 5% greater than the programmed charging voltage. This bit is cleared when the pack voltage falls 5% below the programmed charging voltage.

The OV values are:

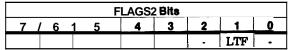
FLAGS2 Bits									
7	6	5	4	3	2	1	0		
		•		-	OV				

Where OV is:

- 0 BatteryVoltage() < 1.05 ChargingVoltage
- 1 BatteryVoltage() ≥ 1.05 ChargingVoltage

Table 6. Bit Description for FLAGS1 and FLAGS2

	(MSB) 7	6	5	4	3	2	1	0 (LSB)
FLAGS2	DMODE		СНМ	cc		OV	LTF	ос
FLAGS1	ΔΤ/Δt1	ΔΤ/Δt0	VQ	WRINH	VDQ	SEDV	EDV1	EDVF


^{- =} Reserved

Aug. 1996

15/26

Bit 1, the Low *Temperature* Fault flag (LTF), is set when temperature<0°C and cleared when temperature>5°C.

The LTF values are:

Where LTF is:

- 0 Temperature>5°C
- 1 Temperature<0°C

Bit 0, the *Overcurrent* flag (OC), is **set** when the average current is 25% greater than the programmed charging current. If the charging **current** is programmed **less** than **1024mA**, **overcurrent** is set if the average **current** is 256mA greater than the programmed charging current. This flag is cleared when the average current falls below **256mA**.

The OC values are:

	FLAGS2 Bits									
7	6	5	4	3	2	1	0_			
						-	oc			

Where OC is:

- O Average current is less than 1.25 * charging current or less than 256mA if charging current is programmed less than 1024mA
- 1 Average current exceeds 1.25 charging current or 256mA if the charging current is programmed leas than 1024mA. This bit is cleared if average current<256mA</p>

FLAGS1

Bit 7 and bit 6, the **Delta Temperature** flags, signify whether the **bq2091** is sensing a valid $\Delta T/\Delta t$ for charge termination. Both **bits** must transition to a **1** to signify that the rise in battery temperature exceeds the programmed rate threshold. The bits are clear if the rate of temperature falls below the programmed $\Delta T/\Delta t$ rate.

The $\Delta T/\Delta t_0$, $\Delta T/\Delta t_1$ values are:

FLAGSI Bits									
7	6	5	4	3	2	1	0		
ΔΤ/Δt ₁	ΔΤ/Δto		•	•		•	•		

Where $\Delta T/\Delta t_0$, $\Delta T/\Delta t_1$ is:

- 0 Temperature < Programmed ΔT/Δt rate</p>
- 1 Temperature > Programmed ΔT/Δt rate

The Valid Charge flag (VQ), Bit **5**, is set when Vsro≥VsrQ and **10mAh** of charge has accumulated. This bit **is** cleared during a discharge and when Vsro≤VsrQ.

The VQ values are:

	FLAGS1 Bits									
7	6	5	4	3	2	1	0			
		VQ	•			-	•			

Where VQ is:

- 0 V_{SR0} ≤ V_{SRQ}
- 1 VSRO ≥ VSRQ and 10mAh of charge has accumulated

The Write Inhibit flag (WRINH), Bit 4, allows or inhibits writes to all registers.

The **WRINH values** are:

FLAGSI Bits									
7	6	5	4	3	2	1	0		
		-	WRINH						

Where WRINH is:

- O Allows writes to all registers
- Inhibits all writes and secures the bq2091 from invalid/undesired writes.

WRINH should be set at the time of pack assembly and tested to prevent normally read-write registers from accidental over-writing.

The Valid Discharge flag (VDQ), Bit 3, is set when a valid discharge is occurring (discharge cycle valid for learning new full charge capacity) and cleared if a partial charge is detected, EDVI is asserted when T<0°C, or self-discharge accounts for more than 256mAh of the discharge.

The VDQ values are:

	FLAGS1 Bits									
7	6	5	4	3	2	1	0			
				VDQ_		·	-			

Where VDQ is:

- Self-discharge is greater than 256mAh, EDVl = 1 when T<0°C or VQ = 1</p>
- 1 On first discharge after **RM=FCC**

The Stop *EDV* flag **(SEDV)**, Bit 2, is set when the discharge **current>6.15A** and cleared when the discharge current falls below **6.15A**.

The SEDV values are:

	FLAGS1 Bits									
7	8	5	4	3	2	1	0			
-					SEDV	•				

Where SEDV is:

- 0 Current<6.15A
- 1 Current>6.15A

The First End-of-Discharge Voltage Elzg (EDV1), Bit 1, b set when Voltage()

EDV1=1 if SEDV=0 and cleared when VQ=1 and Voltage()>EDV1.

The EDVI values are:

FLAGS1 Bits									
7	6	5	4	3	2	1	0		
•						EDV1			

Where EDVI is:

- 0 VQ = 1 and Voltage ()> EDVl
- 1 Voltage() < EDVI and SEDV = 0

The Final End-of-Discharge Voltage flag (EDVF), Bit 0, is set when Voltage()<EDVF=1 if SEDV=0 and cleared when VQ=1 and Voltage()>EDVF.

The EDVF values are:

FLAGS1 Bits									
7	6	5	4	3	2	1	0		
-						•	EDVF		

Where EDVF is:

- 0 VQ = 1 and Voltage > EDVF
- 1 Voltage < EDVF and SEDV = 0</p>

Software Reset

The bq2091 can be reset over the serial port by confirming that the WRINH bit is set to zero in FLAGS1, writing MaxError (0x0c) to any value other than 2. and writing the reset register (0x44) to 8009, causing the bq2091 to reinitialize and read the default values from the external E²PROM.

1 to

Error Codes and Status Bits

Error codes and status bits are listed in Table 7 and Table 8, respectively.

Programming the bg2091

The bq2091 requires the proper programming of an external BPROM for proper device operation. Each module can be calibrated for the greatest accuracy, or general "default" values can be used. A programming kit (interface board, software, and cable) for an IBM-compatible PC is available from Benchmarq. Please contact Benchmarq far further detail

The bq2091 uses a 24C01 or equivalent serial E²PROM for storing the various initial values, calibration data, and string information. Table 1 outlines the parameters and addresses for thb information. Tables 9 and 10 detail the various register contents and show an example program value for an 1800mAh NiMH battery pack, using a 50mΩ sense resistor.

Table 7. Error Codes (BatteryStatus() (0x16))

Error	Code	Access	Description
ок	0 x 0000	read/write	bq2091 processed the function code without detecting any errors
Busy	0x0001	read/write	bq2091 is unable to process the function code at this time
NotReady	0x0002	read/write	bq2091 cannot read or write the data at this time—try again later
UnsupportedCommand	On0003	read/write	bq2091 does not support the requested function code
AccessDenied	0x0004	write	bq2091 detected an attempt to write to a read-only function code
Overflow/Underflow	0x0005	read/write	bq2091 detected a data overflow or underflow
BadSize	0x0006	write	bq2091 detected an attempt to write to a function code with an incorrect size data block
UnknownError	0x0007	read/write	bq2091 detected an unidentifiable error

Note: Reading the **bq2091** after an e m r clears the error code.

Table 8. Status Bits

	Alarm Bits	
Bit Name	Set When:	Reset When:
OVER_CHARGE_ALARM	BQ2091 detects over-temperature, \[\Delta T/\Delta t \text{or minimum charge current} \] conditions \[\frac{\text{exist}}{\text{conditions}} \] (Note: valid charge termination).	A discharge occurs or when ΔΤ/Δt, over-temperature, or minimum current ceases during charge.
TERMINATE_CHARGE_ALARM	bq2091 detects over-current, over- voltage, over-temperature, or $\Delta T/\Delta t$ conditions exist during charge. Charging current is set to zero, indicating a charge suspend.	A discharge occurs or when all conditions causing the event cease.
ΔΤ/Δt_ALARM	bq2091 detects the rate-of- temperature increase is above the programmed value (valid termination)	The temperature rise falls below the programmed rate .
OVER_TEMP_ALARM	bq2091 detects that its internal temperature is greater than the programmed value (valid termination).	Internal temperature falls below 50°C.
TERMINATE_DISCHARGE_ALARM	bq2091 determines that it has supplied all the charge that it can without being damaged (EDVF).	Battery reaches a state of charge sufficient for it to once again safely supply power.
REMAINING_CAPACITY_ALARM	bq2091 detects that the RemainingCapacity() is less than that set by the RemainingCapacity() function.	Either the value set by the RemainingCapacityAlarm() function is lower than the Remaining Capacity() or the RemainingCapacity() is increased by charging.
REMAINING_TIME_ALARM	bq2091 detects that the estimated remaining time at the present discharge rate is less than that set by the RemainingTimeAlarm() function.	Either the value set by the RemainingTimeAlarm() function is lower than the AverageTimeToEmpty() or the AverageTimeToEmpty() is increased by charging.
	Status Bits	
Bit Name	Set When:	Reset When:
INITIALIZED	bq2091 is set when the bq2091 has reached a full or empty state.	Battery detects that power-on or user-initiated reset has occurred.
DISCHARGING	bq2091 determines that it is not being charged.	Battery detects that it is being charged.
FULLY-CHARGED	bq2091 determines a valid charge termination, RM will then be set to full charge percentage if necessary.	RM discharges below the full charge percentage
FULLY_DISCHARGED	bq2091 determines that it has supplied all the charge that it can without being damaged (that is, continued use will result in permanent capacity loss to the battery)	RelativeStateOfCharge() is greater than or equal to 20%

Aug. 1996

Table 9. Example Register Contents

	E ² PF Add		E ² PF Hex Co			
Description	Low Byte	High Byte	Low Byte	High Byte	Example Values	Notes
Design Capacity	0x00	0x01	08	07	1800mAh	This sets the initial full charge battery capacity stored in FCC. FCC is updated with the actual full to empty discharge capacity after a valid discharge from RM = FCC to Voltage() = EDV1.
Initial Battery Voltage	0x02	0x03	30	2a	10800mV	This register is used to adjust the battery voltage. Comparing the values read from the bq2091 to two known input voltages allows the bq2091 to calibrate the battery voltage to within 1%. This action adjusts for errors in the resistor-dividers used for the SB input and bq2091 offset errors.
Fast charging current	0x04	0x05	08	07	1800mA	This register is used to set the fast charge current for the Smart Charger.
Fast charging	0x06	0x07	c4	3b	15300mV	This register is used to set the fast charge voltage for the Smart Charger.
Remaining Capacity Alarm	0x08	0x09	b4	00	180mAh	This value represents the low capacity alarm value.
FLAGS1	0x0a		10			This enables writes to all registers and should be set to 10h prior to pack shipment to inhibit undesirable writes to the bq2091 .
FLAGS2	0x0b		ъ0		Li-Ion = a0h NiMH = 80h	See FLAGS2 register for the bit description and the proper value for programming FLAGS2. Selects relative display mode, Lithium Ion compensation factors, and enables bq2091 Smart Charger control.
Current Measurement Gain ¹	0x0c	0x0d	ee	02	37.5/.05	The current gain measurement and current integration gain are related and defined for the bq2091 current measurement . 0x0c = 37.5/sense resistor value in o h.
EDV1	0x0e	0x0f	16	db	9450mV (1.05V/cell)	The value programmed is the two's complement of the threshold voltage in mV .
EDVF	0x10	0x11	ď8	dc	9000mV (1.0V/cell)	The value programmed is the two's complement of the threshold voltage in mV .

Note: 1. Can be adjusted to calibrate the battery pack.

Table 9. Example Register Contents (Continued)

		ROM ress		ROM ontents		
Description	Low Byte	High Byte	Low Byte	High Byte	Example Values	Notes
Temperature Offset ¹	0x12		32		5.0°C	The default value is 0x80 (12.8° + nominal value). Actual temp (20°C) = Nominal temp. (15°C) - temp. offset (5°C) where temperature determined by the bq2091 can be adjusted from 0° to 25.5° (Temperature offset (0-255) • .1)+ nominal value temp.
Maximum Charge Temperature, ΔΤ/Δt	0x13		87		61.2°C (74 - (8 • 1.6)) ΔΤ/Δt = ₇	Maximum charge temperature is 74 • (mt • 1.6)°C (upper nibble). ΔΤ/Δt rate is in the lower nibble and varies from 0 to 15, where 0 is more sensitive than 15. Typical value is 7.
Self- Discharge Rate	0x14		fO		.15C	This packed field is the 2's complement of ((RM/4)(RM/x)) where RM/x is the desired self-discharge rate per day at room temperature.
Digital Filter	0x15		fa		.18mV	This field is used to set the digital magnitude filter as described in Table 2.
Current Integration Gain ¹	0x16	0x17	40	00	3.2/.05	This field repreaents the following: 3.2/sense resistor in ohms. It is used by the bq2091 to scale the measured voltage values on the SR pin in mA and mAh. This register also compensates for variations in the reported sense resistor value.
Full Charg Percentage	0x18		а0		96%=60 2.3 (60) = a0	This packed field is the 2's complement of the desired value in RM when the bq2091 determines a full charge termination. If RM is below this value. RM is set to this value. If RM is above this value, then RM is not adjusted.
e Charge Compensation	0x19		bd		85% = maintenance comp. 95% = fast charge comp.	This packed value is used to set the fast charge and maintenance charge efficiency for nickel-based batteries. The upper nibble adjusts the maintenance charge compensation; the lower nibble adjusts the fast charge compensation. Maintenance, upper nibble = (eff% * 256 · 128)/8 Fast charge, lower nibble = (eff% * 256 · 192)/4
Battery Voltage Offset ¹	0x1a		00		0mV	Thie value is used to adjust the battery voltage offset according to the following: Voltage offset (mV) = VsB * 1000 + Voff) * no. of cells
Voltage Gain	Oxlb	Oxlc	09	05	9.02	Voltage gain is packed as two units. For example, R5/R2 = 9.09 would be stored as: whole number stored in 0x1a (= 09h) and the decimal component stored in 0x1b as 256 • 0.02 = 05.
Serial Number	Osld	0x1e	12	27	10002	This contains the optional pack serial number.

Note: 1. Can be adjusted to calibrate the battery pack.

Aug. 1996 21/26

Table 9. Example Register Contents (Continued)

	E ² PROM Address		E ² PROM Hex Content8							
Description	Low Byte	High Byte	Low Byte	High Byte	Example Values	Notes				
Charge Cycle Count	0x1f	0x20	00	00	0	This field contains the charge cycle count and should be set to zero for a new battery.				
Reserved	0x21									
Maintenance Charge Current	0x22	0x23	64	00	100mA	This field contains the desired maintenance current after fast charge termination by the bq2091 .				
Reserved	0x24	0x31								
Design Voltage	0x32	0x33	30 ,	2a	10800mV	This is nominal battery pack voltage.				
Specification Information	0x34	0x35	00	00		Tris is the default value for this register.				
Manufacturer Date	0x36	Ox37	al	20	May 1, 1996 = 8363	Packed per the ManufactureDate() description, which represents May 1,1996 in this example .				

Table 10. Example Register Contents (String Data)

String Description	Address	0x ?0	0x ?1	0x 72	0x 73	0x ?4	0x ?5	0x ?6	0x ?7	0x ?8	0x ?9-?f
Reserved	0x38- 0x3f	00	00	00	00	00	00	00	00	00	00
Manufacturer's Name	0x40- 0x4f	09	42 B	45 E	4e N	43 C	48 H	4d M	41 A	52 R	51 Q
Device Name	0x50- 0x5f	08	42 B	51 Q	32 2	30 0	39 9	31 1	41 A	34 4	00- 00
Chemistry	0x60- 0x6f	04	4e N	69 I	4d M	48 H	00	00	00	00	00- 00
Manufacturer's Data	0x70- 0x7f	04	44 D	52 R	31 1	35 5	00	00	00	00	00 - 00

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	V	
All other pins	Relative to Vss	-0.3	+7.0	V	
REF	Relative to Vss	-0.3	+8.5	v	Current limited by R1 (see Figure 1)
V_{SR}	Relative to Vss	-0.3	+7.0	v	Minimum 1000 series resistor should be used to protect SR in case of a shorted battery (see the bq2091 application note for details).
Topr	Operating temperature	0	+70	°C	Commercial

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are **exceeded**. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond **the** operational **limits** for **extended** periods of time may **affect** device reliability.

DC Voltage Thresholds (TA - TOPR; V - 3.0 to 5.5V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
EvsB	Battery voltage error relative to SB	-50mV		50mV	v	See note

Note:

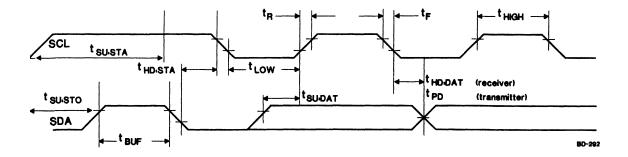
. The accuracy of the **voltage measurement** may be improved by adjusting **the** battery voltage **offset** and gain, **stored** in **external E²PROM.For** proper operation, **Voc should** be **1.5V** greater **than V**_{SB}.

Aug. 1996 23/26

DC Electrical Characteristics (TA = TOPR)

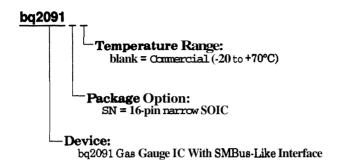
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	3.0	4.25	5.5	v	Vcc excursion from $< 2.0 V$ to $\ge 3.0 V$ initializes the unit.
VREF	Reference at 25°C	6.7	6.0	6.3	V	IREF = 5µA
V KEF	Reference at -40°C to +85°C	4.5		7.5	v	IREF = 5µA
RREF	Reference input impedance	2.0	5.0		ΜΩ	V _{REF} = 3V
			90	135	μА	Vcc = 3.0V
Icc	Normal operation		120	180	μA	V _{CC} = 4.25V
			170	250	μA	Vcc = 5.5V
V _{SB}	Batteryinput	0		Vcc	V	
RsBmax	SB input impedance	10	-		МΩ	0 < V _{SB} < V _{CC}
Idisp	DISP input leakage			5	μА	$V_{\rm DISP} = V_{\rm SS}$
ILVOUT	Vour output leakage	-0.2		0.2	μА	E ² PROM off
Vsr	Sense resistor input	-0.3		2.0	V	Vsr < Vss = discharge; Vsr > Vss = charge
Rsr	SR input impedance	10			ΜΩ	-200mV < V _{SR} < V _{CC}
V _{IH}	Logic input high	1.4		5.5	V	SCL, SDA, SCC, SCD
V_{IL}	Logic input low	-0.5		0.6V	v	SCL, SDA, SCC, SCD
Vol	Data, clock output low			0.4	V	Iol=350µA, SDA, SCD
IoL	Sink current	100		350	μА	Vol≤0.4V, SDA, SCD
Volsl	SEG _X output low, low Vcc		0.1		v	Vcc = 3V, I _{OLS} ≤ 1.75mA SEG ₁ -SEG ₄
Volsh	SEGx output low, high Vcc		0.4	-	V	Vcc = 5.5V, IoLs ≤ 11.0mA SEG ₁ -SEG ₄
Vohvl	Vour output, low Vcc	Vcc - 0.3	•		V	$V_{CC} = 3V$, $I_{VOUT} = -5.25$ mA
Vohvh	Vour output, high Vcc	Vcc · 0.6	•		V	Vcc = 5.5V, Ivout = -33.0mA
Ivout	Vour source current	-33			mA	At $V_{OHVH} = V_{CC} \cdot 0.6V$
Iols	SEG _X sink current			11.0	mA	At Volsh = 0.4V

Note: All voltages relative to Vss.


24/26

AC Specifications

Symbol	Parameter	Min	Max	Units	Notes
Fsmb	SMBus operating frequency	10	100	KHz	
T _{BUF}	Bus free time between stop and start condition	4.7 _		με	
THD:STA	Hold time after (repeated) start condition	4.0		μа	
Torrow.	Deposted start condition actum	250		ns	SCD
Tsu:sta	Repeated start condition eetup time	4.7		μв	External Memory
Tsu:sto	Stop condition setup time	4.0		μs	
THD:DAT	Data hold time	0		ns	
Tsu:dat	Data setup time	250	40	ns	
T _{EXT1}	Data buffering time addresses 0x00-0x18 per character		40	ma	
T _{EXT2}	String buffering time addresses 0x19-0x23 per character		15	ms	40 ms for first character
T_{PD}	Data output delay time	300	3500	ns	External memory only. See Note.
TLOW	Clock low period	4.7		μs	
THIGH	Clock high period	4.0			
Tŗ	Clock/Data fall time		300	ns	
TR	Clock/data rise time		1000	ns	


Note: The external memory must provide this internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

Bus Timing Data

Aug. 1996 25/26

Ordering Information

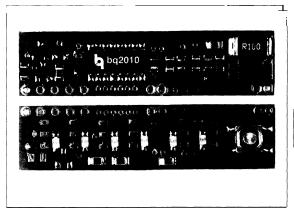
26/26 Aug. 1996

Fast Charge ICs	.
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9.

NiCd or NiMH Gas Gauge Module

Features

- Complete bq2010 Gas Gauge solution for NiCd or NiMH battery packs
- ➤ Battery information available over a single-wire bidirectional serial port
- Battery state-of-charge monitoring for 4- to 12-cell series applications
- On-board regulator allows direct connection to the battery
- ➤ "L" version includes push-button activated LEDs to display state-of-charge information
- Nominal capacity and cell chemistry pre-configured
- Compact size for battery pack integration


General Description

The bq2110 Gas Gauge Module provides a complete and compact solution for capacity monitoring of NiCd and NiMH battery packs. Designed for battery pack integration, the bq2110 incorporates a bq2010 Gas Gauge IC, a current sense resistor, and all other components necessary to accurately monitor and display the capacity of 4 to 12 series cells. The bq2110L includes six surfacemounted LEDs to display remaining capacity in 20% increments of the learned capacity (relative mode) or programmed capacity (absolute mode). The sixth LED is used in absolute mode to represent an overfull condition (charge above the programmed capacity). The LEDs are activated with the onboard push-button switch.

Contacts are provided on the bq2110 for direct connection to the battery stack (BAT+, BAT-), the serial communications port (DQ), and the empty indicator (EMPTY). Please refer to the bq2010 data sheet for the specifics on the operation of the Gas Gauge.

Benchmarq configures the bq2110 based on the information requested in Table 1. The configuration defines the number of series cells, the nominal battery pack capacity, the self-discharge rate, and the LED display mode.

The onboard sense resistor accurately measures charge and discharge activity of the battery pack. The resistor value and type should be specified on the configuration sheet. The two options available are a 3W through hole type or a 1W surface mount type. Please refer to the application note entitled "A Tutorial for Gas Gauging" to select the proper value.

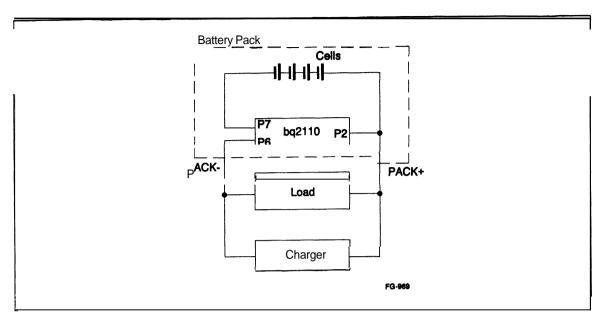
A module development kit is also available for the bq2110. The bq2110B-KT or bq2110LB-KT includes one configured module and the following:

- 1) A serial interface board that allows connection to the RS-232 port of an AT-compatible computer.
- Menu-driven software with the bq2110 to display charge/discharge activity and to allow user interface to the bq2010 from any standard DOS PC.
- Source code for the TSR.

Pin Descriptions

- P1 DQ/Serial communication port
- P2 BAT+/Battery positive/pack positive
- P3 No connect
- P4 EMPTY/Empty indicator output
- P5 GND/Ground
- P6 PACK-Pack negative
- P7 BAT-Battery negative

July 1996 1/6



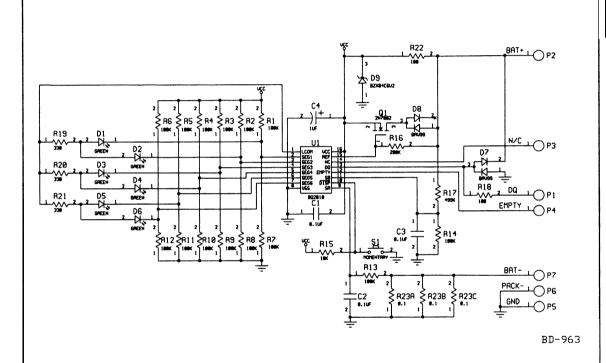
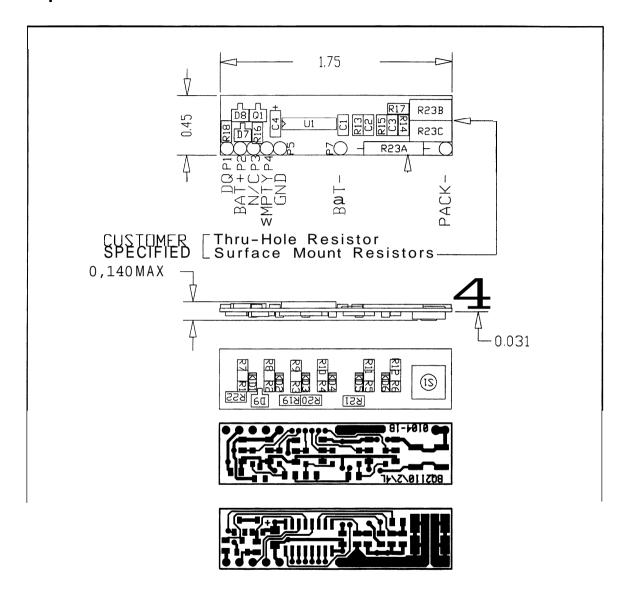

Figure 1. Module Connection Diagram

Table 1. bq2110 Module Configuration

Contact:		Phone:		
Address:				
Sales Contact:		Phone:		
Number of series battery cells (4-12)				
Battery type (NiCd or NiMH)				
Battery pack capacity (mAh)				
Dischargerate into load (A)	M in.	Avg	Max	
Sense resistor size in $\mathbf{m}\Omega$ (0.1 Ω standard)				
Sense resistor type: (Thru-hole (3W) or surface mount (1W))				
Display mode (absolute or relative)				
LEDs and switch (Y/N)				

bq2110 Schematic


Schematic shows components which \mathtt{may} not be placed on the board, depending upon the configuration.

July **1996**

Note:

3

bq2110 Board

BD-340

4/6

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Conditions
Vcc	Relative to Vss	-0.3	+7.0	V	bq2010
All other pins	Relative to Vss	-0.3	+7.0	v	bq2010
Psr	Continuous sense		3	W	Thru-hole sense resistor
∡ SR	resistor power dissipation		1	W	Surface mount sense resistors
TOPR	Operating temperature	0	+70	•c	Commercial
TSTR	Storage temperature	-40	+85	°C	

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

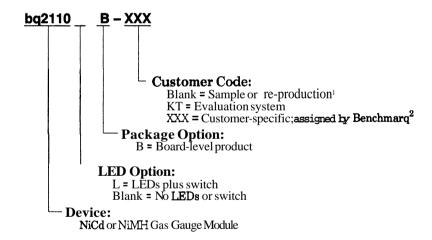
DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
NumCell	Number of series cells in battery pack	4		12		
BAT+	Positive terminal of pack	GND	NumCell * 1.2V	NumCell * 1.8V	V	
BAT-	Negative terminal of pack	GND - 0.3		GND+2.0	V	
Icc	Supply current at BAT + terminal (no external loads)	•	200	300	μA	
R_{DQ}	Internal pull-down	500k			Ω^1	
IoL	Open-drain sink current DQ, EMPTY			5.0	mA ¹	
Vol	Open-drain output low, DQ, EMPTY			0.5	V'	IoL < 5mA
V _{IHDQ}	DQ input high	2.5			V ¹	
VILDQ	DQ input low			0.8	V^1	
Vos	Voltage offset			150	μV^1	

Note:

1. Characterized on PCB. IC 100% tested.

July 1996 5/6


DC Voltage Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning	0.93	0.95	0.97	V	BAT+/NumCell ¹
V _{EDV1}	F i tempty warning	1.03	1.05	1.07	V	BAT+/NumCell ¹
V _{MCV}	Maximum single-cell voltage	2.20	2,25	2.30	V	BAT+/NumCell ¹
Vsro_	Sense resistor range	-300		+2000	mV	$V_{SR} + V_{OS}^2$
V _{SRQ}	Valid charge	375			μV	V _{SR} + V _{OS} ^{2, 3}
V _{SRD}	Valid discharge			-300	μV	V _{SR} + V _{OS} ^{2, 3}

Notes:

- 1. At SB input of bq2010
- 2. At SR input of bq2010.
- 3. Default value; value set in **DMF** register.

Ordering Information

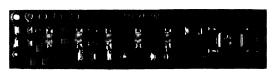
Notes:

- 1. Requires configuration sheet (see Table 1)
- 2. Example production part number: bq2110LB-001

NiCd Gas Gauge Module with LEDs for High Discharge Rates

Features

- Complete bq2011 Gas Gauge solution for NiCd packs in high discharge rate applications
- ➤ Five surface-mounted LEDs to display state-of-charge information
- Battery state-of-charge monitoring for 4- to 12-cell series applications
- On-board regulator allows direct connection to the battery
- Battery information available over a single-wire bidirectional serial port
- Nominal capacity pre-configured
- Compact size for battery pack integration


General Description

The bq2111L Gas Gauge Module provides a complete and compact solution for capacity monitoring of NiCd battery packs in high discharge rate applications such as power tools. Designed for battery pack integration, the bq2111L incorporates a bq2011 Gas Gauge IC, five surface-mounted LEDs, and the other discrete components necessary to monitor and display accurately the capacity of 4 to 12 series cells. The only external component required is a low-value sense resistor connected between GND and PACK-. Contacts are also provided on the bq2111L for direct connection to the battery stack and the serial communications port (DQ). The battery stack should be connected between BAT+ and GND. Please refer to the bq2011 data sheet for the specifics on the operation of the Gas Gauge.

Benchmarq configures the bq2111L based on the information requested in Table 1. The configuration defines the number of series cells and the nominal battery pack capacity. The bq211L module uses the absolute LED display to indicate battery capacity. In this mode, the remaining capacity is represented as a percentage of the programmed capacity.

The bq2111L can operate directly from four series cells within the pack using the LBAT+ supply input. For four series cell applications or applications using the on-board regulator, LBAT+ should be connected to BAT+. Please refer to Figure 1 for module connection illustrations.

A module development kit is also available for the bq2111L. The bq2111LB-KT includes one configured module and the following:

- 1) A serial interface board that allows connection to the RS-232 port of an AT-compatible computer.
- 2) Menu-driven software with the bq2111L to display charge/discharge activity and to allow user interface to the bq2011 from any standard DOS PC.
- 3) Source code for the TSR.

Pin Descriptions

- P1 DQ/Serial communication port
- P2 BAT+/Battery positive/Pack positive
- P3 LBAT+/Four-cell power
- P4 PACK-Pack negative
- P5 GND/Ground

July 1996 1/6

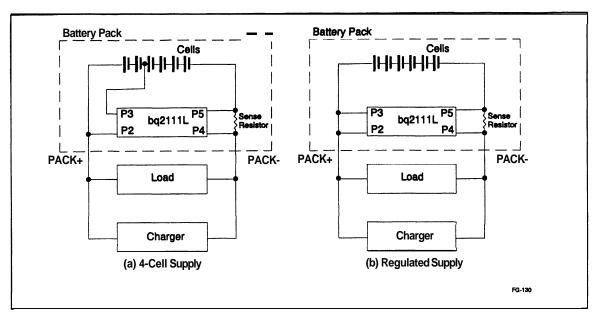
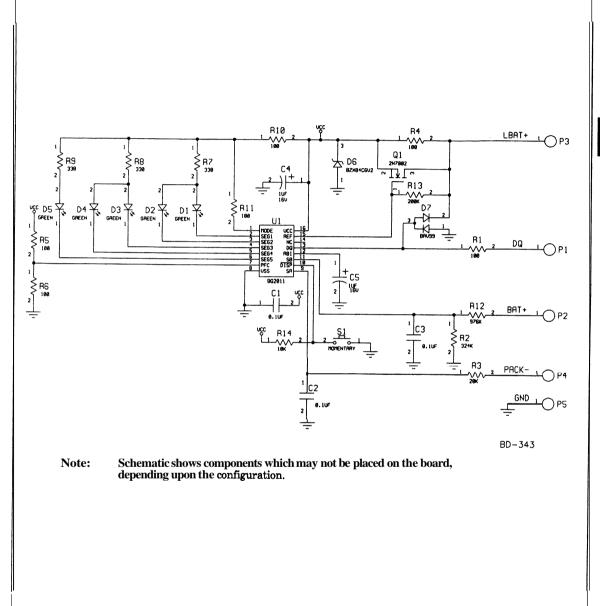
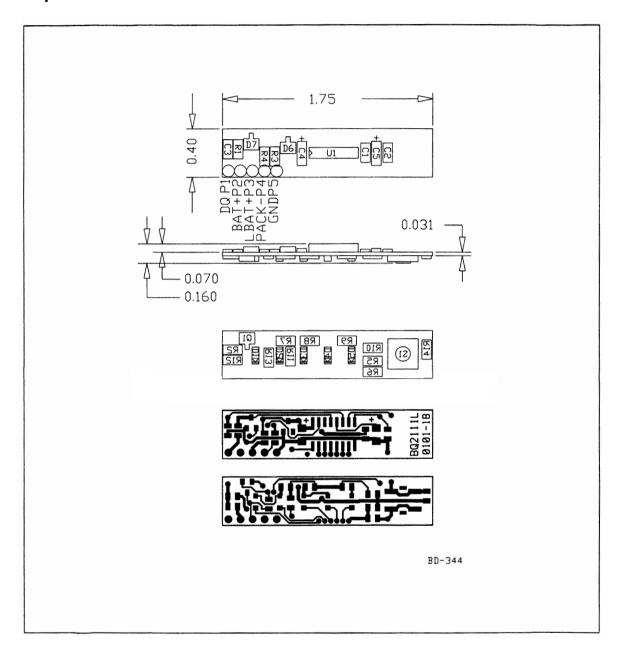


Figure 1. Module Connection Diagram


Table 1. bq2111L Module Configuration

ontact:	Phone:	
ddress:		
ales Contact:	Phone:	
Number of series battery cells (4–12)		
Sense resistor size in m Ω (0.005 Ω standard)'		
Battery pack capacity (mAh)		

Note: 1. Sense resistor is not included with board.


2/6 July 1996

bq2111L Example Schematic

July 1996

bq2111L Board

4/6 July 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	Relative to Vss	-0.3	+7.0	v	bq2011
All other pine	Relative to Vss	-0.3	+7.0	v	bq2011
Topr	Operating temperature	0	+70	°C	Commercial
TSTR	Storage temperature	-40	+85	°C	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. **Functional** operation should be **limited** to the Recommended DC Operating Conditions detailed in **this** data **sheet. Exposure** to conditions beyond the operational limits for extended periods of time may affect device reliability.

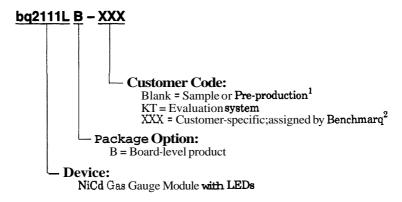
DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
NumCell	Number of series cells in battery pack	4	-	12	-	
BAT+	Positive terminal of pack	GND	NumCell * 1.2V	NumCell * 1.8V	v	
V _{SR}	Voltage across the sense resistor, P4 to P5	-0.3		2	v	
Vcc	Supply voltage (direct cell operation) LBAT+	3.0	4.8	7.2	v	
Icc	Supply current at BAT + terminal (no external loads)	-	120	250	μА	
R_{DQ}	Internal pull-down	500k		•	Ω^1	
Iol	Open-drain sink current			5.0	mA ¹	
V_{OL}	open-drain output low, DQ			0.5	V^1	IoL < 5mA
VIHDQ	DQ input high	2.5			V^1	
V _{ILDQ}	DQ input low			0.8	V ¹	
Vos	Voltage offset			150	μV^1	

Note:

1. Characterized on PCB, IC 100% tested.

July 1996 5/6


DC Voltage Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDV}	Final empty warning	0.87	0.90	0.93	V	BAT+/NumCell ¹
VMCV	Maximum single-cell voltage	1.95	2.0	2.05	V	BAT+/NumCell ¹
Vsri	Discharge compensation threshold	20	50	75	mV	$V_{SR} + V_{OS}^2$
V _{SR2}	Discharge compensation threshold	70	100	125	mV	$V_{SR} + V_{OS}^2$
V _{SR3}	Discharge compensation threshold	120	150	175	mV	$V_{SR} + V_{OS}^2$
V _{SR4}	Discharge compensation threshold	220	253	275	mV	V _{SR} + V _{OS} ²
Vsro	Sense resistor sense range	-300		+2000	mV	V _{SR} + V _{OS} ²
Vsrq	Valid charge			-400	μV	V _{SR} + V _{OS} ²
V _{SRD}	Valid discharge	500			μV	VSR + Vos ²

Notes:

- 1. At SB input of bq2011
- 2. At SR input of bq2011

Ordering Information

Notes:

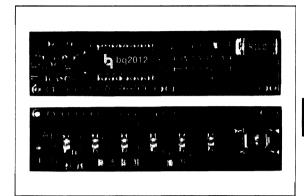
- 1. Requires configuration sheet (see Table 1)
- 2. Example production part number bq2111LB-001

6/6 July 1996

NiCd or NiMH Gas Gauge Module With Slow Charge Control

Features

- Complete bq2012 Gas Gauge solution for NiCd or NiMH battery packs
- Output for slow charge control of battery pack
- ➤ Battery information available over a single-wire bidirectional serial port
- ➤ Battery state-of-charge monitoring for 4- to 12-cell series applications
- On-board regulator allows direct connection to the battery
- "L" version includes push-button activated LEDs to display state-of-charge information
- Nominal capacity and cell chemistry pre-configured
- Compact size for battery pack integration


General Description

The bq2112 Gas Gauge Module provides a complete and compact solution for capacity monitoring of NiCd and NiMH battery packs. Designed for battery pack integration, the bq2112 incorporates a bq2012 Gas Gauge IC, a current sense resistor, and all other components necessary to accurately monitor and display the capacity of 3 to 12 series cells. The bq2112L includes six surfacemounted LEDs to display remaining capacity in 20% increments of the learned capacity (relative mode) or programmed capacity (absolute mode). The sixth LED is used in absolute mode to represent an overfull condition (charge above the programmed capacity). The LEDs are activated with the onboard push-button switch.

Contacts are provided on the bq2112 for direct connection to the battery stack (BAT+, BAT-), the serial communications port (DQ), the empty indicator (EMPTY), and the charge control output (CHG). Please refer to the bq2012 data sheet for the specifics on the operation of the Gas Gauge.

Benchmarq configures the bq2112 based on the information requested in Table 1. The configuration defines the number of series cells, the nominal battery pack capacity, the self-discharge rate, and the LED display mode.

The onboard sense resistor accurately measures charge and discharge activity of the battery pack. The resistor value and type should be specified on the configuration sheet. The two options available are a 3W through hole type or a 1W surface mount type. Please refer to the

application note entitled "A Tutorial for Gas Gauging" to select the proper value.

A module development kit is also available for the bq2112. The bq2112B-KT or bq2112LB-KT includes one configured module and the following:

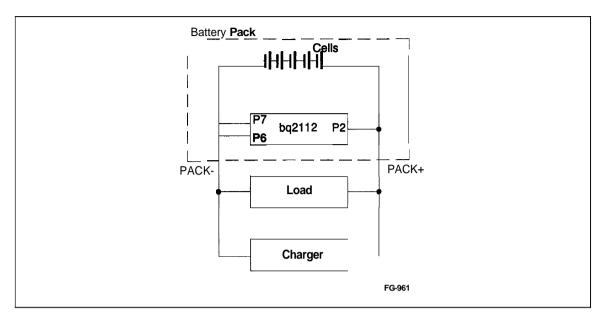
- 1) A serial interface board that allows connection to the RS-232 port of an AT-compatible computer.
- Menu-driven software with the bq2112 to display charge/discharge activity and to allow user interface to the bq2012 from any standard DOS PC.
- 3) Source code for the TSR.

Pin Descriptions

- P1 DQ/Serial communication port
- P2 BAT+/Battery positive/pack positive
- P3 CHG/Charge control output
- P4 EMPTY/Empty indicator output
- P5 GND/Ground
- P6 PACK-/Pack negative
- P7 BAT-Battery negative

July 1996 1/6

2/6



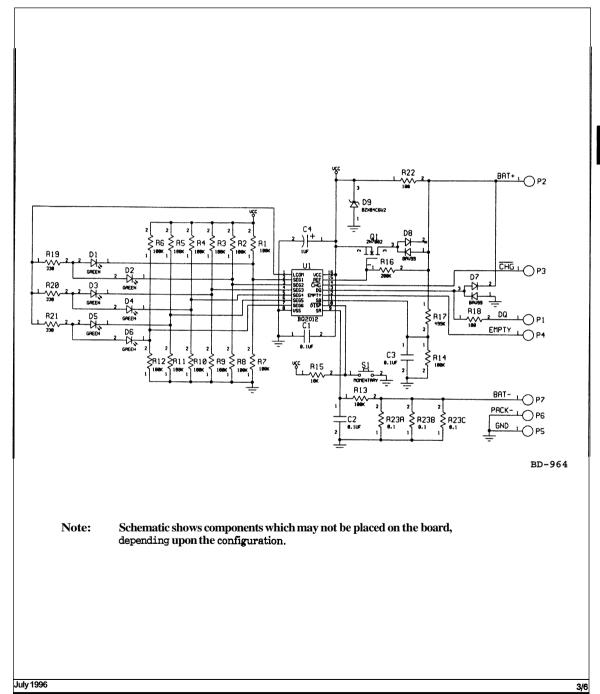
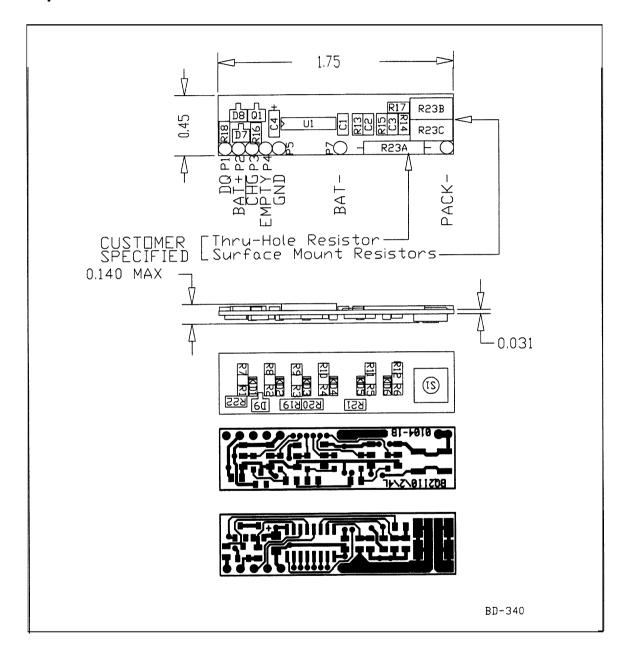

Figure 1. Module Connection Diagram

Table 1. bq2112 Module Configuration


Customer Name:	
Contact:	Phone:
Address:	
Sales Contact:	Phone:
Number of series battery cells (4-12)	
Battery type (NiCd or NiMH)	
Battery pack capacity (mAh)	
Discharge rate into load (A)	M i n . Avg Max
Sense resistor size in $m\Omega$ (0.1 Ω standard)	
Sense resistor type: (Thru-hole (3W) or surface mount (1W))	
Display mode (absolute or relative)	
LEDs and switch (Y/N)	

July 1996

bq2112 Schematic

bq2112 Board

/6 July 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Conditions
Vcc	Relative to Vss	-0.3	+7.0	V	bq2012
All other pine	Relative to Vss	-0.3	+7.0	V	bq2012
Psr	Continuous sense		3	W	Thru-hole sense resistor
1 SK	resistor power dissipation		1	W	Surface mount sense resistor
TOPR	Operating temperature	0	+70	°C	Commercial
TSTR	Storage temperature	-40	+85	°C	

Note:

Permanent device damage may **occur** if Absolute **Maximum Ratings** are exceeded. **Functional** operation should be limited to the **Recommended** DC Operating Conditions detailed in this data sheet. **Exposure** to condition-beyond the operational **limits** for extended periods of time may **affect** device reliability.

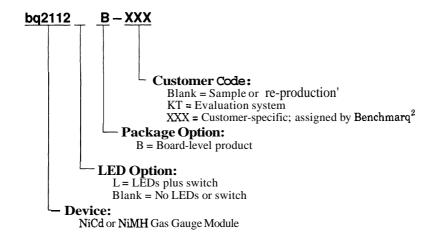
DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
NumCell	Number of series cells in battery pack	4		12		
BAT+	Positive terminal of pack	GND	NumCell • 1.2V	NumCell • 1.8V	V	
BAT-	Negative terminal of pack	GND • 0.3		GND+2.0	V	
Icc	Supply current at BAT+ terminal (no external loads)	-	200	300	μА	
R _{DQ}	Internal pull-down	500k			Ω^1	
IoL	Open-drain si <u>nk curre</u> nt DQ, EMPTY, CHG			5.0	mA ¹	
Vol	Open-drain output low, DQ, E r n , CHG			0.5	V^1	IoL < 5mA
V _{IHDQ}	DQ input high	2.5			V ¹	
V _{ILDQ}	DQ input low			0.8	V^1	
Vos	Voltage offset			150	μV^1	

Note:

1. Characterized on PCB, IC 100% tested.

July 1996 5/6


DC Voltage Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning	0.93	0.95	0.97	V	BAT+/NumCell ¹
V _{EDV1}	First empty warning	1.03	1.05	1.07	V	BAT+/NumCell ¹
V _{MCV}	Maximum single-cell voltage	2.20	2.25	2.30	V	BAT+/NumCell ¹
Vsro	Sense resistor range	-300		+2000	mV	VSR + VOS ²
V_{SRQ}	Valid charge	375			μV	$V_{SR} + V_{OS}^{2,3}$
V _{SRD}	Valid discharge			-300	μV	$V_{SR} + V_{OS}^{2,3}$

Notes:

- 1. At SB input of bq2012.
- 2. At SR input of bq2012.
- 3. Default value; value set in DMF register.

Ordering Information

Notes:

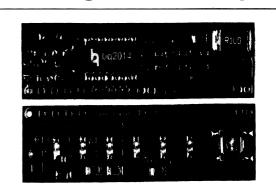
- 1. Requires configuration sheet (see Table 1)
- 2. Example production part number: bq2110LB-002

ഖ് July 1996

NiCd or NiMH Gas Gauge Module With Charge Control Output

Features

- Complete bq2014 Gas Gauge solution for NiCd or NiMH battery packs
- ➤ Charge control output allows communication to external charge controller (bq2004)
- Battery information available over a single-wire bidirectional serial port
- ➤ Battery state-of-charge monitoring for 4- to 12-cell series applications
- On-board regulator allows direct connection to the battery
- "L" version includes push-button activated LEDs to display state-of-charge information
- Nominal capacity and cell chemistry pre-configured
- Compact size for battery pack integration


General Description

The bq2114 Gas Gauge Module provides a complete and compact solution for capacity monitoring of NiCd and NiMH battery packs. Designed for battery pack integration, the bq2114 incorporates a bq2014 Gas Gauge IC, a current sense resistor, and all other components necessary to accurately monitor and display the capacity of 4 to 12 series cells. The bq2114L includes five surfacemounted LEDs to display remaining capacity in 20% increments of the learned capacity (relative mode) or programmed capacity (absolute mode). The LEDs are activated with the onboard push-button switch.

Contacts are provided on the bq2114 for direct connection to the battery stack (BAT+, BAT-), the serial communications port (DQ), the empty indicator (EMPTY), and the charge control output (CHG). Please refer to the bq2014 data sheet for the specifics on the operation of the Gas Gauge.

Benchmarq configures the bq2114 based on the information requested in Table 1. The configuration defines the number of series cells, the nominal battery pack capacity, the self-discharge rate, and the LED display mode.

The onboard sense resistor accurately measures charge and discharge activity of the battery pack. The resistor value and type should be specified on the configuration sheet. The two options available are a 3W through hole type or a 1W surface mount type. Please refer to the

application note entitled "A Tutorial for Gas Gauging" to select the proper value.

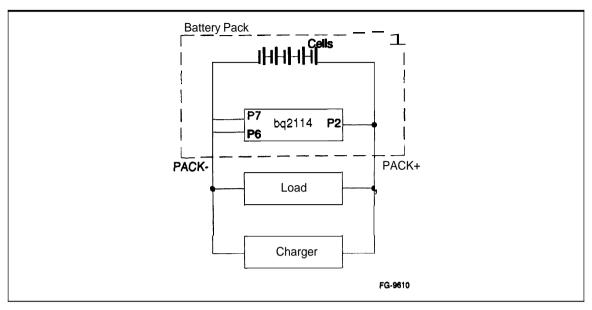
A module development kit is also available for the bq2114. The bq2114B-KT or bq2114LB-KT includes one configured module and the following:

- 1) A serial interface board that allows connection to the RS-232 port of an AT-compatible computer.
- Menu-driven software with the bq2114 to display charge/discharge activity and to allow user interface to the bq2014 from any standard DOS PC.
- 3) Source code for the TSR.

Pin Descriptions

- P1 DQ/Serial communication port
- P2 BAT+/Battery positive/pack positive
- P3 CHG/Charge control output
- P4 EMPTY/Empty indicator output
- P5 GND/Ground
- P6 PACK-/Pack negative
- P7 BAT-/Battery negative

Sept. 1996



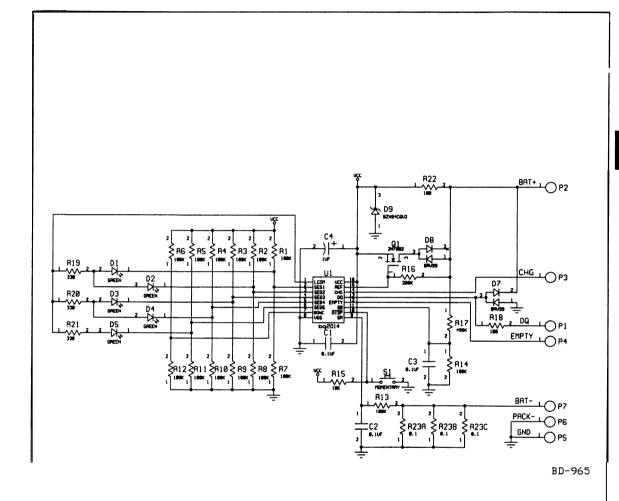
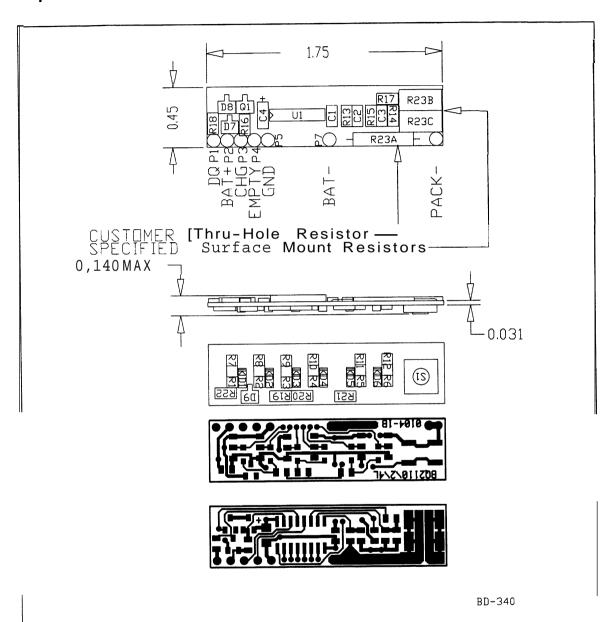

Figure 1. Module Connection Diagram

Table 1. bq2114 Module Configuration

Customer Name: Contact: Address:		Phone:		
Sales Contact:		Phone:		
Number of series battery cells (4–12)				
Battery type (NiCd or NiMH) Battery pack capacity (mAh)				
Discharge rate into load (A)	Min.	Avg	Max	
Sense resistor size in $m\Omega$ (0.1 Ω standard)				
Sense resistor type: (Thru-hole (3W) or surface mount (1W))				
Display mode (absolute or relative)				
LEDs and switch (Y/N)				

2/6 Sept. 1996


bq2114 Schematic

Note: Schematic shows components which may not be placed on the board, depending upon the configuration.

Sept. 1996

bq2114 Board

J6 Sept. 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Conditions
Vcc	Relative to Vss	-0.3	+7.0	v	bq2014
All other pins	Relative to Vss	-0.3	+7.0	v	bq2014
Psr	Continuous sense		3	W	Thru-hole sense resistor
1 SK	resistor power dissipation		1	W	Surface mount sense resistor
Topr	Operating temperature	0	+70	°C	Commercial
TSTR	Storage Temperature	-40	+85	°C	

Note:

Permanent device damage may *occur* if Absolute **Maximum** Ratings are **exceeded. Functional** operation should be limited to the **Recommended DC Operating** Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may affect device **reliability**.

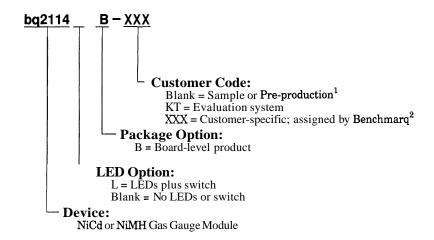
DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
NumCell	Number of series cells in battery pack	4		12		
BAT+	Positive terminal of pack	GND	NumCell * 1.2V	NumCell * 1.8V	V	
BAT-	Negative terminal of pack	GND • 0.3		GND+2.0	V	
Icc	Supply current at BAT+ terminal (no external loads)		200	300	μА	
R_{DQ}	Internal pull-down	500k			Ω^1	
IoL	Open-drain sink current DQ, EMPTY, CHG			5.0	mA ¹	
Vol	Open-drain output low, DQ, EMPTY, CHG			0.5	V^1	IOL < 5mA
V _{IHDQ}	DQ input high	2.5			V^1	
VILDQ	DQ input low			0.8	V^1	
Vos	Voltage offset			150	μV^1	

Note:

1. Characterized on PCB, IC 100% tested.

Sept. 1996


DC Voltage Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning	0.93	0.95	0.97	V	BAT+/NumCell ¹
V _{EDV1}	First empty warning	1.03	1.05	1.07	V	BAT+/NumCell ¹
V _{MC} V	Maximum single-cell voltage	2.20	2.25	2.30	V	BAT+/NumCell ¹
VSRO	Sense resistor range	-300	-	+2000	mV	$V_{SR} + V_{OS}^2$
VSRQ	Valid charge	375	-	-	μV	$V_{SR} + V_{OS}^{2,3}$
V _{SRD}	Valid discharge	-	-	-300	μV	V _{SR} + V _{OS} ^{2, 3}

Notes:

- 1. At SB input of bq2014.
- 2. At SR input of bq2014.
- 3. Default value; value set in DMF register.

Ordering Information

Notes:

- 1. Requires configuration sheet (see Table 1)
- 2. Example production part number: bq2110LB-003

6/6 Sept. 1996

Li-Ion Gas Gauge Module

Features

- Complete bq2050 Gas Gauge solution for Li-Ion battery packs
- Battery information available over a single-wire bidirectional serial port
- Battery state-of-charge monitoring for 2- to 4-cell senes applications
- On-board regulator allows direct connection to the battery
- 'L version includes push-button activated LEDs to display state-of-charge information
- Nominal capacity pre-configured
- Compact size for battery pack integration

General Description

The bq2150 Gas Gauge Module provides a complete and compact solution for capacity monitoring of Li-Ion battery packs. Designed for battery pack integration, the bq2150 incorporates a bq2050 Gas Gauge IC, a current sense resistor, and all other components necessary to accurately monitor and display the capacity of 2 to 4 series cells.

The bq2150L includes five LEDs to display remaining capacity in 20% increments of the learned capacity. The LEDs are activated with the onboard push-button switch.

Contacts are provided on the bg2150 for direct connection to the battery stack (BAT+, BAT-) and the serial communications port (DQ). The RBI input provides backup power to the bq2050 in the event that the cells are removed or the battery is turned off. The bq2150 has a 1µF capacitor onboard connected to RBI to supply backup power for about an hour. In battery packs that use high-side FETs to control the charge/discharge of the Li-Ion cells, the RBI input can be wired to a single cell to provide prolonged data retention times. The SD input allows an external signal (active low) to turn the bq2050 IC off to minimize internal current consumption of the battery pack and maximize storage life of the pack in the system. When turned off, the bq2050 is non-functional, and the RBI power source maintains register information. Please refer to the bq2050 data sheet for the specifics on the operation of the Gas Gauge.

Benchmarq configures the bq2150 based on the information requested in Table 1. The configuration defines the number of series cells, the nominal battery pack capacity, and the Li-Ion battery type (coke or graphite anode).

The onboard sense resistor accurately measures the charge and discharge activity of the battery pack. The sense resistor value should also be specified on the configuration sheet. The sense resistor value depends on the application. The two options available are a 3W through-hole type and a 1W surface-mount type. Please refer to the application note entitled "A Tutorial for Gas Gauging," to select the proper value

A module development kit is also available for the bq2150. The bq2150B-KT or the bq2150LB-KT includes one configured module and the following:

- 1) A serial interface board that allows connection to the RS-232 port of an AT-compatible computer.
- Menu-driven software to display charge/discharge activity and to allow user interface to the bq2050 from any standard DOS PC.
- Source code for the TSR.

Pin Descriptions

- P1 DQ/Serial Communications port
- P2 No connect
- P3 BAT+/Battery positive/pack positive
- P4 SD/Shutdown
- P5 RBI/Register backup input
- P6 GND/Ground
- P7 PACK-/Pack negative
- P8 BAT-Battery negative

1/6

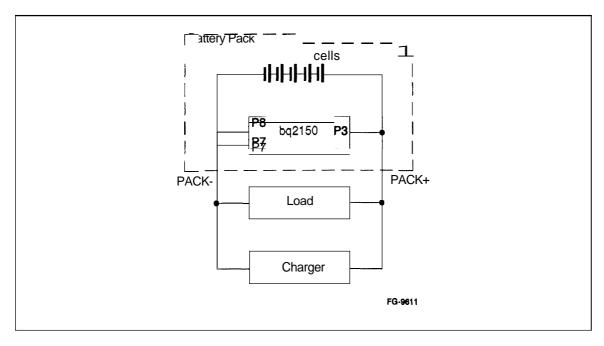
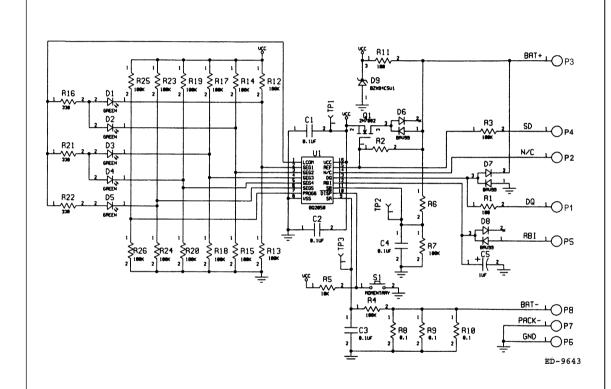
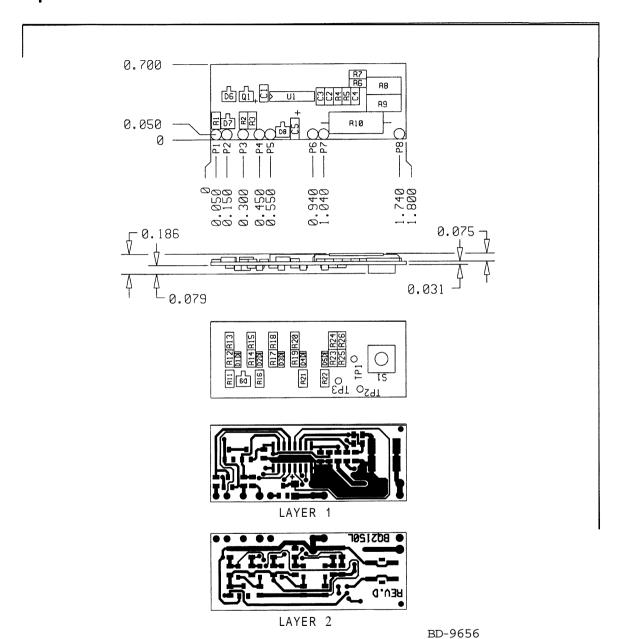



Table 1. bq2150 Module Configuration

Contact:		Phone:		
Address:				
Sales Contact:		Phone:		
Number of series battery cells (2-4)				<u></u>
Coke or graphite cell anode				
Battery pack capacity (mAh)				
Discharge rate into load (A)	min	avg	max	_
Sense resistor size in $\mathbf{m}\Omega$ (0.1 standard)				
Sense resistor type (Thru-hole (3W) or surface-mount (1W))				
Nominal Available Capacity after reset (Programmed Capacity or Zero)				
Self-discharge compensation (Y/N)				<u></u>
LEDs and switch (Y/N)				


bq2150 Schematic

Note: Schematic shows components which may not be placed on the board, depending upon the configuration.

May 1996

bq2150 Board

4/6 May 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Conditions
Vcc	Relative to Vss	-0.3	+7.0	V	bq2050
All other pins	Relative to Vss	-0.3	+7.0	V	bq2050
P_{SR}	Continuous sense resistor power		3	W	Thru-hole sense resistor
	dissipation		1	W	Surface-mount sense resistor
TOPR	Operating temperature		+70	°C	Commercial
TSTR	Storage temperature	-40	+85	°C	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for **extended** periods of time may affect device reliability.

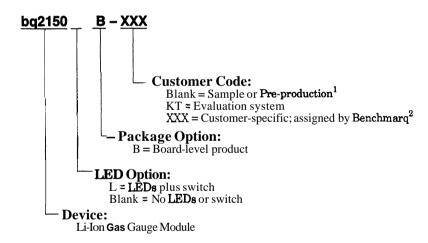
DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical Maximum		Unit	Conditions/Notes
NumCell	Number of series cells in battery pack	2		4		
BAT+	Positive terminal of pack	GND	NumCell * 3.6V	NumCell * 5.4V	V	
BAT-	Negative terminal of pack	GND • 0.3		GND+2.0	V	
Icc	Supply current at BAT+ terminal (no external loads)	-	200	300	μА	
R_{DQ}	Internal pull-down	500k			Ω^1	
I _{OL}	Open-drain sink current DQ	-		5.0	mA ¹	
Vol	Open-drain output low, I OL DQ	-	-	0.5	V^1	I _{OL} < 5mA
V _{IHDQ}	DQ input high	2.5			V^1	
VILDQ	DQ input low			0.8	V^1	
Vos	Voltage offset			150	μV^1	

Note:

1. Characterized on PCB, IC 100% tested.

May 1996 5/6


DC Voltage Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
VEDVF	Final empty warning	1.45	1.47	1.49	V	BAT+/(2*NumCell) ¹
V _{EDV1}	First empty warning	1.50	1.52	1.55	V	BAT+/(2*NumCell) ¹
VMCV	Maximum single-cell voltage	2.20	2.25	2.30	V	BAT+/(2*NumCell) ¹
Vsro	Sense range	-300		+2000	mV	$SR, V_{SR} + V_{OS}^2$
Vsro	Valid charge	210			μV	$V_{SR} + V_{OS}^{2,3}$
V_{SRD}	Valid discharge			-200	μV	$V_{SR} + V_{OS}^{2,3}$

Note:

- 1. At SB input of bq2050
- 2. At SR input of bq2050.
- 3. Default value; value set in DMF register.

Ordering Information

Notes:

- 1. Requires configuration sheet (Table 1)
- 2. Example production part number: bq2150LB-001

6/6 May 1996

Li-Ion Pack Supervisor Module

Features

- Complete and compact lithium-ion pack supervisor
- Provides overvoltage, undervoltage, and overcurrent protection for three or four series Li-Ion cells
- Designed for battery pack integration
 - On-board charge and discharge control FETs
 - Direct connection for series battery terminals
 - Measures 1.40 X 0.56 inches
- Low standby and operating currents
- Low on-resistance FETs

The bq2153 provides a complete solution for the supervision of three or four series Li-Ion cells. Designed for battery pack integration, the bq2153 incorporates a bq2053 Pack Supervisor, two FETs, and all other components required to monitor overvoltage, undervoltage, and overcurrent conditions. The board provides direct connections for the negative and positive terminals of each cell. See Table 2. Please refer to the bq2053 data sheet for specific information on the operation of the bq2053.

Benchmarq configures the bq2153 based on the information requested in Table 1.

Pin Descriptions

- 1P Battery 1 positive input/pack positive
- 1N Battery 1 negative input
- 2N Battery 2 negative input
- 3N Battery 3 negative input
- 4N Battery 4 negative input
- PK- Pack negative

Table 1. bq2153 Module Configuration

	_
Phone:	_
	_
	_
Phone:	_

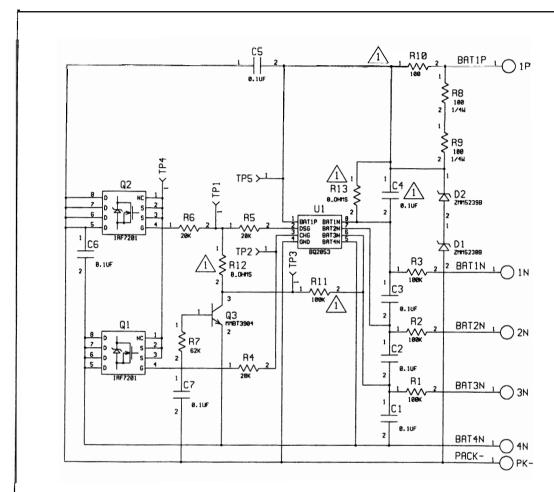
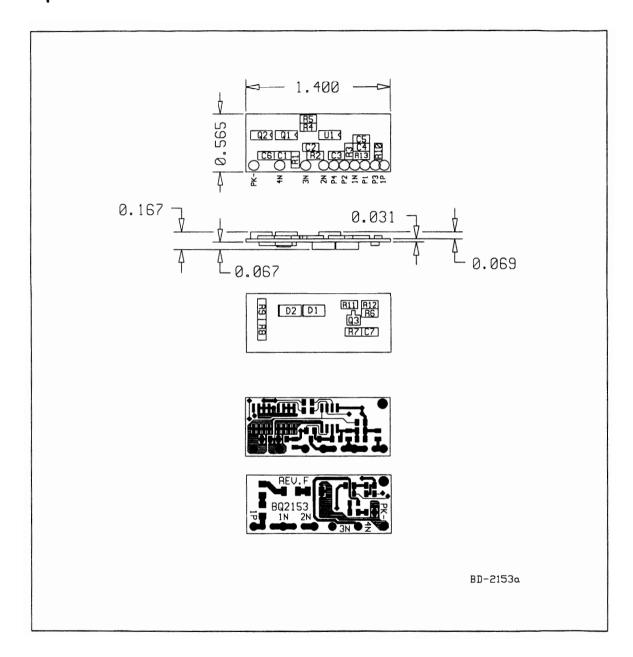

May 1996 116

Table 2. Pin Connections

Number of Cells	On-board Configuration	External Connections
		1P - Positive terminal of first call
3 cells	1N tied to 1P	2N - Negative terminal of first cell
		3N - Negative terminal of second cell
		4N – Negative terminal of third cell
		1P - Positive terminal of first cell
		1N - Negative terminal of first cell
4 cells		2N - Negative terminal of second cell
		3N- Negative terminal of third cell
		4N - Negative terminal of fourth cell

2/6 May 1996

bq2153 Schematic


Notes:

1. Component may or may not be placed depending on the configuration.

BD-2153b

May 1996 3/6

bq2153 Board

4/6 May 1996

Absolute Maximum Ratings

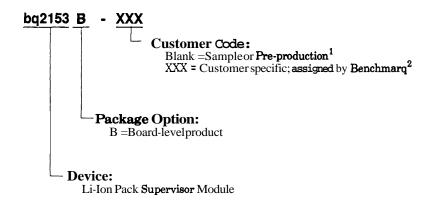
Symbol	Parameter	Value	Unit	Conditions
VT	Voltage applied on any pin relative to 1P	-18to +0.31	٧	
Tom	Operating temperature	0 to +70	°C	Commercial
TSTG	Storage temperature	-40 to +85	°C	

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation detailed in this data sheet. Exposure to coned to 1 Recommended DC Operating litic l limits for ded periods of ti ditions beyond th n may affect levi

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
Vop	Operating voltage, 1P to 4N	6.0		18	٧	
Icc	Operating current 3-cell		12	25	μA	
100	Operating current 4-cell		25	40	μА	
ICCLP	Low power current			1	μA	
R _{1N} , 2N, 3N	Battery input impedance		10		MΩ	
RFET	FET on resistance			50	mΩ	Per FET
I_D	Continuous charge/discharge current		2	4	A	


May 1996 5/6

DC Thresholds (TA = TOPR)

Symbol	Parameter	Value	Tolerance	Unit
Vov	Overvoltage limit	4.25	± 1.5%	V
VCE	Charge enable voltage	Vov - 100mV	± 50mV	V
V w	Undervoltage limit	2.3	± 100mV	V
Voc	Overcurrent limit, 4N to PK-	± 250	± 25	mV

Note: Standard device. Contact Benchmarq for different threshold options.

Ordering Information

Notes: 1. Requires configuration sheet (see Table 1)

2. Example production part number: bq2153B-001

6/6 May 1996

1/8

NiCd or NiMH Gas Gauge Module with Fast Charge Control

Features

- Complete bq2004/bq2014 battery management solution for NiCd or NiMH pack
- ➤ Accurate battery state-of-charge monitoring
- Reliable fast charge termination
- Automatic full capacity calibration
- ➤ Battery information available over a single-wire bi-directional serial port
- Nominal capacity, cell chemistry, and charge control parameters pre-configured
- ➤ Compact size for battery pack integration

General Description

The bq2164 Gas Gauge Module provides a complete and compact battery management solution for NiCd and NiMH battery packs. Designed for battery pack integration, the bq2164 combines the bq2014 Gas Gauge IC with the bq2004 Fast Charge IC on a small printed circuit board. The board includes all the necessary components to accurately monitor the capacity and reliably terminate fast charge of 5 to 10 series cells.

The gas gauge IC uses the onboard sense resistor to track charge and discharge activity of the battery pack. The fast charge IC gates a current-limited or constant-current charging supply connected to PACK+. Charging termination is based on $\Delta T/\Delta t$ or $\Delta V/PVD$, maximum temperature, time, and voltage. The bq2004 signals charge completion to the bq2014 to indicate full capacity. The charge complete signal to the gas gauge eliminates the need to fully cycle the battery pack to initially calibrate full pack capacity.

Contacts are provided on the bq2164 for direct connection to the battery stack (BAT+, BAT-), the gas gauge's communications port (DQ), and the thermistor (THERM+, THERM). The thermistor is required for temperature fast charge termination. Please refer to the bq2004 and bq2014 data sheets for the specifics on the operation of the gas gauge and the fast charge ICs.

Benchmarq configures the bq2164 based on the information requested in Table 1. The configuration defines the number of series cells, the nominal battery pack capacity, the self-discharge rate, and the fast charge control parameters. The control parameters depend on the charge rate, cell chemistry and termination technique specified in the configuration table. They consist of the fast Sept. 1996

charge hold-off, safety timers, and the pulse trickle **rate** as shown in the bq2004 data sheet. The bq2164 is optimized for temperature termination with the thermistor provided with the development kit.

The sense resistor value and type should also be specified on the configuration sheet. The two options available are a 3W through-hole type or a 1W surface-mount type. Please refer to the application note entitled "A Tutorial for Gas Gauging" to select the proper value.

A module development kit is also available for the bq2164. The bq2164B-KT includes one configured module and the following:

- 1) A serial interface board that allows connection to the RS-232 port of an AT-compatible computer.
- Menu-driven software with the bq2164 to display chargeldischarge activity and to allow user interface to the bq2014 from any standard DOS PC.
- 3) Source code for the TSR.
- A Philips 10K NTC Thermistor type 2322-640-63103.

Pin Description

- P1 DQ/Serial communication port
 P2 BAT+/Battery positive
 P3 PACK+/Pack positive
 P4 PACK-Pack negative
 P5 BAT-Battery negative
- P6 THERM+/Thermistor positive
- P7 THERM-/Thermistor negative
- P8 MOD/Fast charge control output

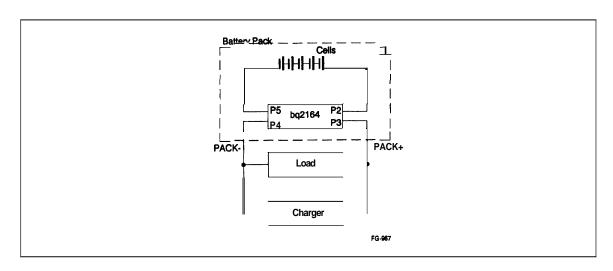
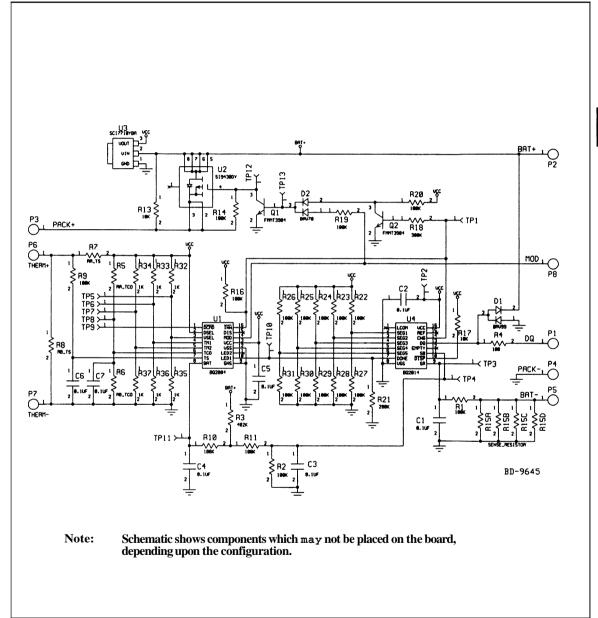
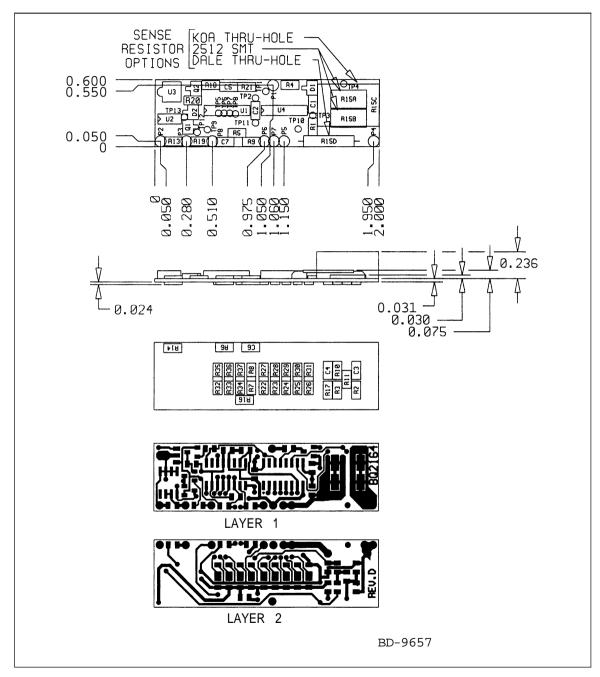



Figure 1. Module Connection Diagram

Table 1. bq2164 Module Configuration


Contact:				
Sales Contact:		Phone:		
Number of series battery cells (5-10)				
Battery type (NiCd or NiMH)				
Battery pack capacity (mAh)				
Discharge rate into load (A)	Min	Avg	Max	
Sense resistor type: (Thru-hole (3W) or surface-mount(1W))				
Sense resistor size in m a $(0.1 \Omega \text{ standard})$				
Fast charge current (A)				
Charge voltage (V)				
Temperature termination (enabled/disabled)				
PVD or -AV termination				

bq2164 Schematic

Sept. 1996

bq2164 Board

4/8

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Psr	Continuous sense	-	3	w	Thru-hole sense resistor
	resistor power dissipation	-	1	w	Surface-mount sense resistor
V _{CHG}	Charging voltage	•	20	v	
Topr	Operating temperature	0	+70	°C	Commercial
TSTR	Storage temperature	-40	+85	°C	

Note:

Permanent device damage may occur if Absolute **Maximum Ratings** are **exceeded**. Functional operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may **affect** device **reliability**.

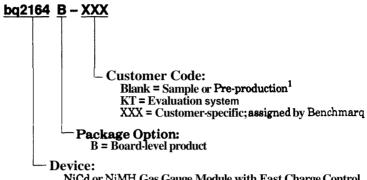
DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
NumCell	Number of cells in battery pack	5		10		
BAT+	Positive terminal of pack	GND	NumCell * 1.2V	NumCell • 1.8V	V	
BAT-	Negative terminal of pack	GND - 0.3		GND+2.0	V	
Icc	Supply current at BAT+ terminal (no external loads)		200	300	μA	
ICHG	Charge current			2	A	
IDSCHG	Discharge current			2	A	
R_{DQ}	Internal pull-down	500k			Ω^1	
IoL	Open-drain sink current DQ			5.0	mA ¹	
Vol	Open-drain output low, DQ	•		0.5	V ¹	I _{OL} < 5mA
V _{IHDQ}	DQ input high	2.5			V^1	
V _{IHDQ}	DQ input low			0.8	V ¹	
Vos	Voltage offset			150	μV¹	

Note:

1. Characterized on PCB, IC 100% tested.

Sept. 1996 5/8


DC Voltage and Temperature Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning	0.93	0.95	0.97	V	BAT+/NumCell ¹
V _{EDV1}	First empty warning	1.03	1.05	1.07	V	BAT+/NumCell ¹
V _{MCV}	Maximum single-cell voltage	2.20	2.25	2.30	V	BAT+/NumCell ¹
V_{SRO}	SR sense range	-300		+2000	mV	VSR + Vos ²
VSRQ	Valid charge	375			μV	$V_{SR} + V_{OS}^{2,3}$
V_{SRD}	Valid discharge			-300	μV	V _{SR} + V _{OS} ^{2, 3}
V _{SR1}	Discharge compensation threshold	-120	-150	-180	mV	$V_{SR} + V_{OS}^2$
TLTF	Low-temperature charging fault		10		°C	Low-temperature charge inhibit/terminate4
THTF	High-temperature charging fault		4 5		°C	High-temperature charge inhibit
VEDVC	Minimum charging cell voltage		1		v	Minimum cell voltage to initiate charge
V _{MCVC}	Maximum charging cell voltage		2		v	Maximum cell voltage to initiate or continue charge
Rati/at	ΔΤ/Δt charge termination rate	-	1		°C/ min.	@ 30°C
Treo	Maximum charging temperature		50		°C	High-temperature charge termination

Notes:

- 1. At SB input of bq2014.
- 2. At SR input of bq2014.
- 3. Default value; value set in DMF register.
- **4. PVD** termination disables the low-temperature fault charge termination.

Ordering Information

NiCd or NiMH Gas Gauge Module with Fast Charge Control

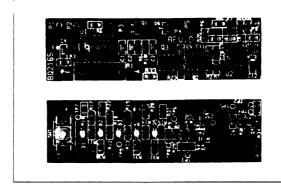
Notes:

- 1. Requires configurationsheet (Table 1)
- 2. Example production part number: bq2164B-001

Sept. 1996 7/8

8/8 Sept. 1996

Li-Ion Gas Gauge Module with Pack Supervisor


Features

- Compact, production-ready lithium ion gas gauge and protection solution for three or four series cells
- Accurate measurement of available battery capacity
- Provides overvoltage, undervoltage, and overcurrent protection
- Designed for battery pack integration
 - Small size
 - Includes bq2050 and bq2053 ICs
 - On-board charge and discharge control FETs
 - Low operating current for minimal battery drain
- Battery capacity available through single-wire serial port
- "L" version includes 5 push-button activated LEDs to display state-of-charge information

The bq2165 Gas Gauge Module provides a complete and compact battery management solution for Li-Ion battery packs. Designed for battery pack integration, the bq2165 combines the bq2050 Power Gauge IC with the bq2053 Supervisor IC on a small printed circuit board. The board includes all the necessary components to accurately monitor battery capacity and protect the cells from overvoltage, undervoltage, and overcurrent conditions. The board works with three or four Li-Ion series cells.

The Power Gauge IC uses the on-board sense resistor to track charge and discharge activity of the battery pack. Critical battery information can be accessed through the serial communications port at DQ. The supervisor circuit consists of the bq2053 and two FETs. The bq2053 controls the FETs to protect the batteries during charge/discharge cycles and short circuit conditions. The bq2165 provides contacts for the positive and negative terminals of each battery in the stack. Please refer to the bq2050 and bq2053 data sheets for the specifics on the operation of the power gauge and supervisor ICs.

Benchmarq configures the bq2165 based on the information requested in Table 1. The configuration defines the number of series cells, the nominal battery pack capacity, the self-discharge rate, the Li-Ion battery type (coke or graphite anode), and the threshold limits. The sense resistor value should also be specified on the configuration sheet. The sense resistor value depends on the application. Please refer to the application note entitled "A Tutorial for

Gas Gauging" to select the proper value. Refer to page 5 for the bq2165 physical dimensions.

The bq2165L includes five LEDs to display remaining capacity in 20% increments of the learned capacity. The LEDs are activated with the onboard push-button switch.

A module development kit is also available for the bq2165. The bq2165B-KT or the bq2165LB-KT includes one configured module and the following:

- 1) A serial interface board that allows connection to the RS-232 port of any AT-compatible computer.
- Menu driven software to display charge/discharge activity and to allow user interface to the bq2050 from any standard DOS PC.
- Source code for the TSR.

Pin Descriptions

Pack negative
DQ/Serial communications port
$BAT_{1P}\!/Battery~1~positive~input/pack~positive$
BAT _{1N} /Battery 1 negative input
BAT _{2N} /Battery 2 negative input
BAT _{3N} /Battery 3 negative input
BAT _{4N} /Battery 4 negative input

May 1996 1/10

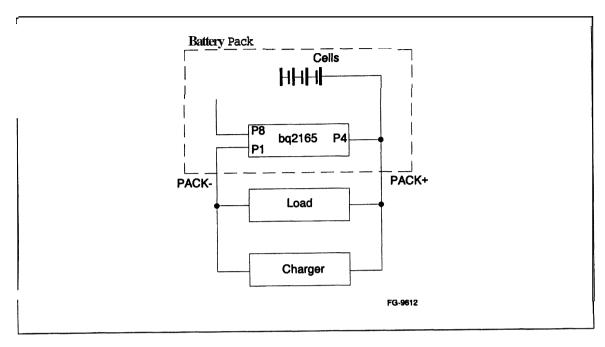


Table 1. bq2165 Module Configuration

Contact:		Phone:		
Address:				
Sales Contact:		Phone:		
Number of series cells (3 or 4)				_
Coke or graphite cell anode				
Battery pack capacity (mAh)				
Discharge rate into load (A)	min	avg	max	_
Sense resistor value in $\mathbf{m}\mathbf{\Omega}$ (0.1 $\mathbf{\Omega}$ standard)				_
Nominal Available Capacity after reset (Programmed Capacity or Zero)				
Self-discharge compensation (Y/N)		•		
Overvoltage threshold (4.25V default)				_
LEDs and switch (Y/N)				

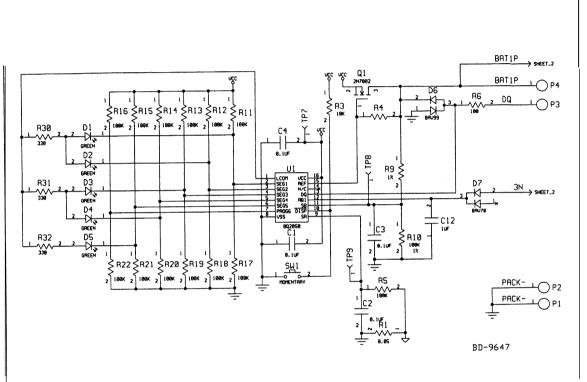
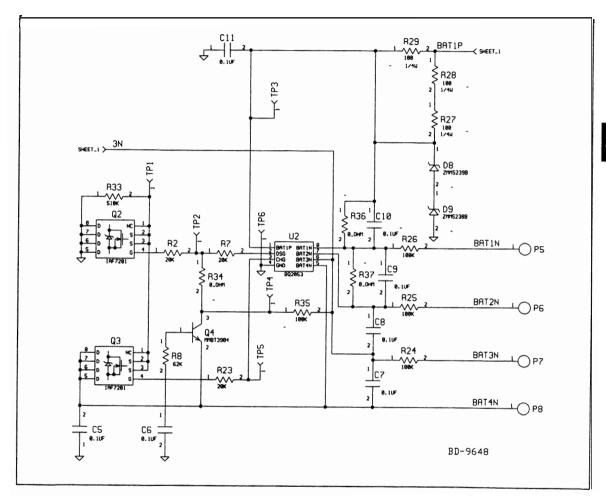

2/10 May 1996

Table 2. Intermediate Pin Connections

Number of Cello	On-board Configuration	External Connections
		1P - Positive terminal of first cell
3 cells	1N tied to 1P	2N - Negative terminal of first cell
		3N - Negative terminal of second cell
		4N- Negative terminal of third cell
		1P - Positive terminal of first cell
		1N - Negative terminal of first cell
4 cells		2N - Negative terminal of second cell
		3N- Negative terminal of third cell
		4N - Negative terminal of fourth cell

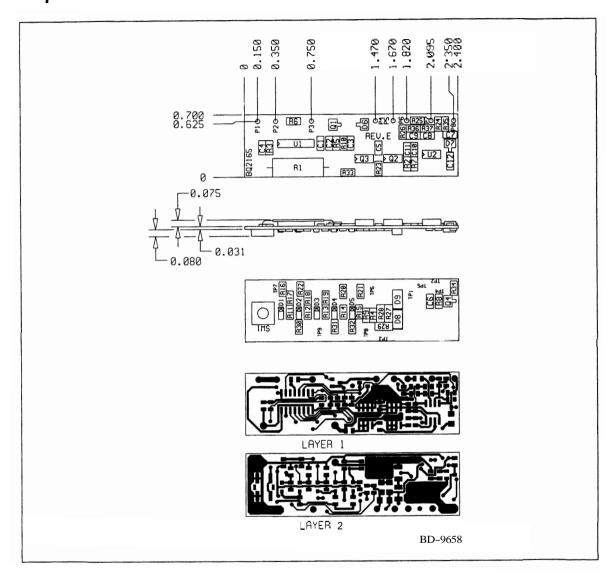
May 1996 3/10

bq2165 Schematic



Note:

Schematic shows **components** which may not be placed on the board, depending upon the configuration.


4/10 May 1996

bq2165 Schematic Continued

May 1996 5/10

bq2165 Board

6/10 May 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Conditions
Vт	Voltage applied on any contact relative to BAT _{1P}	-18	+0.31	V	
Psr	Continuous sense resistor power dissipation		3	w	
Topr	Operating temperature	0	+70	°C	
TsTG	Storage temperature	-40	+85	°C	

Note:

Permanent device damage may occur if Absolute **Maximum Ratings** are exceeded. **Functional** operation should be limited to the Recommended DC Operating **Conditions** detailed in this data sheet. Exposure to **conditions** beyond the operational limits for extended **periods** of time may **affect** device **reliability**.

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
NumCell	Number of series cells in battery pack	3		4		
BAT+	Positive terminal of pack	GND	NumCell • 3.6V	NumCell * 4.1V	V	
BAT-	Negative terminal of pack	GND • 0.3		GND+2.0	V	
Icc	Supply current at BAT_{1P} terminal (no external loads)		200	300	μA	
RDQ	Internal pull-down	500k			Ω^1	
IoL	Open-drain sink current DQ			5.0	mA ¹	
Vol	Open-drain output low, DQ			0.5	V ¹	I _{OL} < 5mA
VIHDQ	DQ input high	2.5			V ¹	
VIHDQ	DQ input low			0.8	V ¹	
Vos	Voltage offset			150	μV ¹	
R _{BAT1N} , 2N, 3N	Battery input impedance		10		mΩ	
RFET	FET on resistance			50	mΩ	Per FET
I _D	Continuous charge/discharge current	-	2	4	A	

Note:

1. Characterized on PCB, IC 100% tested.

May 1996

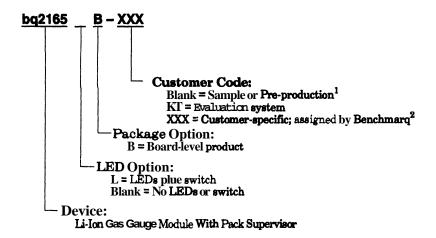
7/10

DC Voltage Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V _{EDVF}	Final empty warning	1.45	1.47	1.49	V	BAT+/(2*NumCell) ¹
V _{EDV1}	First empty warning	1.50	1.52	1.55	V	BAT+/(2*NumCell) ¹
V _{MC} V	Maximum single-cell voltage	2.20	2.25	2.30	V	BAT+/(2*NumCell) ¹
Vsro	SR sense range	-300		+2000	mV	$SR, V_{SR} + V_{OS}^2$
VsrQ	Valid charge	210			μV	V _{SR} + V _{OS} ^{2, 3}
V _{SRD}	Valid discharge			-200	μV	V _{SR} + V _{OS} ^{2, 3}

Notes:

- 1. At SB input of bq2050
- 2. At SR input of bq2050.
- 3. Default value; value set in DMF register.


DC Thresholds (TA = TOPR)

Symbol	Parameter	Value	Tolerance	Unit
Vov	Overvoltage limit	4.25	± 1.5%	V
VCE	Charge enable voltage	Vov - 100mV	± 50mV	V
V _{UV}	Undervoltage limit	2.3	± 100mV	v
Voc	Overcurrent limit, BAT4N to PACK-	± 250	± 25	mV

Note: Standard device. Contact Benchmarq for different threshold options.

9/10

Ordering Information

Notes:

- 1. Requires configuration sheet (see Table 1)
- 2. Example production part number: bq2165LB-001

May 1996

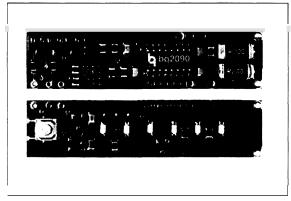
Notes

10/1*0* May 1996

Smart Battery Module with SMBus-Like interface and LEDs

Features

- Complete 3mart batt y solution for NiCd, NiMH, nd Li-Ion battery packs
- Accurate measurement of available battery capacity
- Designed for battery pack integration:
 - Small size
 - Includes bq2090, configuration E²PROM, and sense resistor
 - Four onboard state-of-charge LEDs with push-button activation
 - Low operating current for minimal battery drain
- Critical battery information available over two-wire serial port


General Description

The bq2190L Smart Battery Module provides a complete solution for the design of intelligent battery packs. The bq2190L uses the SMBus protocol and supports many of the Smart Battery Data commands in the SMB/SBD specifications. Designed for battery pack integration, the bq2190L combines the bq2090 Gas Gauge IC with a serial E²PROM on a small printed circuit board. The board includes all the necessary components to monitor accurately battery capacity and to communicate critical battery parameters to the host system or battery charger. The bq2190L also includes four LEDs. The push-button switch activates the LEDs to show remaining battery capacity in 25% increments.

Contacts are provided on the bq2190L for direct connection t~ the battery stack (BAT+, BAT-) and the two-wire interface (SMBC, SMBD). Please refer to the bq2090 data sheet for specific information on the operation of the Gas Gauge and communication interface.

Benchmarq configures the bq2190L based on the information requested in Table 1. The configuration defines the pack voltage, capacity, and chemistry. The Smart Battery Module uses the onboard sense resistor to track charge and discharge activity of the battery pack. The sense resistor value and type should also be specified on the configuration sheet. The two options available are a 3W through-hole type or a 1W surface-mount type. The value depends on the application. Please refer to the application note entitled "A Tutorial for Gas Gauging" to select the proper value.

July 1996

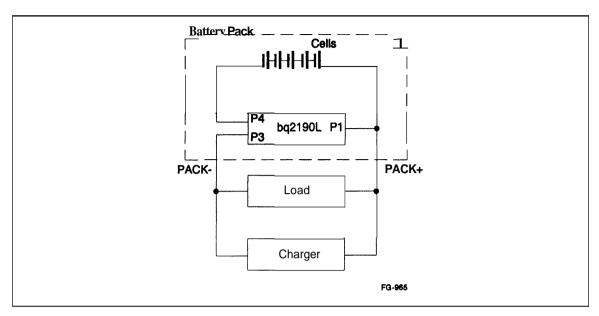
A module development kit is also available for the bq2190L. The bq2190LB-KT includes one configured module and the following:

- An EV2090 serial interface board allowing connection to the RS-232 port of any AT-compatible computer.
- Menu-driven software to display charge/discharge activity and to allow user interface to the bq2090 and serial E²PROM from any standard Windows 3.x PC.

Pin Descriptions

- P1 BAT+/Battery positive
- P2 GND/Ground
- P3 Pack negative
- P4 BAT-Battery negative
- P5 SMBC/Communications clock
- P6 SMBD/Serial data

1996 1/6



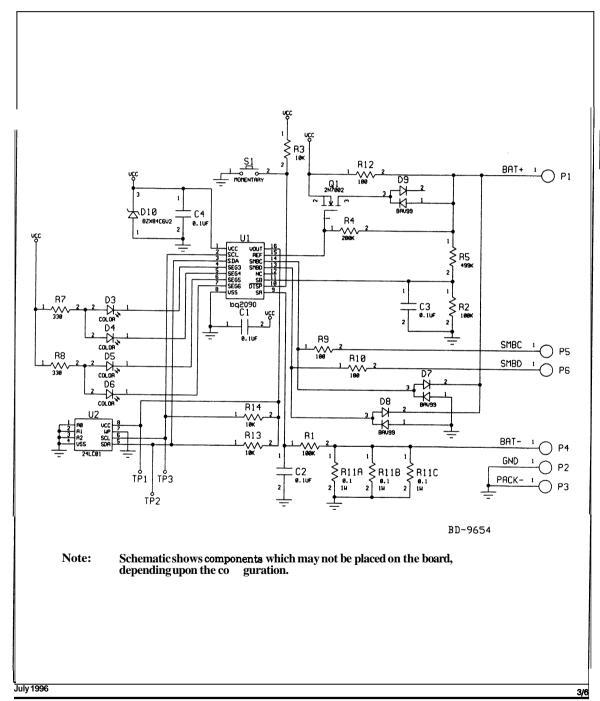
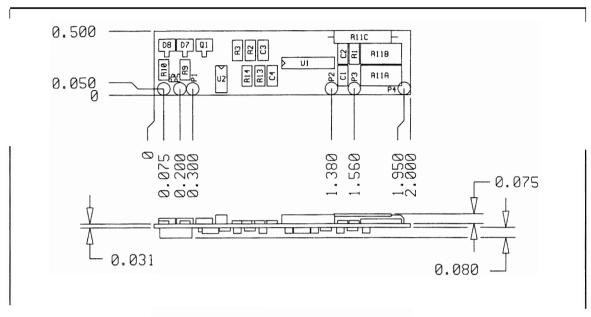
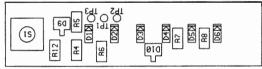
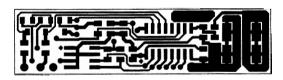

Figure 1. Module Connection Diagram

Table 1. bq2190L Module Configuration


Design capacity (mAh)	
Remaining capacity alarm	
Sense resistor size in $m\Omega$ (0.1 Ω standard)	
Sense resistor type: (Thru-hole (3W) or Surface Mount (1W))	
End of discharge voltage 1 (mV)	
End of discharge voltage 2 (mV)	
Battery chemistry	
Design voltage	
Manufacturer date	 ,
Serial number	,
Manufacturer name	,
Device name	
Manufacturerdata	
Display mode (absolute or relative)	


2/6 July 1996


bq2190L Schematic

bq2190L Board

LAYER 1

LAYER 2

BD-9655

4/6 July 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Conditions
Vcc	Relative to Vss	-0.3	+7.0	v	bq2090
All other pins	Relative to V_{SS}	-0.3	+7.0	v	bq2090
P_{SR}	Continuous sense		3	w	Thru-hole sense resistor
1 SK	resistor power dissipation		1	W	Surface mount sense resistor
Topr	Operating temperature	0	+70	° C	Commercial
TSTR	Storage Temperature	-40	+85	°C	

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device mliabii.

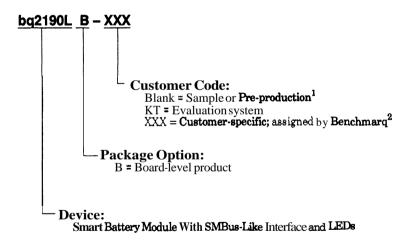
DC Electrical Characteristics (TA = TOPR)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
BAT+	Positive terminal of pack	GND	14.4	21.6	v	
BAT-	Negative terminal of pack	GND - 0.3		GND+2.0	v	
Icc	Supply current at BAT+ terminal (no external loads)	•	200	300	μА	
IoL	Open-drain sink current			350	μA ¹	
V _{OL}	Open-drain output low			0.4	V ¹	
VIH	Input high	1.4		5.5	V ¹	SMBC, SMBD
VIL	Input low	-0.5		0.6	V ¹	SMBC, SMBD

Note:

1. Characterized on PCB, IC 100% tested.

July 1996


DC Voltage Thresholds (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
EvsB	Battery voltage error	-60		+50	mV	Note1
V_{SRO}	Sense resistor range	-300		+2000	mV	Note2
VsrQ	Valid charge	380			μV	Note 2, 3
V_{SRD}	Valid discharge			-300	μV	Note 2, 3

Notes:

- 1. At SB input of bq2090.
- 2. At SR input of bq2090.
- 3. Default value; value set in DMF register.

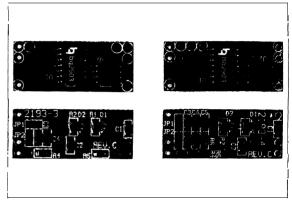
Ordering Information

Notes:

- 1. **Requires** configuration sheet (see Table 1)
- 2. Example production part number: bq2190LB-001

6/6

Rechargeable Alkaline Charger Module


Features

- Complete charge control for three or four rechargeable alkaline cells
- PCB includes:
 - bq2903 alkaline charge chip
 - LEDs
 - Discharge FET
- Direct connections for individual battery terminal and DC input
- Provides pre-charge qualification, fast charge termination, and over-discharge protection
- Onboard LEDs indicate charge status and fault conditions

General Description

The bq2193L Charge Module provides a complete and compact solution for charge and discharge control of three or four rechargeable alkaline cells. Designed for in-system integration, the bq2193L incorporates a bq2903 Charge Controller IC, two status LEDs, and a discharge FET. It provides direct connections for the negative and positive terminals of each cell, the DC charging supply (DC+, DC-), and the load (LOAD+, LOAD-). Please refer to the bq2903 data sheet for more specific information on the operation of the Charge Controller.

Benchmara configures the bq2193L based on the information requested in Table 1. The configuration defines the number of series cells, the discharge rate capability, and the end-of-discharge voltage. The board is available as a three-cell (bq2193L-3) or-four-cell (bq2193L-4) version.

Pin Descriptions

LOAD+ Positive side of load

BAT+ Positive terminal of battery 1

BAT1N Negative terminal of battery 1

BAT2N Negative terminal of battery 2

BAT3N NA (version 3); Negative terminal of

battery 3 (version 4)

BAT- Negative terminal of battery 3 (version 3):

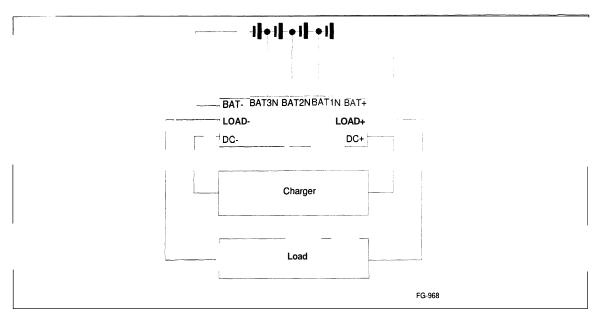
Negative terminal of battery 4 (version 4)

DC+ Positive side of charger

DC- Negative side of charger

LOAD. Negative side of load

July 1996 1/8



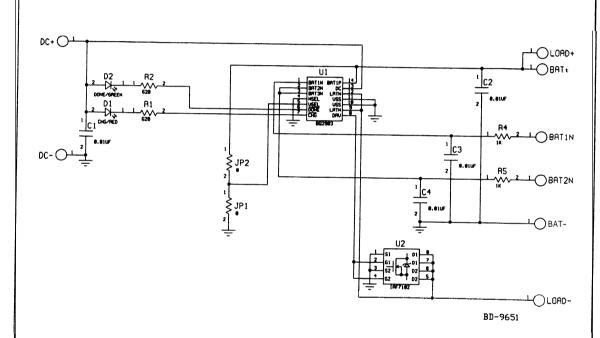
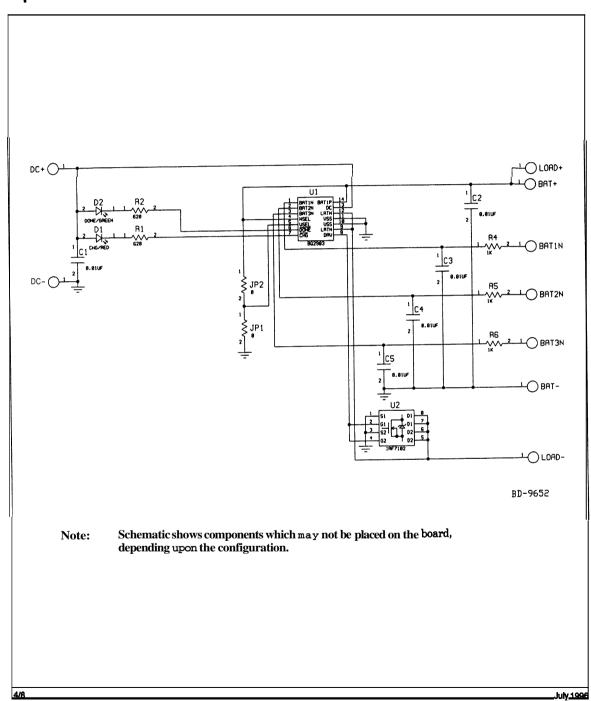

Figure 1. Module Connection Diagram

Table 1. bq2193 Module Configuration

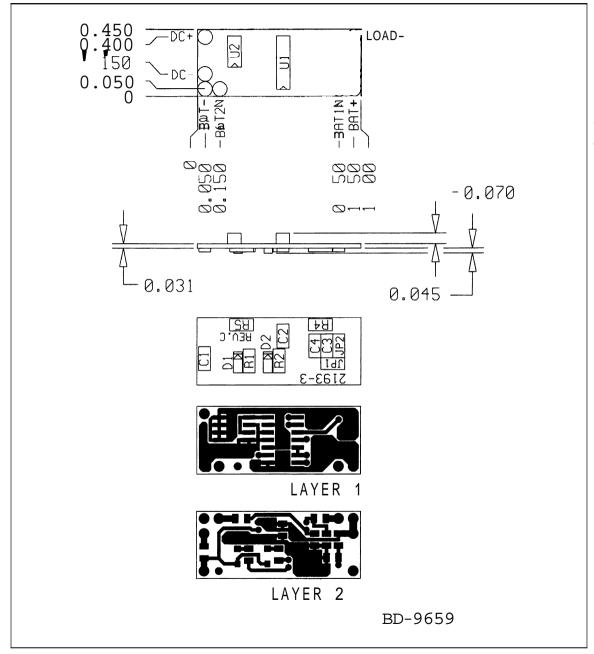
Customer Name: Contact: Address:	
Sales Contact: Number of battery cells (3-4)	Phone:
Load current (mA)	
End-of-discharge voltage (1.1 V, 1.0 V, or 0.9 V)	

2/8 July 1996

bq2193-3 Schematic

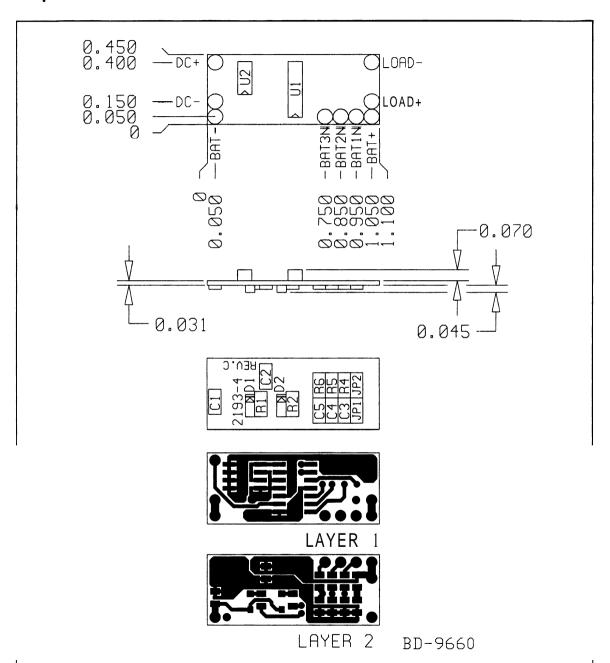


Note: Schematic shows components which may not be placed on the board, depending upon the configuration.


July 1996

3/8

bq2193-4 Schematic


bq2193-3 Board

July 1996

5/8

bq2193-4 Board

6/8 July 1996

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Conditions
DCIN	V_{DC}	-0.3	11.0	V	
Vτ	DC threshold voltage applied on any pin, excluding DC pin	-0.3	11.0	V	
Tom	Operating ambient temperature	0	+70	°C	Commercial
IDC	DC charging current		400	mA	
ILOAD	Discharge current		1.3	A	

Note:

Permanent device damage may **occur** if **Absolute Maximum Ratings are** exceeded. Functional operation should be limited to the **Recommended** DC Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may affect device reliabii.

DC Electrical Characteristics (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
Icc	Supply current			14	mÁ	V _{DC} = 10.0V ¹
I _{SB1}	Standby current		25	40	μА	$VDC = 0,$ $V_{OCV} > V_{EDV}^2$
I _{SB2}	Standby current			1	μА	$V_{DC} = 0$ $V_{OCV} < V_{EDV}$
RDSON	Discharge on resistance		0.25		Ω	Note 3
ILOAD	Discharge current			1	A	Note3
I_{DC}	DC charging current			300	mA	
VOP	Operating voltage	2.7		10	V	Note 4

Note:

- 1. CHG/DONE LED on.
- 2. **Vocv = œll** open circuit voltage.
- 3. Includes N-FET.
- 4. The minimum charge voltage is **2.0V** per cell.

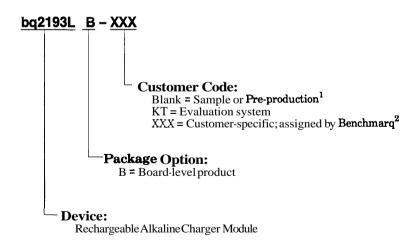
July 1996

DC Thresholds (T_A = 25°C; V_{DC} =10V)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
V _{MAX}	Maximum cell open- circuit voltage	1.63	±3%	V	Vocy > VMAX inhibits or terminates charge pulses
		0.90	±5%	V	
V _{EDV}	End-of-dischargevoltage	1.00	±5%	V	
		1.10	±5%	v	
V _{FLT}	Maximum cell closed- circuit voltage	3.00	±5%	v	Vccv > VFLT terminates charge, indicates fault
VMIN	Minimum battery voltage	0.40	±5%	V	Vocv < Vmin inhibits charge
VCE	Charge enable	1.40	±5%	V	Vocv < VCE on all cells re-initiates charge

Notes:

Each parameter above has a temperature coefficient associated with it. To determine the coefficient for each parameter, use the following formula:


Tempco =
$$\frac{\text{ParameterRating}}{1.63}$$
 * -0.5mV/°C

The tolerance for these temperature coefficients is 10%.

EDV depends on configuration.

Vocv = cell open circuit voltage.

Ordering Information

Notes:

1. Requires configuration sheet (see Table 1)

2. Example production part number: bq2193LB-001

8/8 July 1996

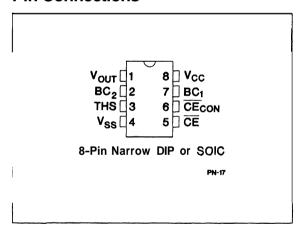
Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

SRAM lonvolatile controller it

Features

- Power monitoring and switching for 3 volt battery-backup applications
- Write-protect control
- 3 volt primary cell inputs
- Less than 10 ns chip enable propagation delay
- 5% or 10% supply operation

General Description


The CMOS bq2201 SRAM Nonvolatile Controller Unit provides all necessary functions for converting a standard CMOS SRAM into nonvolatile read/write memory.

A precision comparator monitors the 5V Vcc input for an out-of-tolerance condition. When out of tolerance is detected, a conditioned chip enable output is forced inactive to **write-protect** any standard CMOS SRAM.

During a power failure, the external SRAM is switched from the Voc supply to one of two 3V backup supplies. On a subsequent power-up, the SRAM is write-protected until a power-valid condition exists.

The bq2201 is footprint- and timing-compatible with **industry standards** with the added benefit of a chip enable propagation delay of **less** than **10ns**.

Pin Connections

Pin Names

Vout Supply output

BC1-BC2 3 volt primary backup cell inputs

THS Threshold select input

CE Chip enable active low input

CECON Conditioned chip enable output

Vcc +5 volt supply input

Vss Ground

Functional Description

An external CMOS static RAM can be battery-backed using the **Voot** and the conditioned chip enable output pin **from**the bq2201. As **Voc** slews down **during a** power failure, the conditioned chip enable output **CECON** is forced inactive independent of the chip enable input CE.

This activity unconditionally write-protects external SRAM as Vcc falls to an out-of-tolerance threshold VPFD. VPFD is selected by the threshold select input pin, THS.

If THS is tied to Vss, power-fail detection occurs at 4.62V typical for 5% supply operation. If THS is tied to Vout, power-fail detection occurs at 4.37V typical for 10% supply operation. The THS pin must be **tied** to **Vss** or **Vout** for proper operation.

If a memory access is in process during power-fail detection, that memory cycle continues to completion before the memory is write-protected. If **the memory** cycle is not **ter**minated within time twpt, the CEcon output is **uncondi**tionally driven high, write-protectingthe memory.

Sept. 1991 1/8

As the supply continues to fall past **VPFD**, an internal switching device **forces Vour** to one of the two **external** backup **energy sources**. **CECON** is held high by the **Vour** energy source.

During power-up. Vow is switched back to the Vcc supply as Vcc rises above the backup cell input voltage sourcing Vout. The CECON output is held inactive for time tcer (120 ma maximum)—r the supply has reached VPFD, independent of the CE input, to allow for processor stabilization.

During **power-valid** operation, the $\overline{\bf CE}$ input is fed through to the $\overline{\bf CE}$ con output with a propagation delay of **less** than 10 **ns. Nonvolatility** is achieved by hardware hookup as shown in **Figure 1**.

Energy Cell Inputs—BC₁, BC₂

Two primary backup energy source inputs are provided on the bq2201. The BC₁ and BC₂ inputs accept a 3V primary battery, typically some type of lithium chemistry. If no primary cell is to be used on either BC₁ or BC₂, the unused input should be tied to Vss.

If both inputs are used, during power failure the **Vout** output is fed only by **BC**₁ as long as it is greater than **2.5V**. If the voltage at **BC**₁ falls below **2.5V**, an internal isolation switch automatically switches V o w from **BC**₁ to **BC**₂.

To prevent **battery drain** when there is no valid data to retain, **Vour** and **CE**CON are internally isolated from **BC**₁ and BC₂ by either:

- Initial connection of a battery to BC₁ or BC₂, or
- Presentation of an ieolation signal on CE.

A valid isolation signal requires $\overline{\mathbf{CE}}$ low as $\mathbf{V_{CC}}$ crosses both $\mathbf{V_{PPD}}$ and $\mathbf{V_{SO}}$ during a power-down. Between these two **points** in time, $\overline{\mathbf{CE}}$ must be brought to the point of (0.48 to 0.52)* $\mathbf{V_{CC}}$ and **held for** at least 700ns. The isolation signal is invalid if $\overline{\mathbf{CE}}$ exceeds 0.54* $\mathbf{V_{CC}}$ at any point between $\mathbf{V_{CC}}$ crossing $\mathbf{V_{PPD}}$ and $\mathbf{V_{SO}}$. See Figure 2.

The appropriate battery is connected to Vour and $\overline{\mathbf{CE}}$ con immediately on subsequent application and removal of V_{∞} ,

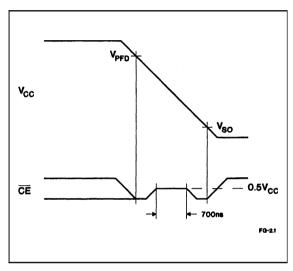


Figure 2. Battery Isolation Signal

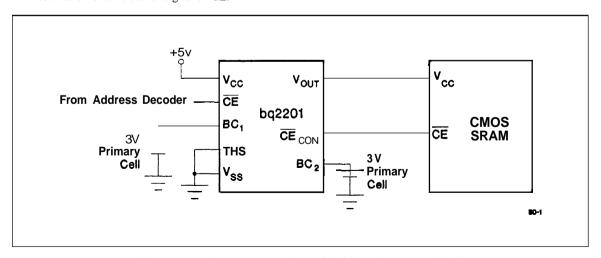


Figure 1. Hardware Hookup (5% Supply Operation)

2/8 Sept. 1991

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
v_{T}	DC voltage applied on any pin excluding V _{CC} relative to V _{SS}	-0.3to 7.0	V	$V_T \le V_{CC} + 0.3$
		0 to +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial "N"
TSTG	Storage temperature	-55 to 12 5	°C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds
Iour	Vourcurrent	200	mA	

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
		4.75	5.0	5.5	V	THS = V _{SS}
Vcc	Supply voltage	4.50	5.0	5.5	V	THS = V _{OUT}
Vss	Supply voltage	0	0	0	V	
V_{IL}	Input low voltage	-0.3		8.0	V	
VIH	Input high voltage	2.2	-	V _{CC} + 0.3	V	
V _{BC1} , V _{BC2}	Backup cell voltage	2.0		4.0	V	
THS	Threshold select	-0.3	•	Vcc + 0.3	V	

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ or V_{BC} .

DC Electrical Characteristics FA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current	•	•	± 1	μA	$V_{IN} = V_{SS}$ to V_{CC}
Vон	Output high voltage	2.4			V	I _{OH} = -2.0 mA
Vонв	V _{OH} , BC supply	V_{BC} •0.3			V	V _{BC} > V _{CC} , I _{OH} = -10μA
Vol	Output low voltage	•	•	0.4	V	I _{OL} = 4.0 mA
Icc	Operating supply current		3	5	mA	No load on Vout and CEcon.
		4.55	4.62	4.75	V	THS = Vss
V_{PFD}	Power-fail detect voltage	4.30	4.37	4.50	V	THS = V _{OUT}
Vso	Supplyswitch-over voltage	-	V_{BC}	-	v	
Iccdr	Data-retention mode current	-	-	100	nA	Vour data-retention current to additional memory not included.
		Vcc - 0.2			V	$vcc > V_{BC}$, $I_{OUT} = 100mA$
Vouti	Vout voltage	Vcc - 0.3			V	Vcc > VBC, IOUT = 160mA
Vout2	Vour voltage	V _{BC} -0.3	-		V	$V_{\rm CC}$ < $V_{\rm BC}$, $I_{\rm OUT}$ = 100 μ A
V _{BC}	Active backup cell		V _{BC2}		V	V _{BC1} < 2.5V
V BC	voltage		V_{BC1}		V	V _{BC1} > 2.5V
I _{OUT1}	Vour current	-	-	160	mA	V _{OUT} > V _{CC} - 0.3V
Iout2	Vomcurrent		100		μА	$V_{OUT} > V_{BC} \cdot 0.2V$

Note: Typical values indicate operation at TA = 25°C, Vcc = 5V or VBC.

Capacitance (TA = 25℃, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
CIN	Input capacitance			8	рF	Input voltage = OV
Cout	Output capacitance			10	pF	Output voltage = OV

Note: This parameter is sampled and not 100% tested.

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0 V to 3.0 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (includingscope and jig)	See Figure 3

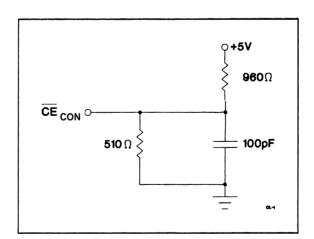
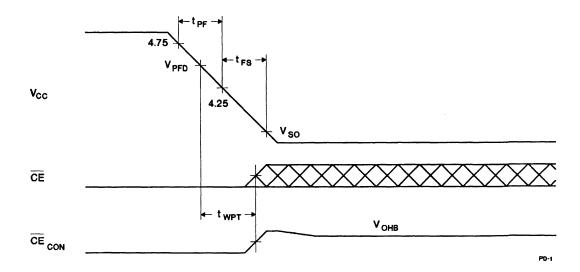


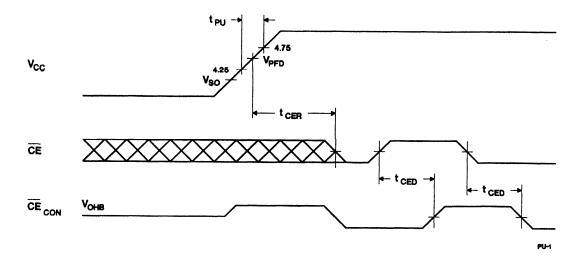
Figure 3. Output Load

Power-Fail Control (TA = TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tpf	Vcc slew, 4.75V to 4.25V	300			μв	
tfs	Vcc slew, 4.25V to Vso	10			μв	
tpu	V _{CC} slew, 4.25V to 4.75V	0			μв	
t _{CED}	Chip enable propagation delay	•	7	10	ns	
tcer	Chip enable recovery	40	80	120	ms	Time during which SRAM is write-protected after Vcc passes Vpp on power-up.
twpr	Write-protecttime	40	100	150	μз	Delay after VCC slews down past VPFD before SRAM is write-protected.

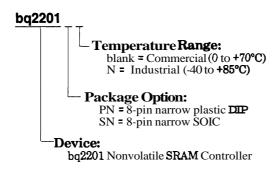
Note:

Typical values indicate operation at $T_A = 25$ °C.


Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down Timing

6/8


Power-Up Timing

Data Sheet Revision History (Sept. 1991 Changes From Sept. 1990)

Added industrial temperature range.

Ordering Information

8/8 Sept. 1991

SRAM NV Controller With Reset

Features

- Power monitoring and switching for nonvolatile control of SRAMs
- Write-protect control
- Input decoder allows control of up to 2 banks of SRAM
- 3V primary cell input
- 3V rechargeable battery input/output
- Reset output for system power-on reset
- Less than 10ns chip enable propagation delay
- 5% or 10% supply operation

General Description

The CMOS bq2202 SRAM Nonvolatile Confiroller With Reset provides all the necessary functions for converting one or two banks of standard CMOS SRAM into nonvolatile read/write memory.

A p ecision comparator **monitors** the **5V Vcc** input for **an** out-of-tolerance condition. When out of tolerance is detected, the two conditioned chip enable **outputs** are forced inactive to write-protect both banks of **SRAM**.

Power for the external **SRAMs** is **switched from** the Voc supply to the battery-backup supply as **Voc decays**. On a **subsequent** power-up, the **Vour** supply is automatically switched **from** the backup supply to the Voc supply. **The** external **SRAMs** are write-protected until a **power**-valid condition exists. The **reset** output **provides** power-fail and power-on resets **for** the system.

During power-valid operation, the input decoder selects one of two banks of SRAM.

Pin Connections

16 \ Vcc V_{OUT} ☐1 BC D 2 15 | BCs 14 D CE 13 DE CON1 NC ☐5 12 DE CON2 NC de 11 DNC THS d7 10 RST V_{SS} □ 8 9 □NC 16-Pin Narrow DIP or SOIC

Pin Names

Vout	Supply output
RST	Reset output
THS	Threshold select input
CE	Chip enable active low input
CECON1,	Conditioned chip enable outputs
CE _{CON2}	
A	Bank select input
BCP	3V backup supply input
BCs	3V rechargeable backup supply input/output
NC	No connect
V_{CC}	+5 volt supply input
V_{SS}	Ground

Functional Description

Two banks of CMOS static RAM can be battery-backed using the **Vout** and conditioned chip enable output pins from the **bq2202**. As the voltage input Vcc slews d m during a **power** failure, **the two** conditioned chip enable outputs, **CEcon1** and **CEcon2**, **are forced** inactive independent of the chip enable input CE.

This activity unconditionally write-protects external SRAM as **Vcc falls** to an out-of-tolerance threshold **VPFD**. VPFD is selected by the threshold select input pin, THS. If **THS** is tied to **VSS**, the power-fail detection **occurs** at

4.62V typical for 5% supply operation. If **THS** is tied to **Vour**, power-fail **detection occurs** at **4.37V** typical for 10% supply operation. The **THS** pin must be tied to Vss or **Vour** for proper operation.

If a memory access is in **process** to any of the two **external banks** of SRAM during power-fail detection, that memory cycle continues to completion before the memory is write-protected. If the memory cycle is not terminated within time twpt (150µsec maximum), the two chip enable outputs are unconditionally driven high, write-protecting the controlled **SRAMs**.

Nov. 1994 C 1/8

As the supply continues to fall past VPFD, an internal switching device forces Vour to the internal backup energy source. CEcon1 and CEcon2 are held high by the Vour energy source.

During power-up, V_{OUT} is switched back to the 5V supply as V_{CC} rises above the backup cell input voltage sourcing V_{OUT} . Outputs \overline{CE}_{CON1} and \overline{CE}_{CON2} are held inactive for time t_{CER} (120ms maximum) after the power supply has reached V_{PFD} , independent of the \overline{CE} input, to allow for processor stabilization.

During power-valid operation, the \overline{CE} input is passed through to one of the two \overline{CE} con outputs with a propagation delay of less than 10 ns. The \overline{CE} input is output on one of the two \overline{CE} con output pins depending on the level of bank select input A, as shown in the Truth Table.

Bank select input A is usually tied to a high-order address pin so that a large nonvolatile memory can be designed using lower-density memory devices. Nonvolatility and decoding are achieved by hardware hookup as shown in Figure 1.

The **reset** output (RST) **goes** active within type (150 µsec **maximum**) after Vppp, and remains active for a **minimum** of 40ms (120ms **maximum**) after power returns valid The RST output can be used as the power-on reset for a **microprocessor**. Access to the external RAM may begin when RST returns inactive.

Energy Cell Inputs—BCP, BCs

Two backup energy source inputs are provided on the bq2202—a primary cell BCP and a secondary cell BCs. The primary cell input is designed to accept any 3V primary battery (non-rechargeable), typically some type of lithium chemistry. If a primary cell is not to be used, the BCP pin should be grounded. The secondary cell input BCs is designed to accept constant-voltage current-limited rechargeable cells.

During normal **+5V** power valid operation, **3.3V** is output on the BCs pin and is current-limited internally.

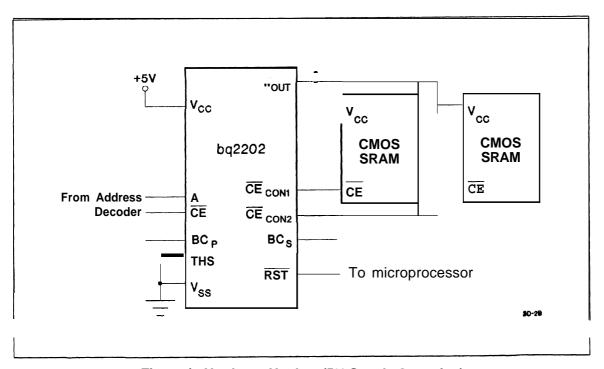


Figure 1. Hardware Hookup (5% Supply Operation)

2/B Nov. 1994 C

If a secondary cell is not to be used, the BCs pin must be tied directly to Vss. If both inputs are used, during power failure the Vout and CEcon outputs are forced high by the secondary cell ao long as it is greater than 2.5V. Only the secondary cell is loaded by the data retention current of the SRAM until the voltage at the BCs pin falls below 2.5V. When and if the voltage at BCs falls below 2.5V, an internal isolation switch automatically transfers the load from the secondary cell to the primary cell.

To prevent **battery** drain when **there** is no valid data to retain, **Vour**, **CEcon**, and **CEcon**2 are internally isolated from **BC**P and **BCs** by either:

■ Initial connection of a battery to **BCp** or **BCs** or Presentation of an isolation signal on \overline{CE} .

A valid isolation signal requires $\overline{\mathbf{CE}}$ low as $\mathbf{V_{CC}}$ crosses both $\mathbf{V_{PFD}}$ and $\mathbf{V_{SO}}$ during a power-down. Between these two points in time, $\overline{\mathbf{CE}}$ must be brought to $\mathbf{V_{CC}} \cdot (\mathbf{0.48})$ to 0.52) and held for at least 700ns. The isolation signal is invalid if $\overline{\mathbf{CE}}$ exceeds $\mathbf{V_{CC}} \cdot \mathbf{0.54}$ at any point between $\mathbf{V_{CC}} \cdot \mathbf{0.54}$ are Figure 2.

The battery is connected to Vour, CEcon1, and CEcon2 immediately on subsequent application and removal of vcc.

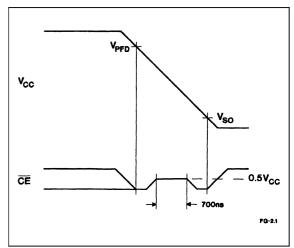


Figure 2. Battery Isolation Signal

Truth Table

lnı	out	Output		
CE	Α	CE _{CON1}	CE _{CON2}	
Н	X	Н	Н	
L	L	L	Н	
L	Н	Н	L	

Nov. 1994 C 3/8

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
V_{T}	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
		0 to +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial "N"
T_{STG}	Storage temperature	-55 to +125	°C	
T _{BIAS}	Temperature under bias	-40 to 85	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds
Iout	Vour current	200	mA	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the **Recommended DC** Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
		4.75	5.0	5.5	V	THS = V _{SS}
Vcc	Supply voltage	4.50	5.0	5.5	V	THS = Vout
VBCP		2.0		4.0		
V _{BCS}	Backup cell input voltage	2.5		4.0	V	$V_{CC} < V_{BC}$
Vss	Supply voltage	0	0	0	V	
VIL	Input low voltage	-0.3		0.8	V	
VIH	Input high voltage	2.2	-	Vcc + 0.3	V	
THS	Threshold select	-0.3	-	V _{CC} + 0.3	V	

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ or V_{BC} .

4/8 Nov. 1994 C

DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I <u>li</u>	Input leakage current			± 1	μА	V _{IN} = V _{SS} to V _{CC}
V _{OH}	Output high voltage	2.4			V	Iон = -2.0 mA
VohB	Voh, backup supply	V _{BC} • 0.3			V	$V_{BC} > V_{CC}$, $I_{OH} = -10\mu A$
Vol	Output low voltage			0.4	V	I _{OL} = 4.0 mA
Icc	Operating supply current		3	6	mA	No load on Vout, CECONI, and CECON2
		4.65	4.62	4.75	V	THS = V _{SS}
VPFD	Power-fail detect voltage	4.30	4.37	4.50	V	THS = V _{OUT}
V_{SO}	Supply switch-over voltage		VBC		V	
Iccdr	Data-retention mode			100	nA	No load on V_{OUT} , \overline{CE}_{CON1} , and \overline{CE}_{CON2}
		Vcc - 0.2			V	$V_{\rm CC} > V_{\rm BC}$, $I_{\rm OUT} = 100 {\rm mA}$
Vouri	Vout voltage	Vcc • 0.3			V	Vcc > VBC, IOUT = 160mA
Vou12	Vow voltage	V_{BC} · 0.2			V	V _{CC} < V _{BC} , I _{OUT} = 100μA
			V _{BCS}		V	V _{BCS} > 2.5V
V_{BC}	Active backup cell voltage		V _{BCP}		V	V _{BCS} < 2.5V
R _{BCS}	BCs charge output internal resistance	500	1000	1750	Ω	V _{BCSO} ≥ 3.0V
V _{BCSO}	BCs charge output voltage	3.0	3.3	3.6	v	Vcc > Vpro, RST inactive, full charge or no load
Iout1	Vour current			160	mA	Vow≥ Vcc - 0.3V
Iour2	Vour current		100		μA	Vow≥ VBC • 0.2V

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ or VBC.

Capacitance (TA = 25℃, F = IMHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
CIN	Input capacitance			8	рF	Input voltage = OV
Cout	Output capacitance			10	pF	Output voltage = OV

Note: This parameter is sampled and not 100% tested.

Nov. 1994 C 5/8

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0 V to 3.0 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figure 3

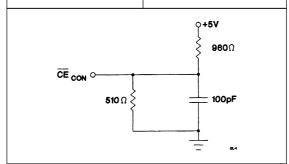
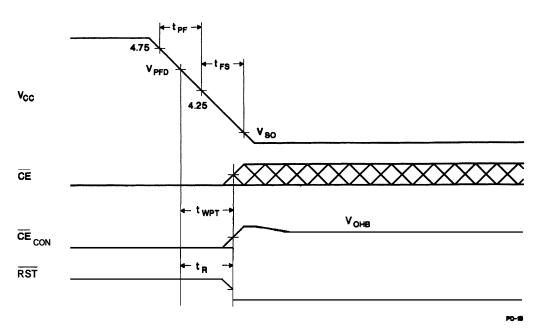
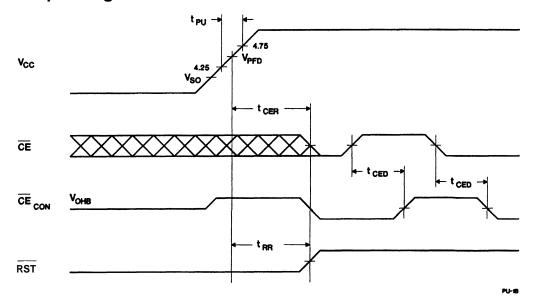


Figure 3. Output Load

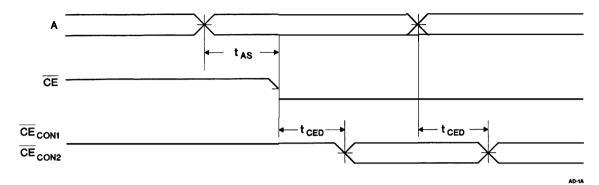

Power-Fail Control (TA = TOPR)

Symbol	Parameter	Min.	Tvp.	Max.	Unit	Conditions
tpr	V_{cc} slew 4.75 to 4.25 V	300	-	•	μв	
trs	Vcc slew 4.25 v to Vso	10	-	-	με	
tPU	Vcc slew 4.25 to 4.75 V	0		-	μs	
tced	Chip-enable propagation delay		7	10	ns	
tcer	Chip-enable recovery time	trr	-	trr	ms	Time during which SRAM is write- protected after V _{CC} passes VPFD on power-up
t_{RR}	V _{PFD} to RST inactive	40	80	120	ms	Time, after Vcc becomes valid, before RST is cleared
tas	Input A set up to \overline{CE}	0		-	ns	
twpr	Write-protect time	tr	-	tR	μs	Delay after V _{CC} slews down past VPFD before SRAM is write-protected
t _R	V _{PFD} to RST active	40	100	150	μв	Delay after Vcc slews down past VPFD before RST is active


Note: Typical values indicate operation at TA = 25°C, vcc = 5V.

6/8 Nov. 1994 C

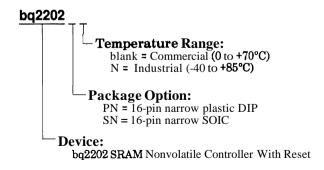
Power-Down Timing



Power-Up Timing

Nov. 1994 C 7/8

Address-Decode Timing


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	2	Deleted last sentence	Clarification
1	6	V _{BCSO} —BCs charge output voltage	Was 3.15 min, 3.3 typ, 3.45 max; is 3.0 min, 3.3 typ, 3.6 max
2	5	Maximum charge output internal resistance (RBCS) changed to 175022	Was 1500Ω

Note:

Change 1 = Dec. 1992 B changes from Sept. 1991 A. Change 2 = Nov. 1994 C changes from Dec. 1992 B.

Ordering Information

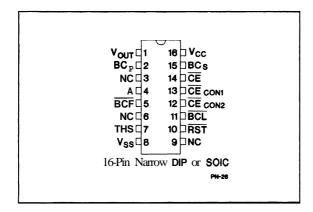
8/8 Nov. 1994 C

NV Controller With Battery Monitor

Features

- Power monitoring and switching for nonvolatile control of SRAMs
- Write-protect control
- Battery-low and battery-fail indicators
- Reset output for system power-on reset
- Input decoder allows control of up to 2 banks of SRAM
- 3V primary cell input
- 3V rechargeable battery inpuvoutput

General Description


The CMOS bq2203A SRAM Nonvolatile Controller With Battery Monitor provides all the necessary functions for converting one or two banks of standard CMOS SRAM into nonvolatile read/write memory. The bq2203A is compatible with the Personal Computer Memory Card International Association (PCMCIA) recommendations for battery-backed static RAM memory cards.

A precision comparator monitors the 5V Vcc input for an out-of-tolerance condition. When out of tolerance is detected, the two conditioned chip enable outputs are forced inactive to write-protect both banks of SRAM.

Power for the external **SRAMs** is switched from the Vcc supply to the battery-backup supply **as** Vcc decays. On a subsequent power-up, the **Vour** eupply is automatically switched **from** the backup **supply** to the **Vcc** supply. The external **SRAMs** are write-protected until a **power**-valid condition e d . The **reset** output **provides** power-fail and power-on resets for the **system**. The battery monitor indicates battery-low and battery-fail **conditions**.

During power-valid operation, the input-decoder selects one of two banks of SRAM.

Pin Connections

Pin Names

Supply output

Ground

Vour

 V_{SS}

RST	Reset output
THS	Threshold select input
CE	Chip enable active low input
CECON1, CECON2	Conditioned chip enable outputs
CECON2	
A	Bank select input
BCF	Battery fail push-pull output
BCL	Battery low push-pull output
BCp	3V backup supply input
BCs	3V rechargeable backup supply input/output
NC	No conned
V_{CC}	+5 volt supply input

Functional Description

Two banks of CMOS static RAM can be battery-backed using the Vout and the conditioned chip enable output pins from the bq2203A. As the voltage input Voc slews down during a power failure, the two conditioned chip enable outputs, CECON1 and CECON2, are forced inactive independent of the chip enable input CE.

This activity unconditionally write-protects external SRAM as V_{CC} falls to an out-of-tolerance threshold VPFD. VPFD is selected by the threshold select input pin, THS. If THS is tied to Vss, the power-fail detection occurs at 4.62V typical

for 5% supply operation. If **THS** is tied to **Vcc**, power-fail detection **occurs** at **4.37V typical** for **10%** supply operation. The **THS** pin must be tied to **Vss** or **Vcc** for proper operation.

If a memory access is in process to any of the two external banks of SRAM during power-fail detection, that memory cycle **continues** to completion before the memory is write-protected. If the memory cycle is not terminated within time **twpr** (150µs maximum), the two chip enable **outputs** are unconditionally driven high, write-protecting the controlled **SRAMs**.

Nov. 1994 B 1/8

As the supply **continues** to fall past **VPFD**, an **internal** switching **device forces VOUT** to the external backup energy **SOUTCE. CECON1** and **CECON2** are held high by the **VOUT** energy source.

During power-up, **Vout** is switched back to the **5V** supply as V_{CC} rises above the backup cell input voltage sourcing **Vout**. Outputs **CEcon1** and **CEcon2** are held inactive for time tcer (120ms maximum) after the power supply has reached **VPFD**, independent of the \overline{CE} input, to allow for processor stabilization.

During power-valid operation, the \overline{CE} input is passed through to one of the two \overline{CE} con outputs with a propagation delay of less than 10ns. The \overline{CE} input is output on one of the two \overline{CE} con output pins depending on the level of bank select input A, as shown in the Truth Table.

Bank select input A is usually tied to a high-order address pin so that a large nonvolatile memory can be designed using lower-density memory devices. Nonvolatility and decoding are achieved by hardware hookup as shown in Figure 1.

The reset output (RST) goes active within tppp (150µs maximum) after Vppp, and remains active for a minimum of 40ms (120ms maximum) after power returns valid. The RST output can be used as the power-on reset for a microprocessor. Access to the external RAM may begin when RST returns inactive.

Energy Cell Inputs—BCP, BCs

Two backup energy source inputs are provided on the **bq2203A—a** primary cell BCP and a secondary cell BCs. The primary cell input is designed to accept any 3V primary battery (non-rechargeable), typically **some** type of Lithium chemistry. If a primary cell is not to be used, the BCP pin should be tied to **Vss**. The secondary cell input BCs is designed to accept constant-voltage current-limited **rechargeable** cells.

During **normal** +5V power valid operation, **3.3V** typical **is** output on the BCs pin and **is** current-limited **internally**. Although this **charging** method can be used with various 3V secondary cells, it is specifically designed for a **Panasonic** VL (vanadium-lithium) **series** of rechargeable **cells**.

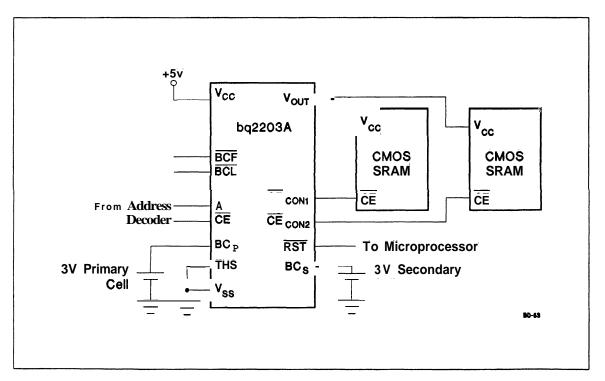


Figure 1. Hardware Hookup (5% Supply Operation)

If a secondary cell is not to be used, the **BCs** pin must be tied directly to **Vss**.

Vcc falling below VPFD starts the comparison of BCs and BCP. The BC input comparison continues until Vcc rises above Vso. Power to Vour begins with BCs and switches to BCP only when BCs is less than BCP minus Vsso. The controller alternates to the higher BC voltage when the difference between the BC input voltages is greater than Vsso. Alternating the backup batteries allows one-at-atime battery replacement and efficient use of both backup batteries.

To prevent **battery** drain when **there** is no valid data to retain, **Vour**, **CEcon**, and **CEcon** are internally isolated from **BC**_P and **BC**_S by either:

- Initial connection of a battery to BCp or BCs (Vcc grounded) or
- Presentation of an isolation signal on CE

A valid isolation signal requires \overline{CE} low as Vcc crosses both Vppp and Vso during a power-down. Between these two points in time, \overline{CE} must be brought to $Vcc \cdot (0.48 \text{ to } 0.52)$ and held for at least 700ns. The isolation signal is invalid if \overline{CE} exceeds $Vcc \cdot 0.54$ at any point between Vcc crossing Vppp and Vso. See Figure 2.

The isolation function is **terminated** and the **appropriate** battery is connected to **Vout**, \overline{CE}_{CON1} , and \overline{CE}_{CON2} by powering Vcc up through VPFD.

Battery Monitor — BCL, BCF

As Vcc rises past VPFD, the battery voltage on BCP is compared with a dual voltage reference. The result of this comparison is latched internally, and output after tBC when Vcc rises past VPFD. If the battery voltage on BCP is below VBL, then BCL is asserted low. If the battery is below VBF, then BCL and BCF are asserted low. The results of this comparison remain latched until Vcc falls below VPFD.

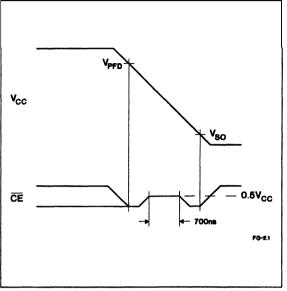


Figure 2. Battery Isolation Signal

Truth Table

Input		Output		
CE	Α	CE _{CON1}	CE _{CON2}	
Н	X	Н	Н	
L	L	L	Н	
L	Н	Н	L	

Nov. 1994 B 3/8

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_{\rm T} \le V_{\rm CC} + 0.3$
		0 to 70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	"N" Industrial
Tstg	Storage temperature	-55 to 125	°C	
TBIAS	Temperature under bias	-40 to 85	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds
Iour	Vourcurrent	200	mA	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational **limits** for extended periods of time may **affect** device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Notes
		4.75	5.0	5.5	V	THS = V _{SS}
Vcc	Supply voltage	4.50	5.0	5.5	V	THS = V _{CC}
V_{BCP}		2.0		4.0	V	V _{CC} < V _{BC}
$V_{\rm BCS}$	Backup cell input voltage	2.0		4.0	V	V _{CC} < V _{BC}
Vss	Supply voltage	0	0	0	V	
V_{IL}	Input low voltage	-0.3		0.8	V	
V _{IH}	Input high voltage	2.2	-	V _{CC} + 0.3	V	
THS	Threshold select	-0.3	-	Vcc + 0.3	V	

Note: Typical va

Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

4/8 Nov. 1994 B

DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILJ	Input leakage current			± 1	μA	V _{IN} = V _{SS} to V _{CC}
Voh	Output high voltage	2.4			V	I _{OH} = -2.0 mA
Vонв	VOH, backup supply	VBC • 0.3			V	V _{BC} > Vcc, I _{OH} = -10μA
Vol	Output low voltage			0.4	V	$I_{OL} = 4.0 \text{ mA}$
Icc	Operating supply current		3	6	mA	No load on outputs
$V_{ m PFD}$	Power-fail detect voltage	4.55	4.62	4.75	V	THS = V_{SS}
V PFD	1 ower furideteet voltage	4.30	4.37	4.50	V	THS = V _{CC}
Vso	Supply switch-over voltage		V_{BC}		V	
I _{CCDR}	Data-retention mode			100	nA	No load on outputs
V _{BC}	Active backup cell voltage		V_{BCS}		V	$V_{BCS} > V_{BCP} + V_{BSO}$
'BC	Then we backup cen voltage		V_{BCP}		V	V _{BCP} > V _{BCS} + V _{BSO}
$V_{\rm BSO}$	Battery switch-over voltage	0.25	0.4	0.6	V	
R_{BCS}	BCs charge output internal resistance	500	1000	1750	Ω	$V_{BCSO} \ge 3.0V$
V _{BCSO}	BC _S charge output voltage	3.15	3.3	3.5	V	V _{CC} > V _{PFD} , RST inactive, full charge or no load
I _{OUT1}	Vowrcurrent			160	mA	Vout 2 Vcc - 0.3V
I _{OUT2}	Vour current		100		μA	V _{OUT} ≥ V _{BC} · 0.2V
VBL	Voltage battery low	2.3		2.5	V	BCp input only
VBF	Voltage battery fail	2.0		2.2	V	BCP input only

Note: Typical values indicate operation at TA = 25°C, Vcc = 5V or VBc.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions
CIN	Input capacitance			8	рF	Input voltage = OV
Cout	Output capacitance			10	рF	Output voltage = 0V

Note: **This** parameter is sampled and not 100% tested.

Nov. 1994B 5/8

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0 V to 3.0 V
Input rise and fall times	5ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figure 3

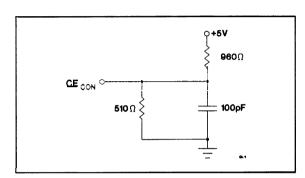
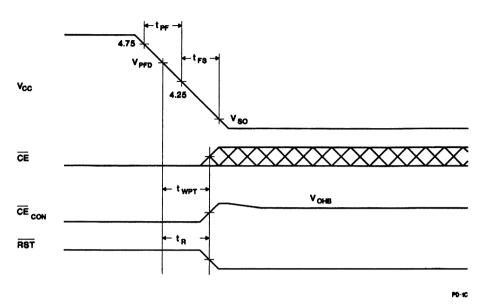
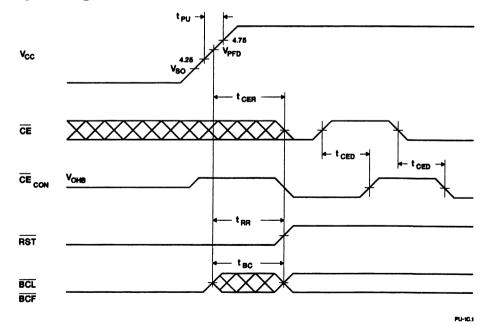


Figure 3. Output Load

Power-Fail Control (TA = TOPR)

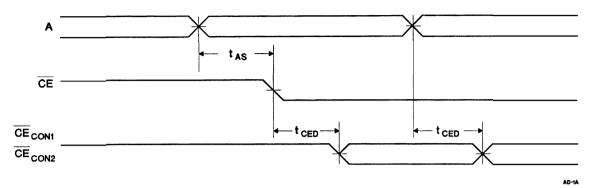

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
tpf	V_{CC} slew 4.75 to 4.25 V	300	· .	-	μв	
tfs	Vcc slew 4.25 V to Vso	10	•	-	μв	
tpu	Vcc slew 4.25 to 4.75 V	0		•	μв	
tced	Chip-enable propagation delay		7	10	ns	
tcer	Chip-enable recovery time	40	80	120	ms	Time during which SRAM is write- protected after VCC passes VPFD on power-up
trr	V _{PFD} to RST inactive	tcer	•	tcer	ms	Time, after Vcc becomes valid, before RST is cleared
tas	Input A set up to $\overline{\textbf{CE}}$	0		-	ns	
twpr	Write-protect time	40	100	150	μз	Delay after V _{CC} slews down past V _{PFD} before SRAM is write-protected
tR	VPFD to RST active	twpr	-	twpr	μв	Delay after Vcc slews down past VPFD before RST is active
tBC	VPFD to BCL/BCF active	tcer	-	tcer	ms	Delay <u>after Vcc slews</u> up past VPFD before BCL or BCF is active

Note: Typical values indicate operation at TA = 25° C, $V_{CC} = 5V$.


Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

6/8 Nw.1994 B

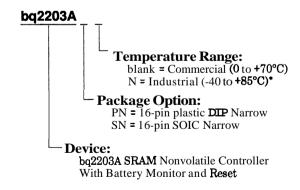
Power-Down Timing



Power-Up Timing

Nov. 1994 B 7/8

Address-Decode Timing



Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1		Data sheet changed from "Preliminary" to "Final"	
1	5	Maximum charge output internal resistance (R _{BCS}) changed to 1750Ω	Was 1500Ω

Note: Change 1 = Nov. 1994 B changes from Dec. 1992.

Ordering Information

'Contact factory for availability.

8/8 Nov. 1994 B

X4 SRAM Nonvolatile Controller Unit

Features

- Power monitoring and switching for 3 volt battery-backup applications
- Write-protect control
- 2-input decoder allows control for up to 4 banks of SRAM
- 3 volt primary cell inputs
- Less than 10 ns chip enable propagation delay
- 5% or 10% supply operation

General Description

The CMOS **bq2204A** SRAM Non-volatile Controller Unit **provides** all necessary functions for converting up to four **banks** of standard CMOS SRAM into nonvolatile **read/write** memory.

A precision comparator **monitors** the **5V Vcc** input for an out-of-tolerance condition. When out of tolerance is detected, the four conditioned chip enable outputs **are** forced inactive to write-protect up to four banks of SRAM.

During a power failure, the external SRAMs are switched from the Vcc supply to one of two 3V backup supplies. On a subsequent power-up, the SRAMs are write-protected until a power-valid condition exists.

During power-valid operation, a twoinput decoder transparently **selects** one of up to four **banks of** SRAM.

Pin Connections

16 🗆 Vcc V_{OUT} □1 BC₂ 2 15 BC1 ис ₫з 14 D CE 13 CE CON1 B □ 5 12 CE CON2 11 CE CON3 NC ☐ 6 THS □7 10 DE CON4 V_{SS} □8 9 □NC 16-Pin Narrow DIP or SOIC PN-18

Pin Names

Vour Supply output BC1-BC2 3 volt primary backup cell inputs THS Threshold select input Œ Chip enable active low input CECON1-Conditioned chip enable outputs **CECON4** A-B Decoder inputs NC No connect Vcc +5 volt supply input Ground VSS

Functional Description

Up to four banks of CMOS static RAM can be battery-backed using the Vour and conditioned chip enable output pins from the bq2204A. As Vcc slews down during a power failure, the conditioned chip enable outputs CECON1 through CECON4 are forced inactive independent of the chip enable input CE.

This activity unconditionally write-protects the external SRAM as Vcc falls below an out-of-tolerance threshold VPFD. VPFD is selected by the threshold select input pin, THS. If THS is tied to Vss, the power-fail detection occurs at 4.62V

typical for 5% supply operation. If THS is tied to Vcc, power-fail detection occurs at 4.37V typical for 10% supply operation. The THS pin must be tied to Vss or Vcc for proper operation.

If a **memory access** is in **process** to any of the four external banks of SRAM **during** power-fail detection, that memory cycle **continues** to completion **before** the memory is **write-protected**. If the memory cycle is not terminated within time twpt, all four chip enable **outputs** are **unconditionally** driven high, write-protecting the **controlled SRAMs**.

Dec. 1992

As the supply continues to **fall** past **VPFD**, an internal switching device **forces Vout** to one of the two external backup **energy** sources. **CECON1 through CECON4** are held high by the **Vout** energy source.

During power-up, **Vout** is switched back to the 5V supply as **Vcc** rises **above** the backup **cell input** voltage sourcing **Vout**. Outputs **CEcon1** through **CEcon4** are held inactive for time toer (120 ma maximum) **after** the power supply has reached Vpfp, independent of the CE input, to allow for **processor** stabilization.

During power-valid operation, the $\overline{\textbf{CE}}$ input is passed through to one of the four $\overline{\textbf{CE}}$ con outputs with a propagation delay of less than 10 ns. The $\overline{\textbf{CE}}$ input is output on one of the four $\overline{\textbf{CE}}$ con output pins depending on the level of the decode inputs at A and B as shown in the **Truth** Table.

The A and B inputs are usually tied to high-order address pins so that a large nonvolatile memory can be designed using lower-density memory devices. Nonvolatility and decoding are achieved by hardware hookup as shown in Figure 1.

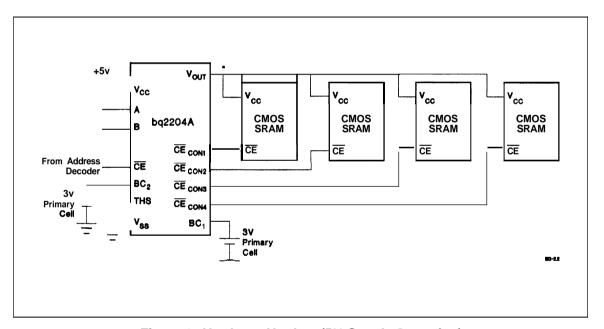


Figure 1. Hardware Hookup (5% Supply Operation)

2/8

Energy Cell Inputs—BC₁, BC₂

Two backup energy source inputs are provided on the bq2204A. The BC₁ and BC₂ inputs accept a 3V primary battery (non-rechargeable), typically some type of lithium chemistry. If no primary cell is to be used on either BC₁ or BC₂, the unused input should be tied to vss.

Vcc falling below VPPD starts the comparison of BC1 and BC2. The BC input comparison continues until Vcc rises above Vso. Power to Vour begins with BC1 and switches to BC2 only when VBC1 is less than VBC2 minus VBSO. The controller only alternates to the higher BC voltage when the difference between the BC input voltages is greater than VBSO. Alternating the backup batteries allows one-at-a-time battery replacement and efficient use of both backup batteries.

To prevent **battery drain** when there is no valid data to retain, **Vour** and **CEcon1—4** are internally isolated **from BC**₁ and **BC**₂ by either:

- Initial connection of a battery to BC₁ or BC₂, or
- **Presentation** of an isolation signal on \overline{CE} .

A valid isolation signal requires $\overline{\text{CE}}$ low as V_{CC} crosses both V_{PFD} and V_{SO} during a power-down. Between these two points in time, $\overline{\text{CE}}$ must be brought to the point of (0.48 to 0.52)* V_{CC} and held for at least 700ns. The isolation signal is invalid if $\overline{\text{CE}}$ exceeds 0.54* V_{CC} at any point between V_{CC} crossing V_{PFD} and V_{SO} . See Figure 2.

The appropriate battery is connected to V_{OUT} and \overline{CE}_{CON1-4} immediately on subsequent application and removal of V_{CC} .

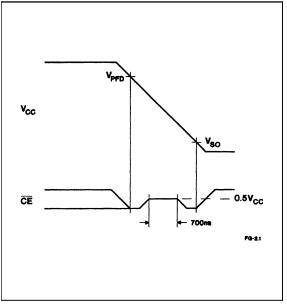


Figure 2. Battery Isolation Signal

Truth Table

Inputs			Outputs				
CE	Α	В	CE _{CON1}	CE _{CON2}	CE _{CON3}	CE _{CON4}	
Н	х	Х	Н	Н	Н	Н	
L	L	L	L	Н	Н	Н	
L	Н	L	Н	L	Н	Н	
L	L	Н	Н	Н	L	Н	
L	Н	н	н	Н	Н	L	

Dec. 1992

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 7.0	V	$V_{\rm T} \le V_{\rm CC} + 0.3$
		0 to +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial "N"
Tstg	Storage temperature	-65 to +125	°C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds
Iour	Vour current	200	mA	

Note:

Permanent device damage may **occur** if **Absolute Maximum** Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended **periods** of time may **affect** device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Notes
		4.75	5.0	5.5	V	THS = V _{SS}
Vcc	Supply voltage	4.50	5.0	5.5	V	THS = Vcc
Vss	Supply voltage	0	0	0	V	
VIL	Input low voltage	-0.3		0.8	V	
V_{IH}	Input high voltage	2.2	•	Vcc + 0.3	V	
V _{BC1} , V _{BC2}	Backup cell voltage	2.0		4.0	V	Vcc < V _{BC}
THS	Threshold select	-0.3		Vcc + 0.3	V	

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ or V_{BC} .

4/8 Dec. 1992

DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I _{LI}	Input leakage current			± 1	μA	$V_{\rm IN}$ = $V_{\rm SS}$ to $V_{\rm CC}$
Voh	Output high voltage	2.4			v	I _{OH} = -2.0 mA
VOHB	V _{OH} , BC supply	VBC • 0.3			V	V _{BC} > V _{CC} , I _{OH} = -10μA
Vol	Output low voltage			0.4	V	I _{OL} = 4.0 mA
Icc	Operating supply current		3	6	mA	No load on outputs.
		4.55	4.62	4.75	V	THS = V _{SS}
VPFD	Power-fail detect voltage	4.30	4.37	4.50	V	THS = V _{CC}
Vso	Supply switch-over voltage		V_{BC}		V	
Iccdr	Data-retention mode current			100	nA	V _{OUT} data-retention current to additional memory not included.
V _{BC}	Active backup cell		V _{BC1}		V	V _{BC1} > V _{BC2} + V _{BSO}
ABC	voltage		V _{BC2}		V	V _{BC2} > V _{BC1} + V _{BSO}
V _{BSO}	Battery switch-over voltage	0.25	0.4	0.6	V	
Iout1	Vour current			160	mA	Vout > Vcc - 0.3V
I _{OUT2}	Vout current		100		μA	Vour > VBC · 0.2V

Note:

Typical values indicate operation at $T_A = 25^{\circ}\text{C}$, $V_{CC} = 5\text{V}$ or V_{BC} .

Capacitance FA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Cin	Input capacitance			8	рF	Input voltage = OV
Cour	Output capacitance			10	pF	Output voltage = OV

Note:

This parameter is sampled and not 100% tested.

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0 V to 3.0 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figure 3

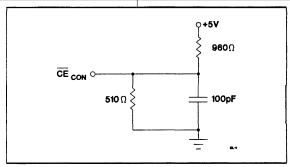
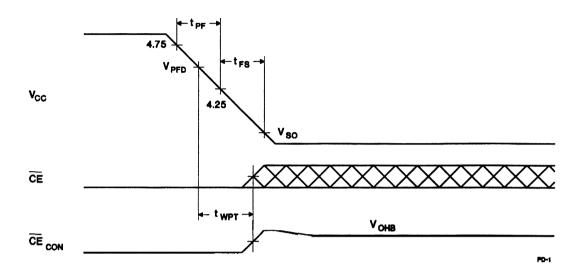
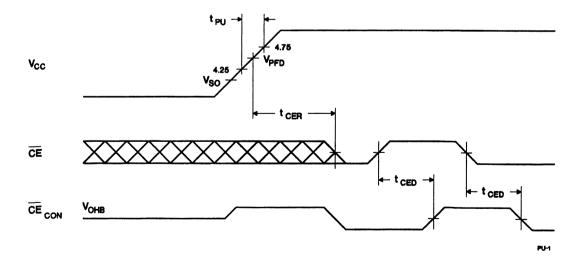


Figure 3. Output Load

Power-Fail Control (TA = TOPR)

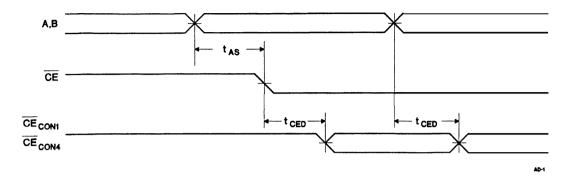

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tpf	V _{CC} slew, 4.75V to 4.25V	300	-	-	μв	
tfs	Vcc slew, 4.25V to Vso	10			μs	
tpu	Vcc slew, 4.25V to 4.75V	0			μв	
tCED	Chip enable propagation delay		7	10	ns	
tas	A,B set up to $\overline{\bf CE}$	0			ns	
tcer	Chip enable recovery	40	80	120	ma	Time during which SRAM is write-protected after Vcc passes VPFD on power-up.
twpr	Write-protect time	40	100	150	μв	Delay after Vcc slews down past VPFD before SRAM is write-protected.

Note: Typical values indicate operation at $TA = 25^{\circ}C$, Vcc = 5V.


Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

6/8 Dec. 1992

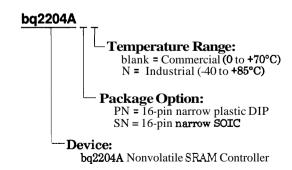
Power-Down Timing



Power-Up Timing

Dec. 1992

Address-Decode Timing



Data Sheet Revision History

Change No.	Page No.	Description of Change	Nature of Change
1	All	bq2204A replaces bq2204.	
1	1, 4–5	10% tolerance requires the THS pin to be tied to Vcc, not Vout.	
1	3	Energy cell input selection process alternates between BC ₁ and BC ₂ .	

Note: Change 1 = Dec. 1992 changes from Sept. 1991

Ordering Information

8/8 Dec. 1992

Integrated Backup Unit

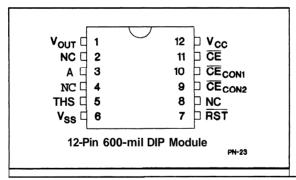
Features

- Power monitoring, backup supply, and switching for 3V battery-backup applications
- Write-protect control
- Input decoder allows control of up to 2 banks of SRAM
- 3V backup power output
- Internal 130mAh lithium coin cell
- Reset output for system power-on reset.
- Less than 10ns chip enable propagation delay
- 5% or 10% supply operation

General Description

The CMOS **bq2502** Integrated Backup Unit provides all the necessary functions for converting one or two banks of standard CMOS SRAM **into** nonvolatile **read/write** memory.

A precision comparator monitors the 5V Vcc input for an out-of-tolerance condition. When out of tolerance is detected, the two conditioned chip enable outputs are forced inactive to write-protectboth banks of SRAM.


Power for the external **SRAMs** is switched **from** the **Vcc** supply to the internal battery-backup supply as **Vcc** decays. On a **subsequent** power-up, the **Vour** supply is automatically switched from the internal lithium supply to the **Vcc** supply.

The external SRAMs are writeprotected until a power-valid condition exists. The react output provides power-fail and power-on resets for the system.

During power-valid operation, the input decoder selects one of two hanks of SRAM.

The internal lithium cell is initially electrically isolated, protecting the battery from accidental discharge. **Connection** to the battery is made only after the first application of voc.

Pin Connections

Pin Names

Vout	supply output
RST	Reset output
THS	Threshold select input
CE	Chip enable active low input
CECON1,	Conditioned chip enable outputs
A	Bank select input
NC	No connect
Vcc	+5 volt supply input

Functional Description

Two banks of CMOS static RAM can be battery-backed using the Vout and conditioned chip enable output pins from the bq2502. As the voltage input Vcc slews down during a power failure, the two conditioned chip enable outputs, CEcon1 and CEcon2, are forced inactive independent of the chip enable input CE.

This activity unconditionally write-protects external SRAM as V_{CC} falls to an out-of-tolerance threshold VPFD. VPFD is selected by the threshold select input pin, THS. If THS is tied to V_{SS}, the power-fail detection occurs at 4.62V typical

for 5% supply operation. If THS is tied to Vow, power-fail detection occurs at **4.37V** typical for **10%** supply operation. The THS pin must be tied to Vss or Vout for proper operation.

If a memory **access** is in **process** to any of the two external **banks** of SRAM during power-fail **detection**, that memory cycle continues to completion before the memory is write-**protected**. If the memory cycle is not terminated within time **twpr** (150µs maximum), the two chip enable **outputs** are unconditionally driven high, write-protecting the **con**trolled **SRAMs**.

Apr. 1991 1112

As the supply continues to fall past VPFD, an internal switching device forces Vout to the internal backup energy source. CECON1 and CECON2 are held high by the Vout energy source.

During power-up, **Vout** is switched back to the **5V** supply as **Vcc rises above the backup cell** input voltage sourcing Vow. **Outputs CEcon1** and **CEcon2** are held inactive for time toer (120ms maximum) after the power supply has reached **VFFD**, independent of the CE input, to allow for processor stabilization.

The reset output (RST) goes active within tr (150 µs maximum) after VPFD, and remains active for a minimum of 40ms (120ms maximum) after power returns valid. The RST output can be used as the power-on reset for a microprocessor. Access to the external RAM may begin when RST returns inactive.

During power-valid operation, the \overline{CE} input is passed through to one of the two \overline{CE} con outputs with a propagation delay of less than 10 ns. The \overline{CE} input is output on one of the two \overline{CE} con output pins depending on the level of bank select input A, as shown in the Truth Table.

Bank select input A is usually tied to a high-order address pin so that a large nonvolatile memory can be designed using lower-density memory devices. Nonvolatility and decoding are achieved by hardware hookup as shown in Figure 1.

The internal lithium cell is capable of supplying 3V on Vout for an extended period of time. The cumulative length of time that the external SRAMs retain data in the absence of power is a function of the data-retention current of the SRAMs used. The initial capacity of the internal lithium cell is 130mAh. Typically, if the data-retention currents for two external SRAMs are 1µA per SRAM at room temperature, nonvolatility is calculated to be for more than 7 years. If only one external SRAM is used, the data-retention time increases to more than 13 years.

The **bq2502** battery life **is** a function of the time spent in battery-backed mode and the data-retention current of the external **SRAM.** For example, **office** equipment is generally powered on for 8 hours and powered off for 16 hours. Under these conditions, a single **bq2502** provides **SRAMs** drawing **2µA** total data-retention current with more than **10 years** of **nonvolatility**.

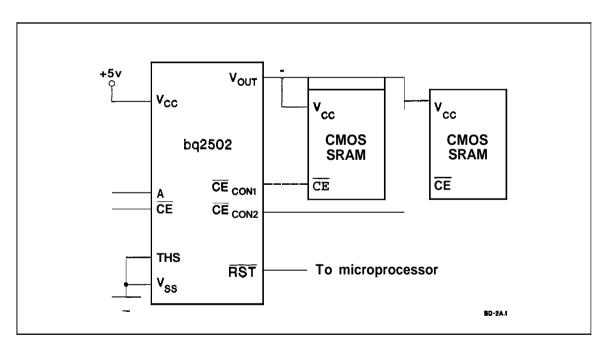


Figure 1. Hardware Hookup (5% Supply Operation)

2/12

Apr. 1991

As shipped from Benchmard, the internal lithium—cell is electrically isolated from Vour, CECON1, and CECON2. Self-discharge in this condition is less than .5% per year at 20°C.

Note: Following the first application of **Vcc**, this **isolation is** broken, **and** the backup cell provides power to **Vout**, **CEcon1**, and **CEcon2** for the external **SRAM**.

Caution:

Take care to avoid inadvertent discharge through Vout, CECON1, and CECON2 after battery isolation has been broken.

This isolation can be **reestablished** by applying a valid isolation signal to the bq2502. This signal requires \overline{CE} low as Vcc crosses both VPFD and Vso during a powerdown. Between these two points in time, \overline{CE} must be brought to (0.48 to 0.52) • Vcc and held \overline{for} at least 700ns. The isolation signal is invalid if \overline{CE} exceeds 0.54 • Vcc at any point between Vcc crossing VPFD and Vso. See Figure 2.

The battery is connected to **Vour** immediately on subsequent application and removal of Vcc.

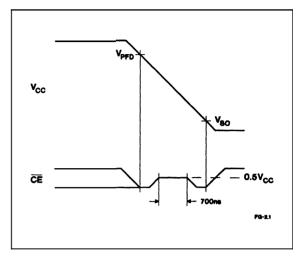


Figure 2. Battery Isolation Signal

Truth Table

In _l	out	Out	tput
CE	A	CE _{CON1}	CE _{CON2}
н	Х	н	Н
L	L	L	Н
L	Н	н	L

Absolute Maximum Ratings

Symbol	Parameter	Valve	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
$V_{\mathbf{T}}$	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to 70	°C	
TsTG	Storage temperature	-40 to 70	°C	
TBIAS	Temperature under bias	-10 to 70	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds
Iour	Vour current	200	mA	

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Notes
		4.75	5.0	5.5	٧	THS = V _{SS}
Vcc	Supply voltage	4.50	5.0	5.5	V	THS = V _{OUT}
v_{ss}	Supply voltage	0	0	0	V	
VIL	Input low voltage	-0.3		0.8	V	
VIH	Input high voltage	2.2	-	Vcc + 0.3	V	
THS	Threshold select	-0.3	-	V _{CC} + 0.3	V	

Note:

Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ or V_{BAT} .

4/12 Apr. 1991

DC Electrical Characteristics (TA = 0 to 70°C, VCC = 5V ± 10%)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
С	Battery capacity		130		mAhr	Refer to graphs in Typical Battery Characteristics section.
ILI	Input leakage current			± 1	μA	$V_{\rm IN}$ = $V_{\rm SS}$ to $V_{\rm CC}$
V OH	Output high voltage	2.4			V	I _{OH} = -2.0 mA
VOHB	Voh, backup supply	VBAT · 0.3			V	$V_{BAT} > V_{CC}$, $I_{OH} = -10\mu A$
Vol	Output low voltage			0.4	V	I _{OL} = 4.0 mA
V _{BAT}	Internal battery voltage		2.9		V	Refer to graphs in Typical Battery Characteristics section.
Icc	Operating supply current		3	6	mA	No load on Vour, CEcon1, CECON2, and RST.
		- 4.55	4.62	4.75	V	THS = V_{SS}
VPFD	Power-fail detect voltage	4.30	4.37	4.50	V	THS = V _{OUT}
Vso	Supply switch-over voltage		2.9		V	
Iccdr	Data-retention mode current from internal battery			100	n A	No load on V _{OUT} , \overline{CE}_{CON1} , \overline{CE}_{CON1} , and \overline{RST} .
		vcc • 0.2			V	Vcc > VBAT, IOUT = 100mA
Voum	OUTI Vour voltage	Vcc • 0.3			V	Vcc > VBAT, IOUT = 160mA
V _{OUT2}	Vour voltage from internal battery	V BAT • 0.2			v	Vcc < V _{BAT} , I _{OUT} = 100μA, from internal battery
I _{OUT1}	Vour current			160	mA	V _{OUT} ≥ V _{CC} · 0.3V

Note: Typical values indicate operation at TA = 25°C, Vcc = 5V or V_{BAT} .

Capacitance (TA = 25℃, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Cin	Input capacitance			8	рF	Input voltage = OV
Cout	Output capacitance			10	ρF	Output voltage = OV

Note: This parameter is sampled and not 100% tested.

Apr. 1991 5/12

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0 V to 3.0 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figure 3

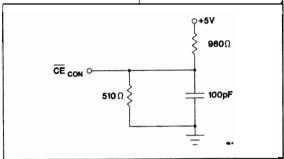
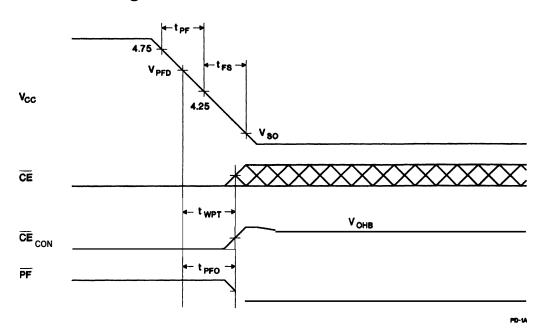
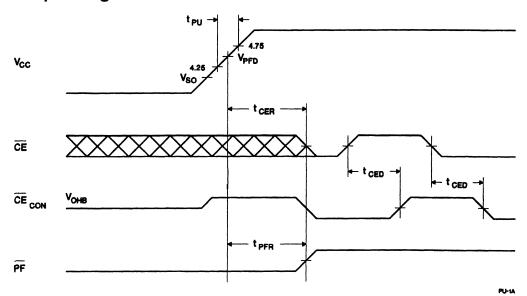


Figure 3. Output Load

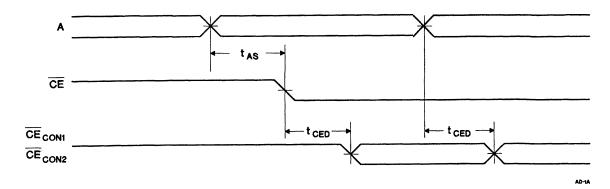

Power-Fail Control (TA = 0 to 70°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
tpF	V _{CC} slew 4.75 to 4.25 V	300	•	-	μs	
trs	Vcc slew 4.25 V to Vso	10	-	-	μs	
tpu	V _{CC} slew 4.25 to 4.75 V	0		-	μз	
tced	Chip-enable propagation delay		7	10	ns	
tcer	Chip-enable recovery time	trr	-	trr	ms	Time during which SRAM is write- protected after V _{CC} passes V _{PFD} on power-up
trr	V _{PFD} to RST inactive	40	80	120	ms	Time, after Vcc becomes valid, before RST is cleared
tas	Input A set up to $\overline{\overline{\textbf{CE}}}$	0		-	ns	
twpr	Write-protect time	tr	-	tR	μs	Delay after V _{CC} slews down past VPFD before SRAM is write-protected
tR	V _{PFD} to RST active	40	100	150	μs	Delay <u>after Vcc</u> slews down past VPFD before RST is active


Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

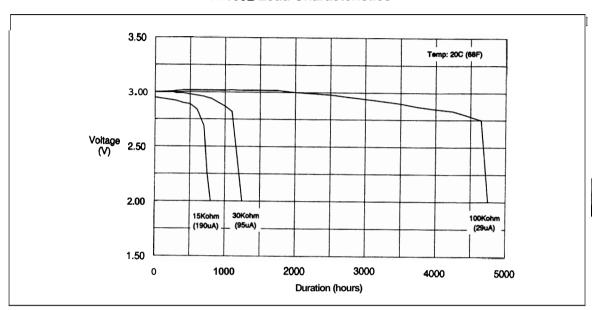
6/12 Apr. 1991

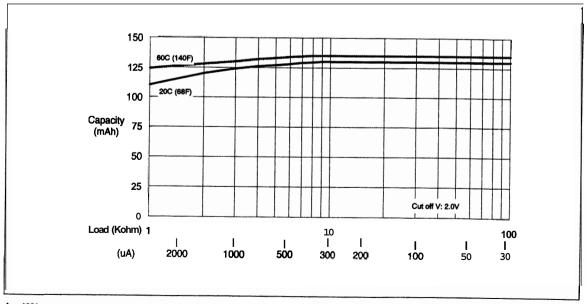
Power-Down Timing


Power-Up Timing

Apr. 1991

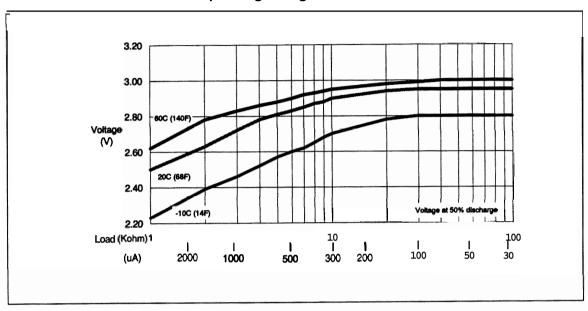
7/12


Address-Decode Timing

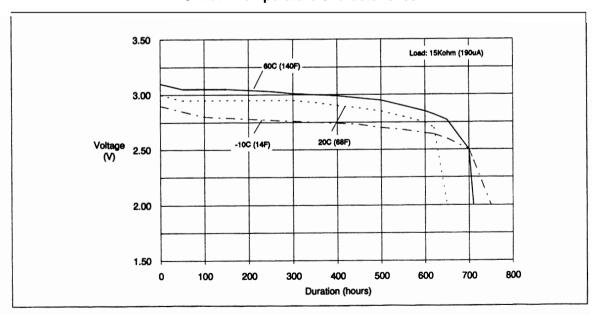

B/12 Apr. 1991

Typical Battery Characteristics (source = Panasonic)

CR1632 Load Characteristics

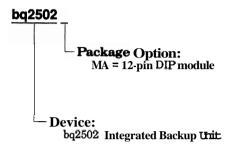


CR1632 Capacity vs. Load Resistance



Apr. 1991 9/12

CR1632 Operating Voltage vs. Load Resistance



CR1632 Temperature Characteristics

10/12 Apr. 1991

Ordering Information

Apr. 1991

Notes

12/12 Apr. 1991

Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

Real-Time Clock (RTC)

Features

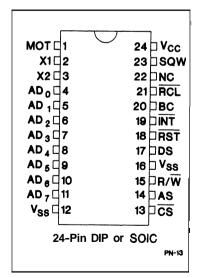
- Direct clock/calendar replacement for IBM
 AT-compatible computers and other applications
- Functionally compatible with the DS1285
 - Closely matches MC146818A pin configuration
- 114 **bytes** of general nonvolatile storage
- 160 ns cycle time allows fast bus operation
 - Selectable Intel or Motorola bus timing
- Less than 0.5 μA load under battery operation
- 14 bytes for clock/calendar and control
- BCD or binary format for clock and calendar data

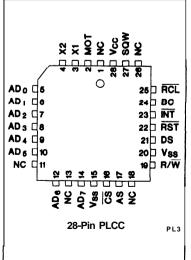
Calendar in day of the week, day of the month, months, and years, with automatic leap-year adjustment

- Time of day in seconds, minutes, and hours
 - 12- or 24-hour
 Optional daylight saving adjustment
- Programmable square wave output
- Three individually maskable

interrupt event
Periodic rates from 122 µs to
500 ms

- Time-of-day alarm once per second to once per day
- End-of-clock update cycle
- 24-pin **plastic** DIP or SOIC and 28-pin **PLCC**

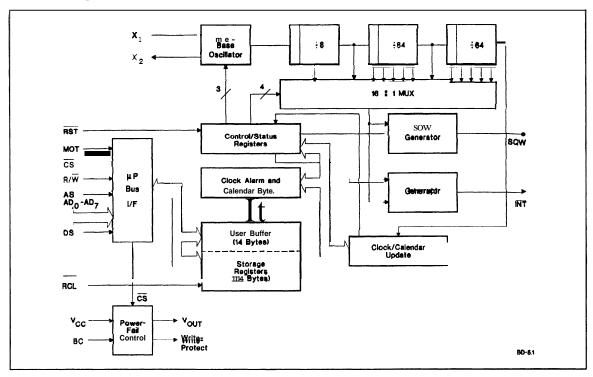

General Description


The CMOS **bq3285** is a low-power **microprocessor** peripheral providing a timesf-day clock and 100-year **calendar with alarm features** and battery operation. Other **features** include three **maskable** interrupt sources, square wave output, and 114 bytes of general nonvolatile**storage**.

The **bq3285** write-protects the clock, **calendar**, **and storage registers during** power failure. A backup **battery** then **maintains** data and operates the clock and calendar.

The **bq3285** is a fully compatible real-time clock for IBM AT compatible computers and other applications. The only external components are a **32.768kHz** crystal and a backup battery.

Pin Connections


Pin Names

ADo-AD7	Multiplexed address/data input/output
MOT	Bus type select input
CS	Chip select input
AS	Address strobe input
DS	Data strobe input
R/W	Read/write input
ĪNT	Interrupt request output
RST	Reset input
sqw	Square wave output
RCL	RAM clear input
BC	3V backup cell input
X1, X2	Crystal inputs
NC	No connect
Vcc	+5V supply
V_{SS}	Ground

Sept. 1996 D

1/20

Block Diagram

Pin Descriptions

MOT Bus type select input

MOT selects bus timing for either Motorola or Intel architecture. **This** pin should be tied to **Voc** for Motorola timing or to **Vss** for Intel timing (see Table 1). **The** setting should not be changed during system operation. MOT is internally pulled low by a 30KR resistor.

Table 1. Bus Setup

Bus Type	MOT Level	DS Equivalent	R/W Equivalent	AS Equivalent
Motorola	v _{cc}	DS, E, or	R∕W	AS
Intel	Vss	RD, MEMR, or I/OR	WR, MEMW, or I/OW	ALE

AD₀-AD₇

AS

Multiplexed address/data input/output

The bq3285 bus cycle consists of two phases: the address phase and the data-transfer phase. The address phase precedes the data-transfer phase. During the address phase, an address placed on AD₀-AD₇ is latched into the bq3285 on the falling edge of the AS signal. During the data-transfer phase of the bus cycle, the AD₀-AD₇ pins serve as a bidirectional data bus.

Address strobe input

AS serves to demultiplex the address/data bus. The falling edge of AS latches the address on AD₀-AD₇. This <u>demultiplexing</u> process is independent of the CS signal. For DIP, SOIC, and PLCC packages with MOT = Vcc, the AS input is provided a signal similar to ALE in an Intel-based system.-

2/20

Sept. 1996 D

Data strobe input

When MOT = Vcc, DS controls data transfer during a bq3285 bus cycle. During a read cycle, the bq3285 drives the bus after the rising edge on DS. During a write cycle, the falling edge on DS is used to latch write data into the chip.

When MOT = VSS, the DS input is provided a signal similar to RD, MEMR, or VOR in an Intel-based system. The falling edge on DS is used to enable the outputs during a read cycle.

R/W Read/write input

DS

When MOT = Vcc, the level on R/\overline{W} identifies the direction of data transfer. A high level on R/\overline{W} indicates a read bus cycle, whereas a low on this pin indicates a write bus cycle.

When MOT = V_{SS} , $R\overline{W}$ is provided a signal similar to \overline{WR} , MEMW, or VOW in an Intelbased system. The rising edge on $R\overline{W}$ latches data into the bq3285.

CS Chip select input

CS should be driven low and held stable during the data-transfer phase of a bus cycle accessing the **bq3285**.

INT Interrupt request output

INT is an open-drain output. INT is asserted low when any event flag is set and the **corresponding** event enable bit is also set. INT becomes high-impedance whenever register C is read (see the **Control/Status** Registers section).

SQW Square-wave output

SQW may output a programmable frequency square-wave signal during normal (Vcc valid) system operation. Any one of the 13 specific frequencies may be selected through register A. This pin is held low when the square-wave enable bit (SQWE) in register B is 0 (see the Control/Status Registers section).

RAM clear input

A low level on the \overline{RCL} pin causes the contents of each of the 114 storage bytes to be set to FF(hex). The contents of the clock and control registers are unaffected. This pin should be used as a user-interface input (pushbutton to ground) and not connected to the output of any active component. \overline{RCL} input is only recognized when held low for at least 125ms in the presence of Vcc when the oscillator is running. Using RAM clear does not affect the battery load. This pin is connected internally to a $30K\Omega$ pull-up resistor.

BC 3V backup cell input

BC should be connected to a 3V backup cell for RTC operation and storage register non-volatility in the absence of power. When Vcc slews down past Vbc(3V typical), the integral control circuitry switches the power source to BC. When Voc returns above Vbc, the power source is switched to Vcc.

Upon power-up, a voltage within the V_{BC} range must be present on the BC pin for the oscillator to start up.

RST Reset input

The **bq3285** is reset when \overline{RST} is pulled low. When reset, \overline{INT} becomes high-impedance, and the **bq3285** is not accessible. Table 4 in the **Control/Status Registers** section **lists** the register **bits** that are cleared by a reset.

Reset may be disabled by connecting \overline{RST} to Vcc. This allows the control bits to retain their states through power-down/power-up cycles.

X1, X2 Crystal input

The X1, X2 inputs are provided for an external 32.768Khz quartz crystal, Daiwa DT-26 or equivalent, with 6pF load capacitance. A trimming capacitor may be necessary for extremely precise time-base generation.

In the absence of a crystal, an oscillated output of 32.768kHz can be fed into the X1 input.

5

Functional Description

Address Map

The **bq3285** provides 14 **bytes** of clock and **control/status** registers and 114 bytes of general nonvolatile storage. Figure 1 illustrates the address map for the **bq3285**.

Update Period

The update period for the **bq3285** is one second. The **bq3285 updates** the contents of the clock and calendar

locations during the update cycle at **the** end of each update period (see Figure 2). The alarm flag bit may also be set during the update cycle.

The **bq3285** copies the local **register** updates **irro** the user buffer accessed by **the host processor**. When a **1** is written to the update transfer **inhibit** bit **(UTI)** in register B, the **user** copy of **the** clock and calendar bytes remains unchanged, while the local copy of the same bytes continua to be updated every second.

The update-in-progress bit (UIP) in register A is set tructime before the beginning of an update cycle (see Figure 2). This bit is cleared and the update-complete flag (UF) is set at the end of the update cycle.

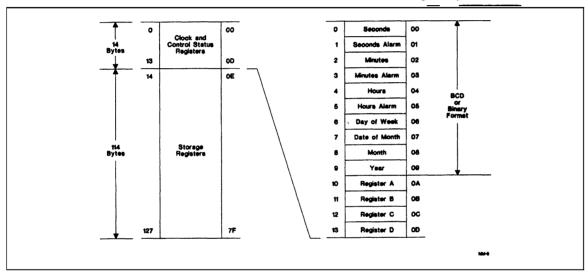


Figure 1. Address Map

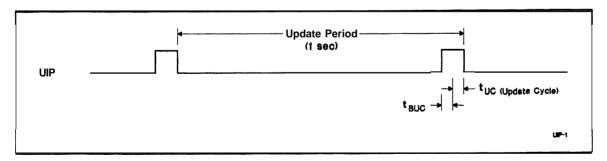


Figure 2. Update Period Timing and UIP

4/20 Sept. 1996 D

Programming the RTC

The time-of-day, alarm, and calendar **bytes** can be written in either the BCD or binary format (see Table 2).

These steps may be followed to program the time, alarm, and calendar:

- 1. Modify the contents of register B:
 - a. Write a 1 to the UTI bit to prevent transfers between RTC bytes and user buffer.
 - Write the appropriate value to the data format (DF) bit to select BCD or binary format for all time, alarm, and calendar bytes.

- Write the appropriate value to the hour format (HF) bit.
- 2. Write new values to all the time, alarm, and calendar locations.
- 3. Clear the UTI bit to allow update transfers.

On the next update cycle, the RTC updates all $10\ \mathrm{bytes}$ in the selected format.

Table 2. Time, Alarm, and Calendar Formats

		Range				
Address	RTC Bytes	Decimal	Binary	Binary-Coded Decimal		
0	Seconds	0-59	00H-3BH	00H-59H		
1	Seconds alarm	0-59	00H-3BH	00H-59H		
2	Minutes	059	00H-3BH	00H-59H		
3	Minutes alarm	0-59	00H-3BH	00H-59H		
4	Hours, 12-hour format	1–12	01H -OCH AM; 81H -8CH PM	01H–12H AM; 81H–92H PM		
	Hours, 24-hour format	0-23	00H-17H	00H-23H		
5	Hours alarm, 12-hour format	1–12	01H –OC H AM; 81H –8 CH PM	01H–12H AM ; 81H–92H PM		
	Hours alarm, 24-hour format	0-23	00H-17H	00H-23H		
6	Day of week (1=Sunday)	1–7	01H-07H	01H-07H		
7	Day of month	1-31	01H-1FH	01H-31H		
8	Month	1–12	01H-0CH	01H-12H		
9	Year	0-99	00H-63H	00H-99H		

Sept. 1996 D

Square-Wave Output

The bq3285 divides the 32.768kHz oscillator frequency to produce the 1Hz update frequency for the clock and calendar. Thirteen taps from the frequency divider are fed to a 16:1 multiplexer circuit. The output of this mux is fed to the SQW output and periodic interrupt generation circuitry. The four least-significant bits of register A, RSO-RS3, select among the 13 taps (see Table 3). The square-wave output is enabled by writing a 1 to the square-wave enable bit (SQWE) in register B.

Interrupts

The bq3285 allows three individually selected interrupt events to generate an interrupt request. These three interrupt events are:

- The periodic interrupt, programmable to occur once every 122µs to 500ms
- The alarm interrupt, programmable to occur once per second to once per day

■ The update-ended interrupt, which occurs at the end of each update cycle

Each of the three interrupt events is enabled by an individual interrupt-enable bit in register B. When an event occurs, its event flag bit in register C is set. If the corresponding event enable bit is also set, then an interrupt request is generated. The interrupt request flag bit (INTF) of register C is set with every interrupt request. Reading register C clears all flag bits, including INTF, and makes INT high-impedance.

Two methods can be used to process bq3285 interrupt events:

- Enable interrupt events and use the interrupt request output to invoke an interrupt service routine.
- Do not enable the interrupts and use a polling routine to periodically check the status of the flag bits.

The individual interrupt sources are described in detail in the following sections.

Table 3. Square-Wave Frequency/Periodic Interrupt Rate

	Registe	er A Bits		Square	Wave	Periodic I	nterrupt
RS3	RS2	RS1	RSO	Frequency	Units	Period	Units
0	0	0	0	None		None	
0	0	0	1	256	Hz	3.90625	ms
0	0	1	0	128	Hz	7.8125	ms
0	0	1	1	8.192	kHz	122.070	με
0	1	0	0	4.096	kHz	244.141	μя
0	1	0	1	2.048	kHz	488.281	μя
0	1	1	0	1.024	kHz	976.5625	μв
0	1	1	1	512	Hz	1.953125	ms
1	0	0	0	256	Hz	3.90625	ms
1	0	0	1	128	Hz	7.8125	ms
1	0	1	0	64	Hz	15.625	ms
1	0	1	1	32	Hz	31.25	ms
1	1	0	0	16	Hz	62.5	ms
1	1	0	1	8	Hz	125	ms
1	1	1	0	4	Hz	250	ms
1	1	1	1	2	Hz	500	ms

6/20 Sept. 1996 D

Periodic Interrupt

The mux output used to drive the SQW output also drives the interrupt-generation circuitry. If the periodic interrupt event is enabled by writing a 1 to the periodic interrupt enable bit (PIE) in register C, an interrupt request is generated once every 122µs to 500ms. The period between interrupts is selected by the same bits in register A that select the square wave frequency (see Table 3).

Alarm Interrupt

During each update cycle, the RTC compares the hours, minutes, and seconds bytes with the three corresponding alarm bytes. If a match of all bytes is found, the alarm interrupt event flag bit, AF in register C, is set to 1. If the alarm event is enabled, an interrupt request is generated.

An alarm byte may be removed from the **comparison** by setting it to a 'don't care' state. An alarm byte is set to a 'don't care" state by writing a 1 to each of its two most-significant bits. A 'don't care' state may be used to select the frequency of alarm interrupt events as follows:

- If none of the three alarm bytes is 'don't care," the frequency is once per day, when hours, **minutes**, and seconds match.
- If only the hour alarm byte is 'don't care,' the frequency is once per hour, when minutes and seconds match.
- If only the hour and minute alarm bytes are 'don't care,' the frequency is once per minute, when seconds match.
- If the hour, minute, and second alarm bytes are 'don't care,' the frequency is once per second.

Update Cycle Interrupt

The update cycle ended flag bit **(UF)** in register C is set to a 1 at the end of an update cycle. If the update interrupt enable bit **(UIE)** of register B is 1, and the update transfer inhiiit bit **(UTI)** in register B is 0, then an interrupt request is generated at the end of each update cycle.

Accessing RTC bytes

Time and calendar bytes read during an update cycle may be in **error**. Three **methods** to **access** the time and calendar **bytes** without ambiguity are:

- Enable the update interrupt event to generate interrupt requests at the end of the update cycle. The interrupt handler has a maximum of 999ms to access the clock bytes before the next update cycle begins (see Figure 3).
- Poll the update-in-progrew bit (UIP) in register A. If UIP = 0, the polling routine has a minimum of truc time to access the clock bytes (see Figure 3).
- Use the periodic interrupt went to generate interrupt requests every tpi time, such that UIP = 1 always occurs between the periodic interrupts. The interrupt handler has a minimum of tpy/2 + tbuc time to access the clock bytes (see Figure 3).

Oscillator Control

When power is **first** applied to the bq3285 and V_{CC} is above V_{PFD}, the **internal oscillator** and frequency divider are turned on by writing a 010 pattern to **bits** 4 through 6 of register A. A pattern of 11X turns the oscillator on, but **keep** the frequency divider disabled. **Any** other pattern to **these** bits keeps the oscillator off.

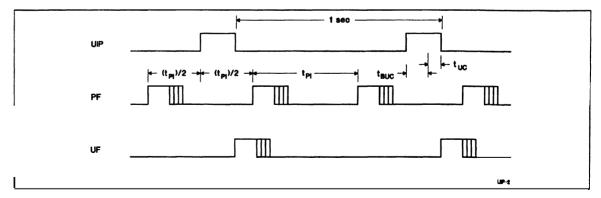


Figure 3. Update-Ended/Periodic Interrupt Relationship

Sept. 1996 D 7/20

Power-Down/Power-Up Cycle

The bq3285 continuously monitors Vcc for out-of-tolerance. During a power failure, when Vcc falls below VPFD (4.17V typical), the bq3285 write-protects the clock and storage registers. When Vcc is below VBC (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When Vcc is above VBC, the power source is Vcc. Write-protection continues for tosk time after Vcc rises above VPFD.

Control/Status Registers

The four **control/status** registers of the **bq3285** are accessible **regardless** of the status of the update cycle (see Table 4).

Register A

Register A Bits										
7	6	5	4	3	2	1	0			
UIP	OS2	OS1	OS0	RS3	RS2	RS1	RS0			

Register A programs:

- The frequency of the square-wave and the periodic event rate.
- Oscillator operation.

Register A provides:

■ Status of the update cycle.

RS0-RS3 - Frequency Select

7	6	5	4	3	2	1	0
				RS3	RS2	RS1	RS0

These bits select one of the 13 frequencies for the SQW output and the periodic interrupt rate, as shown in Table 3.

OS0-OS2 - Oscillator Control

7	6	5	4	3	2	1	0
	OS2	OS1	OS0	-	-		-

These three **bits** control the state of the oscillator and divider stages. A pattern of 010 enables **RTC** operation by **turning** on the oscillator and enabling the frequency divider. A pattern of **11X turns** the oscillator on, but keeps the frequency divider disabled. When 010 is written, the RTC begins its **first** update after **500ms**.

UIP - Update Cycle Status

7	6	5	4	3	2	1	0
UIP		-	-	-	-	-	_

This read-only bit is set prior to the update cycle. When UIP equals 1, an RTC update cycle may be in progress. UIP is cleared at the end of each update cycle. This bit is also cleared when the update transfer inhibit (UTI) bit in register B is 1.

Table 4. Control/Status Registers

					Bit Name and State on Reset														
Reg.	Loc. (Hex)	Read	Write	7 (M	SB)	(3			4		3		2	2	1		0 (LS	SB)
A	OA	Yes	Yes ¹	UIP	na	0S2	na	OS1	na	080	na	RS3	na	RS2	na	RS1	na	RS0	na
В	ОВ	Yes	Yes	UTI	na	PIE	0	AIE	0	UIE	0	SQWE	0	DF	na	HF	na	DSE	na
С	0C	Yes	No	INTF	0	PF	0	AF	0	UF	0	•	0		0	-	0	-	0
D	0D	Yes	No	VRT	na		0	-	0	-	0		0	-	0	•	0		0

Notes:

- 1. Except bit 7.
- 2. na = not affected

Sept. 1996 D

Register B

Register B Bits										
7 \	\ 6 /	/ 6	1 4	1 3	2	1	0			
UTI	PIE	ΑŒ	UIE	SQWE	DF	HF'	DSE			

Register B enables:

- Update cycle transfer operation
- Square-waveoutput
- Interrupt events
- Daylight saving adjustment

Register B selects:

Clock and calendar data formats

All bits of register B are read/write.

DSE - Daylight Saving Enable

7	6	5	4	3	2	1	0
				-			DSE

This bit enables daylight-saving time adjustments when written to 1:

- On the last Sunday in October, the **first** time the bq3285 **increments** past 1:59:59 AM, the time falls back to **1:00:00** AM.
- On the first Sunday in April, the time springs forward from 2:00:00 AM to 3:00:00 AM.

HF - Hour Format

7	6	5	4	3	2	1	0
	•	-	-	-	-	HF	

This bit selects the time-of-day and alarm hour format:

1 = 24-hour format

0 = 12-hour format

DF - Data Format

7	6	5	4	3	2	1	0
•	-	•	•	-	DF	•	

This bit selects the numeric format in which the time, alarm, and calendar bytes are represented:

1 = Binary

0 = BCD

SQWE - Square-Wave Enable

7	6	5	4	3	2	1	0
-		-		SQWE		-	-

This bit enablea the square-wave output:

- 1 = Enabled
- 0 = Disabled and held low

UIE - Update Cycle Interrupt Enable

7	6	5	4	3	2	1	0
-			UIE	-		-	

This bit enables an interrupt request due to an update ended interrupt event:

- 1 = Enabled
- 0 = Disabled

The **UIE** bit is automatically cleared when the **UTI** bit equals 1.

AIE • Alarm Interrupt Enable

7	6	5	4	3	2	1	0
	-	AIE		•		-	-

This bit enables an interrupt **request** due to an alarm interrupt event:

- 1 = Enabled
- 0 = Disabled

PIE - Periodic Interrupt Enable

7	6	5	4	3	2	1	0
-	PIE	•			-	-	

This bit enables an interrupt request due to a periodic **interrupt** event:

- 1 = Enabled
- 0 = Disabled

UTI "Update Transfer inhibit

7	6	5	4	3	2	1	0
UTI	-	-	-	-	-	-	-

This bit inhibits the transfer of **RTC** bytes to the user buffer:

- 1 = Inhibits transfer and clears UIE
- 0 = Allows transfer

Register C

			Reaiste	r C Bits	3		
7	6	5	4	3	2	1	_ 0
INTF	PF	AF	UF	0	0	0	0

Register C is the read-only event status register.

Bits 0-3 - Unused Bits

l	7	6	5	4	3	2	1	0
	•	-	-	•	0	0	0	0

These bits are always set to 0.

UF - Update Event Flag

7	6	5	4	3	2	1	0
_		-	UF		-	-	-

This bit is set to a 1 at the end of the update cycle. Reading register C clears this bit.

AF - Alarm Event Flag

					,	,	
7	6	5	4	3	2	1	0
	-	AF	-	-	-		

This bit is set to a 1 when an alarm event occurs. **Reading** register C clears this bit.

PF - Periodic Event Flag

7	6	5	4	3	2	1	0
-	PF	-	-	-			

This bit is set to a 1 every tpt time, where tpt is the time period selected by the settings of RS0-RS3 in register A. Reading register C clears this bit.

INTF - Interrupt Request Flag

7	6	5	4	3	2	1	0
INTF	-	-	-	-	-	-	-

This flag is set to a 1 when any of the following is true:

AIE = 1 and AF = 1

PIE = 1 and PF = 1

UIE = 1 and UF = 1

Reading register C clears this bit.

Register D

	Rwister D Bits										
7 6 5 4 3 2 1 0											
VRT	0	0	0	0	0	0	0				

Register D is the read-only data integrity status register.

Bits 0-6 - Unused Bits

7	6	5	4	3	2	1	0
-	0	0	0	0	0	0	0

These bits are always set to 0.

VRT-Valid RAM and Time

7_	6	5	4	3	2	_1	0
VRT	-	-			-	-	•

- 1 = Valid backup energy source
- 0 = Backup energy source is depleted

When the backup energy source is depleted (VRT = 0), data integrity of the RTC and storage registers is not guaranteed.

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Condition8
Vcc	DC voltage applied on VCC relative to Vss	-0.3 to 7.0	v	
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	v	$V_T \le V_{CC} + 0.3$
Topr	Operating temperature	0 to +70	°C	Commercial
Tstg	Storage temperature	∙55 to +125	"C	
TBIAS	Temperature under bias	-40to +85	"С	
TSOLDER	Soldering temperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are exceeded. Functional** operation should be limited to the Recommended DC \rightarrow ating Conditions detailed in this ι ie Exposure to conditions beyond the operational limits for extended periods of ι may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	4.5	5.0	5.5	V
Vss	Supply voltage	0	0	0	V
V _{IL}	Input low voltage	-0.3		0.8	v
Vтн	Input high voltage	2.2		Vcc + 0.3	v
V _{BC}	Backup cell voltage	2.5		4.0	v

Note: Typical values indicate operation at $T_A = 25^{\circ}C$.

DC Electrical Characteristics(TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μА	$V_{\rm IN} = V_{\rm SS}$ to $V_{\rm CC}$
ILD	Output leakage current			± 1	μA	AD ₀ -AD ₇ , INT, and SQW in high impedance, Vour = vss to Vcc
VoH	Output high voltage	2.4			V	IoH = -2.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 4.0 mA
I_{CC}	Operating supply current		7	15	mA	Min. cycle, duty = 100%, IOH = 0mA, IOL = 0mA
Vso	Supply switch-over voltage		V_{BC}		V	
Iccb	Battery operation current		0.3	0.5	μA	V_{BC} = 3V, T_A = 25°C
V _{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	V	
I _{RCL}	Input current when $\overline{RCL} = Vss.$			185	μA	Internal 30K pull-up
Імотн	Input current when MOT ≈ Vcc			-185	μA	Internal 30K pull-down

Note: Typical values indicate operation at TA = 25°C, V_{CC} = 5V or V_{BC} = 3V.

Crystal Specifications (DT-26 or Equivalent)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
fo	Oscillation frequency		32.768		kHz
CL	Load capacitance		6		pF
TP	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant			-0.042	ppm/°C
Q	Quality factor	40,000	70,000		
R ₁	Series resistance			45	ΚΩ
Co	Shunt capacitance		1.1	1.8	pF
Co/C1	Capacitance ratio		430	600	
DL	Drive level			1	μW
Δf/f _O	Aging (first year at 25°C)		1		ppm

12/20 Sept. 1996 D

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Ci⁄o	Input/output capacitance			7	pF	V _{OUT} = 0V
CIN	Input capacitance			5	рF	V _{IN} =OV

Note: This parameter is sampled and not 100% tested.

AC Test Conditions

Parameter	Ted Conditions
Input pulse levels	0 to 3.0 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 4 and 5

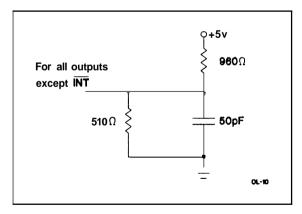


Figure 4. Output Load A

Sept. 1996 D

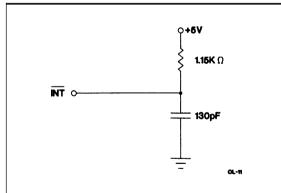
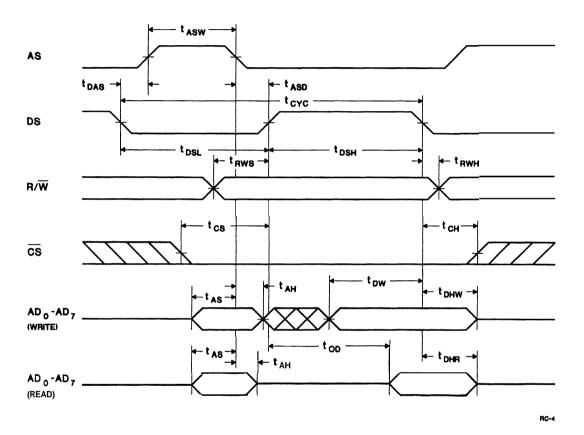


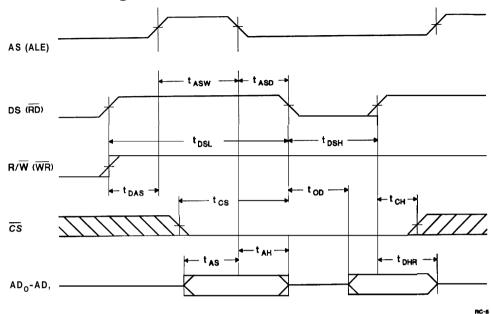
Figure 5. Output Load B

13/20

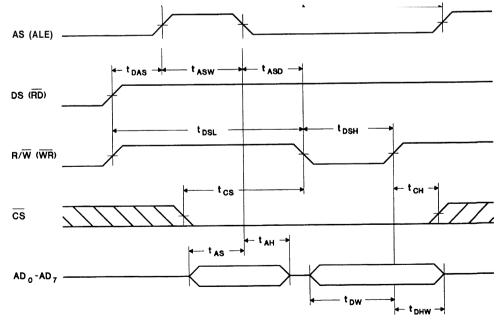

Read/Write Timing (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcyc	Cycle time	160			ns	
$\mathbf{t}_{\mathrm{DSL}}$	DS low or RD/WR high time	80			ns	
tDSH	DS high or RD/WR low time	55			ns	
trwH	R√W hold time	0			ns	
trws	R√W setup time	10			ns	
tcs	Chip select setup time	5			ns	
tcH	Chip select hold time	0			ns	
tDHR	Read data hold time	0		25	ns	
tDHW	Write data hold time	0			ns	
tas	Address setup time	20			ns	
tah	Address hold time	5			ns	
tdas	Delay time, DS to AS rise	10			ns	
tasw	Pulse width, AS high	30			ns	
t_{ASD}	Delay time, AS to DS rise (RD/WR fall)	35			ne	
t _{OD}	Output data delay time from DS rise (RD fall)			50	ns	
\mathbf{t}_{DW}	Write data setup time	30			ns	
tBUC	Delay time before update cycle		244		με	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle		1		μв	

14/20 Sept. 1996 D


15/20

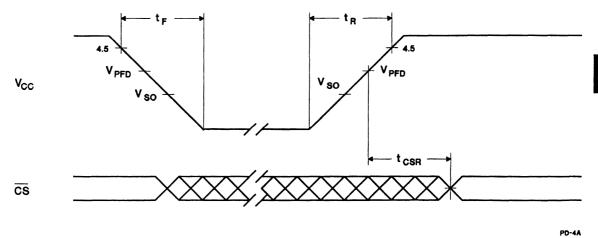
Motorola Bus Read/Write Timing



Sept. 1996 D

Intel Bus Read Timing

Intel Bus Write Timing

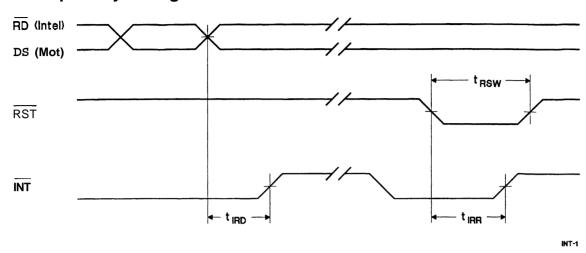

16/20 Sept. 1996 D

Power-Down/Power-Up Timing (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tr	Vcc slew from 4.5V to OV	300			με	
tR	Vcc slew from OV to 4.5V	100			με	
tcsr	CS at VIH after power-up	20		200	ms	Internal write-protection period after VCC passes VPFD on power-up.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing



Interrupt Delay Timing (TA = TOPR)

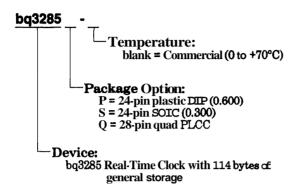
Symbol	Parameter	Minimum	Typical	Maximum	Unit
trsw	Reset pulse width	5	•	•	μв
tirr	INT release from RST	-	-	2	μs
tird	INT release from DS (RD)			2	μs

Sept. 1996 D 17/20

Interrupt Delay Timing

18/20 Sept. 1996 D

Data Sheet Revision History


Change No.	Page No.	Description	Nature of Change
1	2	Address strobe input	Clarification
1	11	Backup cell voltage V _{BC}	Was 2.0 min; is 2.6 min
1	12	Power-fail detect voltage VPPD	Was 4.1 min, 4.26 max; is 4.0 min, 4.35 max
2	3, 12	Crystal type Daiwa DT-26 (not DT-26S)	Clarification
3	12	Changed value in first table	IRCL max. was 275; is now 185
3	12	Changed value in first table	IMOTH max. was -275; is now -185
3	12	Changed values for conditions of IRCL IMOTH	Was 20K; is now 30K

Note: Change 1 = Nov. 1992 B changes from June 1991 A.

Change 2 = Nov. 1993 C changes from Nov. 1992 B. Change 3 = Sept. 1996 D changes from Nov. 1993C.

Sept. 1996 D 19/20

Ordering Information

20/20

bq3285E/L

Real-Time Clock (RTC)

Features

- Direct clock/calendar replacement for IBM[®] AT-compatible computers and other applications
- Functionally compatible with the DS1285
 - Closely matches MC146818A pin configuration
- 2.7-3.6V operation (bq3285L);
 4.5-5.5V operation (bq3285E)
- ➤ 242 bytes of general nonvolatile storage
- 32.768KHz output for power management
- System wake-up capability alarm interrupt output active in battery-backup mode
- Less than 0.5 μA load under battery operation
- Selectable Intel or Motorola bus timing
- ➤ 14 bytes for clock/calendar and control

- BCD or binary format for dock and calendar data
- Calendar in day of the week, day of the month, months, and years, with automatic leap-year adjustment
- ➤ Time of day in seconds, minutes, and hours
 - 12- or **24-hour** format
 - Optional daylight saving adjustment
- Programmable square wave output
- Three individually maskable interrupt event flags:
 - Periodic rates from 122 µs to 500 ma
 - Time-of-day alarm once per second to once per day
 - End-of-clock update cycle
- 24-pin plastic DIP, SOIC, or SSOP and 28-pin PLCC

General Description

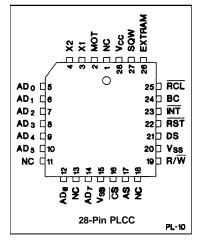
The CMOS bq3285E/L is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. The bq3285L supports 3V systems. Other bq3285E/L features include three maskable interrupt sources, square-wave output, and 242 bytes of general nonvolatile storage.

A 32.768KHz output is available for sustaining power-management activities. Wake-up capability is provided by an alarm interrupt, which is active in battery-backup mode.

The **bq3285E/L** write-protects the clock, calendar, and storage registers during power **failure**. A backup batter-then maintains data and **operates the** dock and calendar.

The **bq3285E/L** is a fully compatible real-time clock for **IBM AT-compatible** computers and other applications. The only external components are a **32.768kHz crystal** and a backup battery.

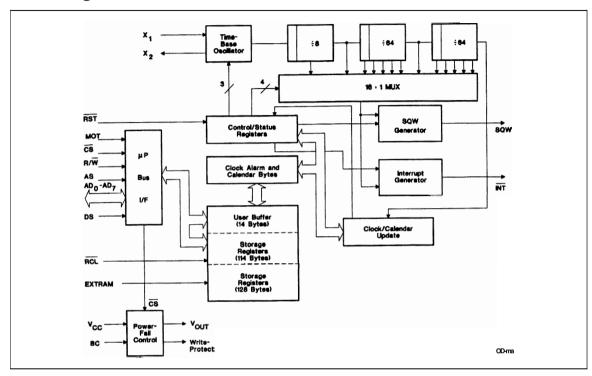
Pin Connections


24 5 Vcc MOT ☐1 X1 □ 2 23 | SQW X2 ☐ 3 22 DEXTRAM 21□RCL AD_O□4 AD₁ ☐5 20 PBC AD 2 46 18 □RST AD₃□7 AD₄□8 17 DS AD₆□9 16 □ V_{SS} AD₆□10 15 □R/W 14 | AS AD7 [11 13 □ CS V_{SS} ☐ 12

24-Pin DIP or SOIC/SSOP

Jan. 1995 B

PN-41


Pin Names

ADo-AD7 Multiplexed address/ data input/output MOT Bus type select input <u>CS</u> Chip select input AS Address strobe input DS Data strobe input R/W Read/write input INT Interrupt request output RST Reset input SQW Square wave output **EXTRAM** Extended RAM enable RCL RAM clear input BC 3V backup cell input X1. X2 Crystal inputs Vcc Power supply Vss Ground

1/24

Block Diagram

Pin Descriptions

MOT Bus type select input

MOT selects bus timing for either Motorola or Intel architecture. **This** pin should be tied to Vcc for Motorola timing or to Vss for Intel timing (see Table 1). The setting should not be changed during system operation. MOT is internally pulled low by a 30KR resistor.

Table 1. Bus Setup

Bus Type	MOT Level	DS Equivalent	R/W Equivalent	AS Equivalent
Motorola	v_{cc}	DS, E, or 0 2		AS
Intel	Vss	RD, MEMR, or I/OR	WR, MEMW, or VOW	ALE

ADo-AD7 Multiplexed address/data input/output

The bq3285E/L bus cycle consists of two phases: the address phase and the data-transfer phase. The address phase precedes the data-transfer phase. During the address phase, an address placed on ADo-AD7 and EXTRAM is latched into the bq3285E/L on the falling edge of the AS signal. During the data-transfer phase of the bus cycle, the ADo-AD7 pins serve as a bidirectional data bus.

Address strobe input

AS serves to demultiplex the address/data bus. The falling edge of AS latches the address on ADo-AD7 and EXTRAM. This demultiplexing process is independent of the CS signal. For DIP and SOIC packages with MOT = V_{SS}, the AS input is provided a signal similar to ALE in an Intel-based system.

2/24 Jan. 1995 B

AS

DS Data strobe input

When MOT = Vcc. DS controls data transfer during a bq3285E/L bus cycle. During a read cycle, the bq3285E/L drives the bus after the rising edge on DS. During a write cycle, the falling edge on DS is **used** to latch write data into the chip.

When **MOT** = **Vss.** the DS input is — vieled a signal similar to RD, MEMR, or I/OR in an Intel-bared **system**. The falling edge on DS is used to enable the outputs during a read cycle.

R/\overline{W} Read/write input

When MOT = Vcc, the level on R/Widentifies the direction of data transfer. A high level on $\mathbb{R}^{\overline{W}}$ indicates a read bus cycle, whereas a low on this pin indicates a write bus cvcle.

When $MOT = V_{SS}$, R/W is provided a signal similar to WR, MEMW, or VOW in an Intel-based system. The rising edge on **R/W** latches data into the bq3285E/L.

$\overline{\mathbf{CS}}$ Chip select input

CS should be driven low and held stable during the data-transfer phase of a bus cycle accessing the bq3285E/L.

INT Interrupt request output

<u>INT</u> is ~ open-drainoutput. **This** allows alarm INT to be valid in battery-backup mode. To use this feature, INT must be connected to a power supply other than Vcc. INT is asserted low when any event flag is set and the corresponding event enable bit is also set. INT becomes high-impedance whenever register C is read (see the Control/Status Registers section).

SQW **Square-waveoutput**

SQW may output a programmable frequency square-wave signal during normal (Vcc valid) system operation. Any one of the 13 specific frequencies may be selected through register A. This pin is held low when the square-wave enable bit (SQWE) in register B is **0** (see the Control/Status Registers section).

A 32.768kHz output is enabled by setting the SQWE bit in register B to 1 and the **32KE** bit in register C to 1 after setting OSC2-OSC0 in register A to 011 (binary).

EXTRAM Extended RAM enable

Enables 128 bytes of additional nonvolatile **SRAM.** It is connected internally to a $30K\Omega$ pull-down resistor. To access the RTC registers, EXTRAM must be low.

RCL RAM clear input

A low level on the **RCL** pin causes the contents of each of the 242 storage bytes to be set to FF(hex). The contents of the clock and control registers are unaffected. This pin should be used as a user-interface input (pushbutton to ground) and not connected to the output of any active component. **RCL** input is only recognized when held low for at least 125ms in the presence of Vcc. Using RAM clear **does** not **affect** the battery load. This pin is connected internally to a $30K\Omega$ pull-up resistor.

BC 3V backupæll input

BC should be **connected** to a 3V backup cell for RTC operation and storage register nonvolatility in the absence of system power. When Vcc slews down past VBc (3V typical), the integral control circuitry switches the power source to BC. When Vcc returns above $\mathbf{V}_{\mathbf{BC}}$, the power source is switched to $\mathbf{V}_{\mathbf{CC}}$.

Upon power-up, a voltage within the V_{BC} range must be present on the BC pin for the oscillator to start up.

RST Reset input

The bq3285E/L is reset when RST is pulled When reset, INT becomes high impedance, and the ba3285E/L is not accessible. Table 4 in the Control/Status Registers section lists the register bite that are cleared by a reset.

Reset may be disabled by correcting RST to Vcc. This allows the control bits to retain their states through power-down/power-up cycles.

X1, X2 Crystal input

The **X1.** X2 inputs are provided for an external 32.768kHz quartz crystal, Daiwa DT-26 or equivalent, with **6pF** load capacitance. A trimming capacitor may be necessary for extremely precise time-base generation.

In the absence of a crystal, a 32.768kHz waveform can be fed into the X1 input.

Functional Description Address Map

The bq3285E/L provides 14 bytes of clock and control/status registers and 242 bytes of general nonvolatile storage. Figure 1 illustrates the address map for the bq3285E/L.

Update Period

The update period for the bq3285E/L is one second. The bq3285E/L updates the contents of the clock and calen-

dar locations during the update cycle at the end of each update period (see **Figure** 2). The alarm flag bit may also be set during the update cycle.

The bq3285E/L copies the local register updates into the user buffer accessed by the host processor. When a 1 is written to the update transfer inhibit bit (UTI) in register B, the user copy of the clock and calendar bytes remains unchanged, while the local copy of the same bytes continues to be updated every second.

The update-in-progress bit (UIP) in register A is set thuc time before the beginning of an update cycle (see Figure 2). This bit is cleared and the update-complete flag (UF) is set at the end of the update cycle.

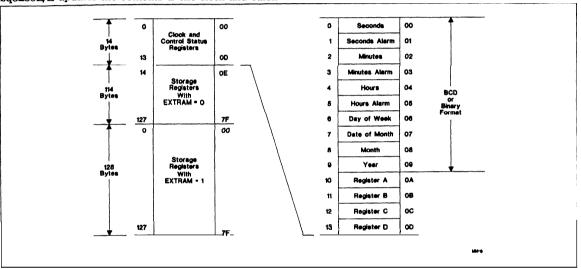


Figure 1. Address Map

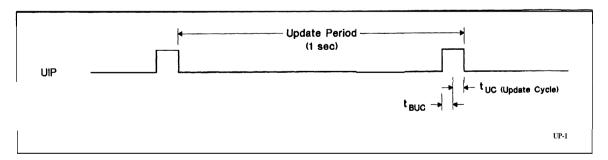


Figure 2. Update Period Timing and UIP

4/24 Jan. 1995 B

Programming the RTC

The time-of-day, alarm, and calendar bytes can be written in either the BCD or binary format (see Table 2).

These steps may be followed to **program** the time, alarm, and calendar:

- 1. Modify the contents of register B:
 - a Write a 1 to the UTI bit to prevent transfers between RTC bytes and user buffer.
 - Write the appropriate value to the data format (DF) bit to select BCD ar binary format for all time, alarm, and calendar bytes.

- Write the appropriate value to the hour format (HF) bit.
- Write new values to all the time, alarm, and calendar locations.
- 3. Clear the UTI bit to allow update transfers.

On the **rest** update cycle, the **RTC** updates **all** 10 bytes in the selected format.

Table 2. Time, Alarm, and Calendar Formats

			Range	
Address	RTC Bytes	Decimal	Binary	Binary-Coded Decimal
0	Seconds	0-59	00H-3BH	00H-59H
1	Seconds alarm	0-59	00H-3BH	00H-59H
2	Minutes	0-59	00H-3BH	00H-59H
3	Minutes alarm	0–59	OOH-3BH	00H-59H
4	Hours, 12-hour format	1–12	01H-OCH AM; 81H-8CH PM	01H–12H AM; 81H–92H PM
	Hours, 24-hour format	0–23	00H-17H	00H-23H
5	Hours alarm, 12-hour format	1–12	01H-OCH AM; 81H-8CH PM	01H–12H AM; 81H–92H PM
	Hours alarm, 24-hour format	0-23	OOH-17H	00H-23H
6	Day of week (1=Sunday)	1–7	01H-07H	01H-07H
7	Day of month	1-31	01H-1FH	01H-31H
8	Month	1–12	01H-0CH	01H-12H
9	Year	0-99	00H-63H	00H-99H

Jan. 1995 B 5/24

Square-Wave Output

The bq3285E/L divides the 32.768kHz oscillator frequency to produce the 1Hz update frequency for the clock and calendar. Thirteen taps from the frequency divider are fed to a 16:1 multiplexer circuit. The output of this mux is fed to the SQW output and periodic interrupt generation circuitry. The four least-significant bits of register A, RS0-RS3, select among the 13 taps (see Table 3). The square-wave output is enabled by writing a 1 to the square-wave enable bit (SQWE) in register B. A 32.768kHz output may be selected by setting OSC2-OSC0 in register A to 011 while SQWE = 1 and 32KE = 1.

Interrupts

The **bq3285E/L** allows three individually selected interrupt events to generate an interrupt request. These three **interrupt** events are:

■ The periodic interrupt, programmable to occur once every 122µs to 500ms.

- The alarm interrupt, programmable to occur once per second to once per day, is active in battery-backup mode, providing a 'wake-up' feature.
- The update-ended interrupt, which occurs at the end of each update cycle.

Each of the three interrupt events is enabled by an individual interrupt-enable bit in register B. When an event occurs, its event flag bit in register C is set. If the corresponding event enable bit is **also** set, then an interrupt request is generated. The interrupt request flag bit (INTF) of **register** C is set with every interrupt request. Reading **register** C **clears** all flag bits, including **INTF**, and **makes** INT high-impedance.

Two methods can be used to **process bq3285E/L** interrupt events:

- Enable interrupt events and use the interrupt request output to invoke an interrupt service routine.
- Do not enable the interrupts and use a polling routine to periodically check the status of the flag bits.

The individual interrupt **sources** are described in detail in the following **sections**.

		Reg	gister A E	Bits			Square	Wave	Periodic	nterrupt
OSC2	OSC1	OSC0	RS3	RS2	RS1	RS0	Frequency	Units	Period	Units
0	1	0	0	0	0	0	None		None	
0	1	0	0	0	0	1	256	Hz	3.90625	ms
0	1	0	0	0	1	0	128	Hz	7.8125	ms
0	1	0	0	0	1	1	8.192	kHz	122.070	μв
0	1	0	0	1	0	0	4.096	kHz	244.141	μs
0	1	0	0	1	0	1	2.048	kHz	488.281	μs
0	1	0	0	1	1	0	1.024	kHz	976.5625	μs
0	1	0	0	1	1	1	512	Hz	1.953125	ms
0	1	0	1	0	0	0	256	Hz	3.90625	ms
0	1	0	1	0	0	1	128	Hz	7.8125	ms
0	1	0	1	0	1	0	64	Hz	15.625	ms
0	1	0	1	0	1	1	32	Hz	31.25	ms
0	1	0	1	1	0	0	16	Hz	62.5	ms
0	1	0	1	1	0	1	8	Hz	125	ms
0	1	0	1	1	1	0	4	Hz	250	ms
0	1	0	1	1	1	1	2	Hz	500	ms
0	1	1	х	Х	Х	X	32.768	kHz	same as above defin by RS3-RS0	

Table 3. Square-Wave Frequency/Periodic Interrupt Rate

6/24 Jan. 1995 B

Periodic Interrupt

The mux output used to drive the SQW output also drives the interrupt-generation circuitry. If the periodic interrupt event is enabled by writing a 1 to the periodic interrupt enable bit (PIE) in register C, an interrupt request is generated once every 122µs to 500ms. The period between interrupts is selected by the same bits in register A that select the square wave frequency (see Table 3). Setting OSC2-OSC0 in register A to 011 does not affect, the periodic interrupt timing.

Alarm Interrupt

The alarm interrupt is active in battery-backup mode, providing a 'wake-up' capability. During each update cycle, the RTC compares the hours, minutes, and seconds bytes with the three corresponding alarm bytes. If a match of all bytes is found, the alarm interrupt event flag bit, AF in register C, is set to 1. If the alarm event is enabled, an interrupt request is generated.

An alarm byte may be removed from the comparison by setting it to a 'don't care' state. An alarm byte **is** set to a 'don't care' state by writing a 1 to each of its two most-significant bite. A 'don't care* state may be **used** to select the frequency of alarm interrupt events as follows:

- If none of the three alarm bytes is 'don't care,' the frequency is once per day, when hours, minutes, and seconds match.
- If only the hour alarm byte is 'don't care.' the frequency is once per hour, when minutes and seconds match.
- If only the hour and minute alarm bytes are 'don't care," the frequency is once per minute, when seconds match.
- If the hour, minute, and second alarm bytes are 'don't care," the frequency is once per second.

Update Cycle Interrupt

The update cycle ended flag bit **(UF)** in register C is set to a 1 at the end of an update cycle. If the update interrupt enable bit **(UIE)** of register B is 1, and the update transfer inhibit bit **(UTI)** in register B is 0, then an interrupt request is generated at the end of each update cycle.

Accessing RTC bytes

The EXTRAM pin **must** be low to access the RTC registers. Time and calendar bytes read during an update cycle may be in error. **Three** methods to **access** the time and calendar **bytes** without ambiguity are:

- Enable the update interrupt event to generate interrupt requests at the end of the update cycle. The interrupt handler has a maximum of 399ms to access the clock bytes before the next update cycle begins (see Figure 3).
- Poll the update-in-progreaa bit (UIP) in register A. If UIP = 0, the polling routine has a minimum of tructime to access the clock bytes(see Figure 3).
- Use the periodic interrupt event to generate interrupt requests every tpi time, such that UIP = 1 always occurs between the periodic interrupts. The interrupt handler has a minimum of tpi/2 + tbuc time to access the clock bytes (see Figure 3).

Oscillator Control

When power is first applied to the bo3285E/L and V_{CC} is above V_{PFD}, the internal oscillator and frequency divider are turned on by writing a 010 pattern to bits 4 through 6 of register A. A pattern of 011 behaves as 010 but additionally transforms register C into a read/write register. This allows the 32.768kHz output on the square wave pin to be turned on. A pattern of 11X turns the oscillator on, but keeps the frequency divider disabled. Any other pattern to these bits keeps the oscillator off.

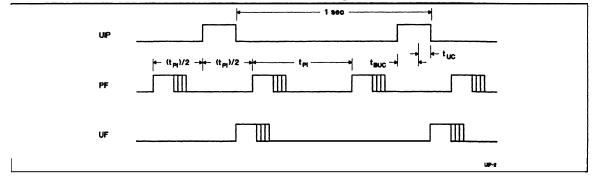


Figure 3. Update-Ended/Periodic Interrupt Relationship

Jan. 1995 B 7/24

Power-Down/Power-Up Cycle

The bq3285E and bq3285L power-up/power-down cycles are different. The bq3285L continuously monitors Vcc for out-of-tolerance. During a power failure, when Vcc falls below VPFD (2.53V typical), the bq3285L write-protects the clock and storage registers. The power source is switched to BC when Vcc is less than VPFD and BC is greater than VPFD, or when Vcc is less than VBC and VBC is less than VPFD. RTC operation and storage data are sustained by a valid backup energy source. When Vcc is above VPFD, the power source is Vcc. Write-protection continues for tosk time after Vcc rises above VPFD.

The bq3285E continuously monitors Vcc for out-of-tole——During a power failure, when Vcc falls below Vppp (4.17V typical), the bq3285E write-protects the clock and storage registers. When Vcc is below VBC (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When Vcc is above Vpc, the power mucce is Vcc. Write-protection continues for tcsrtime after Vcc rises above Vppd.

Control/Status Registers

The four **control/status** registers of the **bq3285E/L** are accessible regardless of the status of the update cycle (see Table 4).

Reaister A

	Register A Bits											
7	6	5	4	3	2	1	0					
UIP	OS2	OS1	OS0	RS3	RS2	RS1	RS0					

Register A programs:

- The frequency of the square-wave and the periodic event rate.
- Oscillator operation.

Register A provides:

■ Statue of the update cycle.

RS0-RS3 - Frequency Select

7	6	5	4	3	2	1	0
	-	-	•	RS3	RS2	RS1	RS0

These bite select one of the 13 frequencies for the SQW output and the periodic interrupt rate, as shown in Table 3.

OS0-OS2 - Oscillator Control

7	6	5	4	3	2	1	0
-	OS2	OS1	OS0	•	-		•

These three bite control the state of the oscillator and divider stages. A pattern of 010 enables RTC operation by turning on the oscillator and enabling the frequency divider. A pattern of 011 behaves as 010 but additionally transforma register C into a read/write register. This allows the 32.768kHz output on the square wave pin to be turned on. A pattern of 11X turns the oscillator on, but keeps the frequency divider disabled. When 010 is written, the RTC begins its first update after 500ms.

UIP - Update Cycle Status

7	6	5	4	3	2	1	0
UIP		•	-				-

This read-only bit is set prior to the update cycle. When UIP equals 1, an **RTC** update cycle may be in progress. UIP is cleared at the end of each update cycle. This bit is also cleared when the update transfer inhibit (UTI) bit in register B is 1.

Table 4. Control/Status Registers

				Bit Name and State on Reset															
Reg.	Loc. (Hex)	Read	Write	7 (M	SB)	•	3		5	4	1	3		2	2	1		0 (L	SB)
A	0A	Yes	Yes ¹	UIP	na	OS2	na	OS1	na	OS0	na	RS3	na	RS2	na	RS1	na	RS0	na
В	0B	Yes	Yes	UTI	na	PIE	0	AIE	0	UIE	0	SQWE	0	DF	na	HF	na	DSE	na
C	0C	Yes	No ²	INTF	0	PF	0	AF	0	UF	0	-	0	32KE	na	-	0	-	0
D	0D	Yes	No	VRT	na		0	-	0	-	0	-	0	-	0	-	0		0

Notes: na

na = not affected.

1. Except bit 7.

2. Read/write only when OSC2-OSC0 in register A is 011 (binary).

8/24

Jan. 1995 B

Register B

	Register B Bits										
7	6	5	4	3	2	1	0				
UTI	PIE	ΑŒ	UIE	SQWE	DF	HF	DSE				

Register B enables:

- Update cycle **transfer** operation
- Square-wave output
- Interrupt events
- Daylight saving adjustment

Register B selects:

Clock and calendar data formats

All bits of register B are read/write.

DSE - Daylight Saving Enable

7	6	5	4	3	2	1	0
							DSE

This bit enables daylight-saving time adjustments when written to 1:

- On the last Sunday in October, the first time the bq3285E/L increments past 1:59:59 AM, the time falls back to 1:00:00 AM.
- On the first Sunday in April, the time springs forward from 2:00:00 AM to 3:00:00 AM.

HF - Hour Format

7	6	5	4	3	2	1	0
-		-	-	-		HF	

This bit selects the time-of-day and alarm hour format:

- 1 = 24-hour format
- 0 = 12-hour format

DF - Data Format

7	6	5	4	3	2	1	0
	-	-	-	-	DF	-	-

This bit selects the numeric format in which the time, alarm, and calendar bytes are **represented**:

- 1 = Binary
- 0 = BCD

SQWE - Square-Wave Enable

7	6	5	4	3	2	1	0_
				SQWE		-	-

This bit enables the square-wave output:

- 1 = Enabled
- 0 = Disabled and held low

UIE - Update Cycle Interrupt Enable

7	6	5	4	3	2	1	0
-	-		UIE	-	-	•	-

This bit enables an interrupt request due to an update ended interrupt event:

- 1 = Enabled
- 0 = Disabled

The UIE bit is automatically cleared when the UTI bit equals 1.

AIE - Alarm Interrupt Enable

7	6	5	4	3	2	1	0
	A				-	-	-

This bit enables an interrupt request due to an alarm interrupt event:

- 1 = Enabled
- 0 = Disabled

PIE - Periodic Interrupt Enable

7	6	5	4	_3	2	1	0
	PIE	-	•	-			-

This bit enables an interrupt request due to a periodic interrupt event:

- 1 = Enabled
- 0 = Disabled

UTI - Update Transfer Inhibit

7	6	5	4	3	2	1	0
UTI	-	-	-	-	-	-	-

This bit inhibits the transfer of RTC bytes to the **user** buffer:

- 1 = Inhibits transfer and clears **UIE**
- 0 = Allows transfer

Register C

	Register C Bits										
7	7 6 5 4 3 2 1 0										
INTF	PF	AF	TU	0	32KE	0	0				

Register C is the read-only event status register.

Bits 0, 1, 3 - Unused Bits

7	6	5	4	3	2	1	0
				0	•	0	0

These bits are always set to 0.

32KE - 32kHz Enable Output

7	6	5	4	3	2	1	0
-	-	-	-	-	32KE	-	-

This bit may be set to a 1 only when the OSC2–OSC0 bits in register A are set to 011. Setting OSCWSCO to anything other than 011 clears this bit. If SQWE in register B and 32KE are set, a 32.768kHz waveform is output on the square wave pin.

UF - Update Event Flag

7	6	5	4	3	2	1	0
-	-	-	UF	-	-	-	-

This bit **is** set to a 1 at the end of the update cycle. Reading register C clears this bit.

AF - Alarm Event Flag

7	6	5	4	3	2	1	0
	-	AF		-	-	-	•

This bit is set to a 1 when an alarm event occurs. Reading register C clears this bit.

PF - Periodic Event Flag

7	7	6	5	4	3	2	1	0
-		PF				-		-

This bit is set to a 1 every tpt time, where tpt is the time period selected by the settings of RSO-RS3 in register A. Reading register C clears this bit.

INTF - Interrupt Request Flag

7	6	5	4	3	2	1	0
INT	F -		-	-	-	-	

This flag is set to a 1 when any of the following is true:

AIE = 1 and AF = 1

PIE = 1 and PF = 1

UIE = 1 and UF = 1

Reading register C clears this bit.

Register D

			Registe	er D Bits	3		
7	6	5	4	3	2	1	0
VRT	0	0	0	0	0	0	0

Register D is the read-only data integrity status register.

Bits 0-6 - Unused Bits

7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0

These bits are always set to 0.

VRT - Valid RAM and Time

ĺ	7	6	5	4	3	2	1_	0
	VRT	-	-	-	-	-		-

- 1 = Valid backup energy source
- **0 =** Backup energy **source** is depleted

When the backup energy source is depleted (VRT = 0), data integrity of the RTC and storage registers is not quaranteed.

Jan. 1995 B

Absolute Maximum Ratings—bq3285E

Symbol	Parameter	Value	Unit	Condition8
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
V _T	DC voltage applied on any pin excluding V _{CC} relative to Vss	-0.3 to 7.0	v	$V_T \le V_{CC} + 0.3$
		Oto +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial
Tstg	Storage temperature	-55 to +125	°C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute** Maximum **Ratings are** exceeded. Functional operation **should** be limited to the Recommended DC Operating **Conditions** detailed in **this** data sheet. **Exposure** to conditions beyond the operational **limits** for extended periods of time may affect device reliability.

Absolute Maximum Ratings—bq3285L

Symbol	rmbol Parameter		Unit	Conditions
Vcc	DC voltage applied on $V\infty$ relative to V_{SS}	-0.3 to 6.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss		V	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	Commercial
TSTG	Storage temperature	-55 to +125	"C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	260	"C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functional operation should be limited to the Recommended DC **operating Conditions** detailed in this data sheet. Exposure to conditions beyond the operational **limits** for extended periods of time may affect device reliability.

Jan. 1995 B 11/24

Recommended DC Operating Conditions—bq3285E (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	4.5	5.0	5.5	V
Vss	Supply voltage	0	0	0	V
VIL	Input low voltage	-0.3		0.8	V
V _{IH}	Input high voltage	2.2		Vcc + 0.3	V
V _{BC}	Backup cell voltage	2.5		4.0	V

Note:

Typical values indicate operation at $T_A = 25$ °C.

Recommended DC Operating Conditions—bq3285L (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	2.7	3.15	3.6	V
Vss	Supply voltage	0	0	0	V
V _{IL}	Input low voltage	-0.3		0.6	V
VIH	Input high voltage	2.2		Vcc + 0.3	V
V _{BC}	Backup cell voltage	2.4		4.0	V

Note:

Typical values indicate operation at TA = 25°C.

Crystal Specifications—bq3285E/L (DT-26 or Equivalent)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
fo	Oscillationfrequency		32.768		kHz
$\mathbf{C}_{\mathbf{L}}$	Load capacitance		6		pF
T_{P}	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant			-0.042	ppm/°C
Q	Quality factor	40,000	70,000		
R ₁	Series resistance			45	ΚΩ
Co	Shunt capacitance		1.1	1.8	pF
Co/C1	Capacitance ratio		430	600	
DL	Drive level			1	μW
Δf/fo	Aging (first year at 25°C)	-	1	•	ppm

12/24 Jan.1995 B

DC Electrical Characteristics—bq3285E (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I _{LI}	Input leakage current			± 1	μA	V _{IN} = V _{SS} to V _{CC}
Ito	Output leakage current			± 1	μА	AD ₀ -AD ₇ , INT, and SQW in high impedance, Vour = Vss to Vcc
Vон	Output high voltage	2.4			v	I _{OH} = -2.0 mA
V_{OL}	Output low voltage			0.4	v	I _{OL} = 4.0 mA
I_{CC}	Operating supply current		7	15	mA	Mia cycle, duty = 100%, I _{OH} = 0mA, I _{OL} = 0mA
Iccsb	Standby supply current		300		μA	$\frac{V_{IN} = V_{SS} \text{ or VCC}}{\overline{CS} \ge V_{CC} - 0.2}$
V _{SO}	Supply switch-over voltage		V_{BC}		v	
Iccb	Battery operation current		0.3	0.5	μA	$V_{\rm BC} = 3V, T_{\rm A} = 25^{\circ}{\rm C}$
V _{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	v	
IRCL	Input current when $\overline{RCL} = V_{SS}$.			185	μA	Internal 30K pull-up
Імотн	Input current when MOT = Vcc			-185	μA	Internal 30K pull-down
	Input current when MOT = V ₈₈			0	μA	Internal 30K pull-down
T	Input current when EXTRAM = V∞			-185	μА	Internal 30K pull-down
Ixtram	Input current when EXTRAM = Vss			0	μA	Internal 30K pull-down

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$ or $V_{BC} = 3V$.

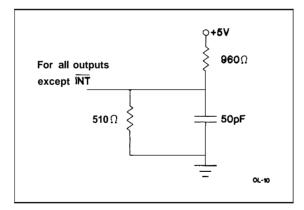
DC Electrical Characteristics—bq3285L (TA = TOPR, VCC = 3.15V ±0.45V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I_{LI}	Input leakage current			± 1	μА	$V_{IN} = V_{SS \text{ to }} V_{CC}$
Ito	Output leakage current			±1	μA	ADo-AD7 and INT in high impedance, Vout = Vss to vcc
Voh	Output high voltage	2.2			V	IOH = -1.0 mA
V_{OL}	Output low voltage			0.4	V	IoL = 2.0 mA
Icc	Operating supply current		5	9	mA	Min. cycle, duty = 100%, I _{OH} = 0mA, I _{OL} = 0mA
I _{CCSB}	Standby supply current		100		μA	$V_{\text{IN}} = V_{\text{SS}} \text{ or } V_{\text{CC}},$ $\overline{\text{CS}} \ge V_{\text{CC}} \cdot 0.2$
77	Complete with a second sold and		V_{PFD}		V	$V_{BC} > V_{PFD}$
V_{SO}	Supply switch-over voltage		V _{BC}		v	V _{BC} < V _{PFD}
Іссв	Battery operation current		0.3	0.5	μ A	V _{BC} = 3V, T _A = 25°C , V _{CC} < V _{BC}
V_{PFD}	Power-fail-detect voltage	2.4	2.53	2.65	V	
IRCL	Input current when $\overline{RCL} = Vss.$			120	μA	Internal 30K pull-up
Імотн	Input current when MOT = Vcc			-120	μA	Internal 30K pull-down
2MOIII	Input current when MOT = Vss			0	μA	Internal 30K pull-down
T	Input current when EXTRAM = vcc			-120	μA	Internal 30K pull-down
IXTRAM	Input current when EXTRAM = Vss			0	μА	Internal 30K pull-down

Note:

Typical values indicate operation at $T_A = 25$ °C, $V_{CC} = 3$ V.

14/24


Capacitance—bq3285E/L (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	MInimum	Typical	Maximum	Unit	Conditions
Ci/o	Input/output capacitance			7	pF	V _{OUT} = 0V
CIN	Input capacitance			5	рF	V _{IN} = 0V

Note: This parameter is sampled and not 100% tested. It does not include the X1 or X2 pin.

. Test Conditions—bq3285E

Parameter	Test Conditions			
Input pulse levels	0 to 3.0 V			
Input rise and fall times	5ns			
Input and output timing reference levels	1.5 V (unless otherwise specified)			
Output load (including scope and jig)	See Figures 4 and 5			

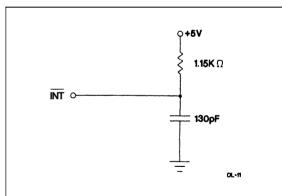
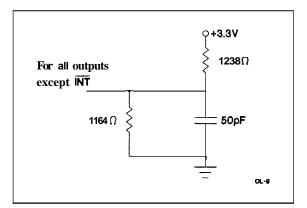



Figure 5. Output Load B-bq3285E

Jan. 1995 B 15/24

AC Test Conditions—bq3285L

Parametw	Test Conditions
Input pulse levels	0 to 2.3 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.2 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 6 and 7

0+3.3V
| 1.45K Ω
| 130pF

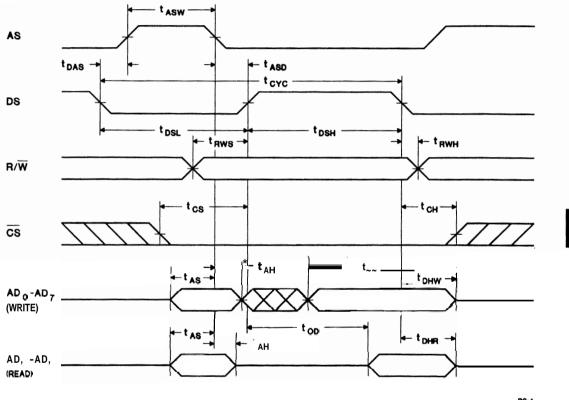
Figure 6. Output Load A—bq3285L

Figure 7. Output Load B-bq3285L

16/24

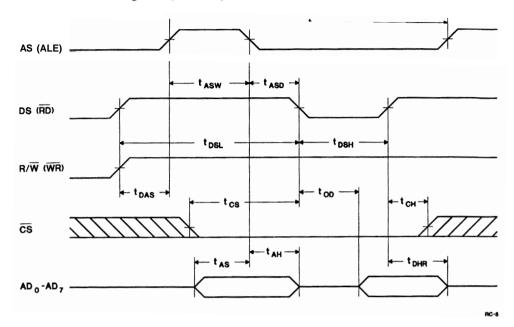
Read/Write Timing—bq3285E (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcyc	Cycle time	160			ns	
tDSL	DS low or RD/WR high time	80			ns	
tDSH	DS high or RD/WR low time	55			ns	
trwh	R∕W hold time	0			ns	
trws	R∕W setup time	10			ns	
tcs	Chip select setup time	5			ns	
tсн	Chip select hold time	0			ns	
tDHR	Read data hold time	0		25	ne	
tDHW	Write data hold time	0			ns	
tas	Address setup time	20			ns	
tah	Address hold time	5			ns	
tdas	Delay time, DS to AS rise	10			ns	
tasw	Pulse width, AS high	30			ne	
$t_{ m ASD}$	Delay time, AS to DS rise (RD/WR fall)	35			ns	
t _{OD}	Output data delay time from DS rise (RD fall)			50	ns	
tDW	Write data setup time	30			ns	
tBUC	Delay time before update cycle		244		μв	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle		1		μв	

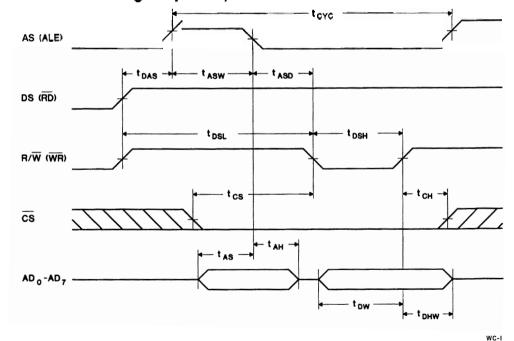

Jan. 1995 B 17/24

Read/Write Timing—bq3285L (T_A - T_{OPR} , V_{CC} - 3.15V \pm 0.45V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcyc	Cycle time	270			ns	
t_{DSL}	DS low or RD/WR high time	135			ns	
tDSH	DS high or RD/WR low time	90			ns	
trwH	R∕W hold time	0			ns	
trws	R∕W setup time	15			ns	
tcs	Chip select setup time	8			ns	
tch	Chip select hold time	0			ns	
tohr	Read data hold time	0		40	ns	
tDHW	Write data hold time	0			ns	
tas	Address setup time	30			ns	
tah	Address hold time	15			ns	
tDAS	Delay time, DS to AS rise	15			ns	
tasw	Pulse width, AS high	50			ns	
tasd	Delay time, AS to DS rise (RD/WR fall)	55			ns	
top	Output data delay time from DS rise (RD fall)			100	ns	
t _{DW}	Write data setup time	50			ns	
tBUC	Delay time before update cycle		244		με	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle		1	_	μя	


18/24 Jan, 1995 B

Motorola Bus Read/Write Timing—bq3285E/L

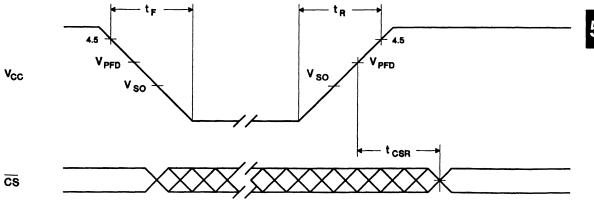


Jan. 1995 B 19/24

Intel Bus Read Timing—bq3285E/L

Intel Bus Write Timing—bq3285E/L

20/24 Jan. 1995 B

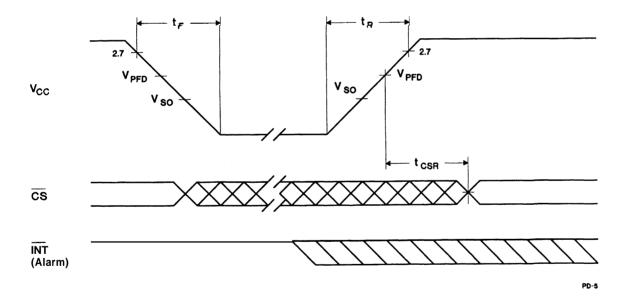

PD-4A

Power-Down/Power-Up Timing—bq3285E (TA = TOPR)

Symbol	Parameter	Minimum	Typical_	Maximum	Unit	Conditions
tp	Vcc slew from 4.5V to OV	300			με	
tr	V _{CC} slew from 0V to 4.5V	100			με	
tcsr	CS at V _{IH} after power-up	20	-	200	ms	Internal write-protection period after Vcc passes VPFD on power-up.

 $\label{low-maximum} \textbf{Caution.} \quad \textbf{Negative} \ under shoots \ \texttt{below} \ the \ \textbf{absolute} \ maximum \ rating \ of \ \textbf{-0.3V} \ in \ \textbf{battery-backup} \ mode \\ may \ affect \ data \ integrity.$

Power-Down/Power-Up Timing—bq3285E

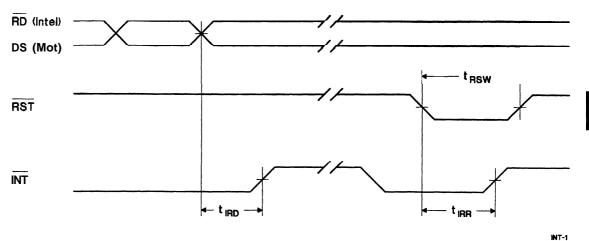

Jan. 1995 B 21/24

Power-Down/Power-Up Timing—bq3285L (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tf	V _{CC} slew from 2.W to OV	300			με	
tr	V _{CC} slew from 0V to 2.W	100			μs	
tcsr	CS at VIH after power-up	20		200	ms	Internal write-protection period after V _{CC} passes V _{PFD} on power-up.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing—bq3285L

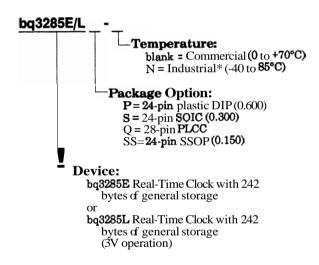


22/24 Jan. **1995** B

Interrupt Delay Timing—bq3285E/L (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unlt
trsw	Reset pulse width	5			μв
tirr	INT release from RST			2	μв
tird	INT release from DS	•	-	2	μв

Interrupt Delay Timing—bq3285E/L


23/24

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	8	Register C, bit 2	Was 0; is na (not affected)
1	18	Output data delay time top	Was 80 ns max; is 100 ns max

Note: Change 1 = Jan. 1995 B 'Final' changes from Dec. 1993 A "Preliminary."

Ordering Information

*bq3285E Q package only

24/24 Jan. 1995 B

bq3285EC/LC

Real-Time Clock (RTC)

Features

- Direct clock/calendar replacement for IBM[®] AT-compatible computers and other applications
- 2.7-5.5V operation (bq3285LC);
 4.5-5.5V operation (bq3285EC)
- 242 bytes of general nonvolatile storage
- Dedicated **32.768kHz** output pin
- System wake-up capability alarm interrupt output active in battery-backup mode
- Less than 0.5μA load under battery operation
- Selectable Intel or Motorola bus timing
- 24-pin plastic SOIC or SSOP

General Description

The CMOS **bq3285EC/LC** is a low-power **microprocessor** peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. The architecture ia based on the **bq3285/7 RTC** with added features: low-voltage operation, **32.768kHz** output, and an extra 128 bytes of CMOS.

A 32.768kHz output is available for sustaining power-management The bq3285EC 32kHz activities. output is always on whenever **Vcc** is valid. For the **bq3285LC**, the output is on when the oscillator is turned on. In Vcc standby mode, the 32kHz is active, and the bq3285LC typically draws 100µA while the bq3285EC typically draws 300µA. Wake-up capability is provided by an alarm interrupt, which is active in battery-backup mode. In battery backup mode, current drain is less than 500nA.

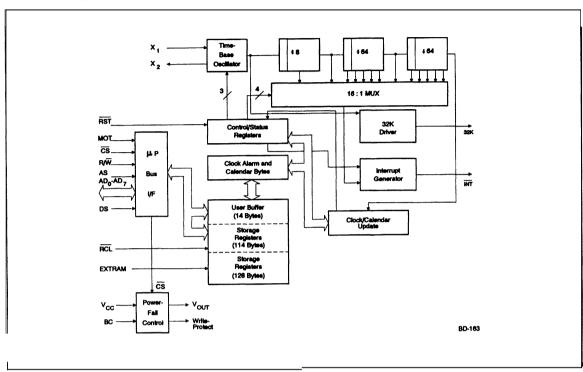
The **bq3285EC/LC** write-protects the clock, calendar, and storage registers during power failure. A backup battery then maintains data and operates the clock and calendar.

The **bq3285EC/LC** is a fully compatible real-time **clock** for **IBM AT-com**patible computers and other applications. The **only external components** are a **32.768kHz** crystal and a backup battery.

The **bq3285EC** is intended for use in 5V **systems**. The **bq3285LC** is intended for use in 3V system; the **bq3285LC**, however, may **also** operate at 5V and then go into a 3V power-down state, write-protecting as if in a 3V **system**.

Pin Connections

MOT ☐1 24 □ V∞ X1 🗗 2 23 32k 22 EXTRAM AD d4 21 RCL AD, [5 20 1 BC AD 2 46 19 | INT AD, 18 RST AD □8 17 DS AD, 🗆 9 16 D V_{ss} AD . 10 15 RW AD, [11 14 AS **d**12 13 CS 24-Pin SOIC or SSOP PN-115


July 1996

Pin Names

ADo-AD7	Multiplexed address/	32K	32.768kHz output
	data input/output	EXTRAM	Extended RAM enable
MOT	Bus type select input	RCL	RAM clear input
CS	Chip select input	BC	3V backup cell input
AS	Address strobe input	X1, X2	Crystal inputs
DS	Data strobe input	Vcc	Power supply
R/W	Read/write input	Vss	Ground
INT	Interrupt request output	¥ 33	CLOUIN
RST	Reset input		

1/24

Block Diagram

Pin Descriptions

MOT Bus type select input

MOT selects bus timing for either Motorola or Intel architecture. **This** pin should be tied to Vcc for Motorola timing or to **Vss** for Intel timing (see Table 1). The setting should not be changed during system operation. MOT is internally pulled low by a **30KR** resistor.

Table 1. Bus Setup

Bus Type	MOT Level	DS Equivalent	R/W Equivalent	AS Equivalent
Motorola	Vcc	DS, E, or Ф2	R∕W	AS
Intel	Vss	RD, MEMR, or VOR	WR, MEMW, or I/OW	ALE

AD0-AD7 Multiplexed address/data input/output

The bq3285EC/LC bus cycle **consists** of two phases: the **address** phase and the **data**-transfer phase. The address phase precedes the data-transfer phase. During the address phase, an address placed on ADo-AD7 and EXTRAM is latched into the **bq3285EC/LC** on the **falling** edge of the AS signal. During the data-transfer phase of the bus cycle, the ADo-AD7 pins serve as a bidirectional data bus.

Address strobe input

AS serves to demultiplex the address/data bus. The falling edge of AS latches the address on ADo-AD7 and EXTRAM. This demultiplexing process is independent of the CS signal. For DIP and SOIC packages with MOT = Vss, the AS input is provided a signal similar to ALE in an Intel-based system.

July 1996

AS

D8 Data strobe input

When MOT = Vcc, DS controls data transfer during a bq3285EC/LC bus cycle. During a read cycle, the bq3285EC/LC drives the bus after the rising edge on DS. During a write cycle, the falling edge on DS is used to latch write data into the chip.

When MOT = Vss, the DS input is provided a signal similar to RD, MEMR, or VOR in an Intel-based system. The falling edge on DS is used to enable the outputs during a read cycle.

R/W Read/write input

When MOT = V_{CC} , the level on R/\overline{W} identifies the **direction** of data transfer. A high level on R/\overline{W} indicates a read **bus** cycle, whereas a low on this pin indicates a write bus cycle.

When $MOT = V_{SS}$, \overline{NW} is provided a signal similar to \overline{WR} , \overline{MEMW} , or \overline{VOW} in an Intel-based system. The rising edge on $\overline{R/W}$ latches data into the bq3285EC/LC.

\overline{CS} Chip select input

CS should be driven low and held stable during the data-transfer phase of a bus cycle accessing the bq3285EC/LC.

INT Interrupt request output

INT is an open-drain output This allows alarm INT to be valid in battery-backup mode. To use this feature, connect INT through a resistor to a power supply other than Vcc. INT is asserted low when any event flag is set and the corresponding event enable bit is also set. INT becomes high-impedance whenever register C is read (see the Control/Status Registers section).

32K 32.768 kHz output

32K provides a **buffered** 32.768 **kHz** output. The frequency remains on and fixed at **32.768kHz** as long **as** Vcc is valid.

EXTRAM Extended RAM enable

Enables 128 bytes of additional nonvolatile **SRAM**. It is connected internally to a $30k\Omega$ pull-down **resistor**. To access the RTC **regis**ters, **EXTRAM** must be low.

RAM clear input

A low level on the \overline{RCL} pin causes the contents of each of the 242 storage bytes to be set to FF(hex). The contents of the clock and control registers are unaffected. This pin should be used as a user-interlace input (pushbutton to ground) and not connected to the output of any active component. \overline{RCL} input is only recognized when held low for at least 125ms in the presence of \overline{Vcc} . Using RAM clear does not affect the battery load. This pin is connected internally to a $30k\Omega$ pull-up resistor.

BC 3V backup cell input

BC should be connected to a 3V backup cell for RTC operation and storage **register non-**volatility in the **absence** of **system** power. When **Vcc** slews down past **Vbc** (3V typical), the integral control circuitry **switches** the power **source** to BC. When **Vcc** returns above **Vbc**, the power source is switched to **Vcc**.

Upon power-up, a voltage within the V_{BC} range must be present on the BC pin for the oscillator to start up.

RST Reset input

The bq3285EC/LC is reset when RST is pulled low. When reset, NT becomes high impedance, and the bq3285EC/LC is not accessible. Table 4 in the Control/Status Registers section lists the register bits that are cleared by a reset.

Reset may be disabled by connecting **RST** to **Vcc.** This allows the control bite to retain their states through **power-down/power-up cycles.**

X1, X2 Crystal input

The **X1**, X2 **inputs** are provided for an external **32.768kHz quartz crystal**, **Daiwa** DT-26 or equivalent, with **6pF** load capacitance. A trimming capacitor may be necessary for extremely precise time-base generation.

In the absence of a crystal, a **32.768kHz** waveform can be fed into the **X1** input.

Functional Description

Address Map

The bq3285EC/LC provides 14 bytes of clock and control/status registers and 242 bytes of general nonvolatile storage. Figure 1 illustrates the address map for the bq3285EC/LC.

Update Period

The update period for the **bq3285EC/LC** is one second. The **bq3285EC/LC** updates the contents of the clock and calendar locations during the update cycle at the end of

each update period (see Figure 2). The alarm flag bit may also be set during the update cycle.

The bq3285EC/LC copies the local register updates into the user buffer accessed by the host processor. When a 1 is written to the update transfer inhibit bit (UTI) in register B, the user copy of the clock and calendar bytes remains unchanged, while the local copy of the same bytes continues to be updated every second.

The **update-in-progress** bit (UIP) in **register** A is set **tBUC** time before the beginning of an update cycle(see Figure 2). This bit is cleared and the update-completeflag (UF) is set at the end of the update cycle.

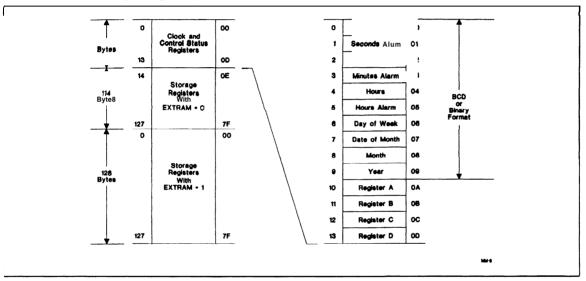


Figure 1. Address Map

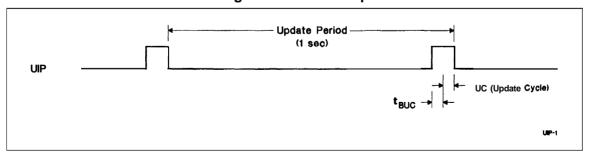


Figure 2. Update Period Timing and UIP

4/24

Programming the RTC

The time-of-day, alarm, and calendar **bytes** can be written in either **the** BCD or binary format (see Table 2).

These steps may be followed to program the time, alarm, and calendar:

- 1. Modify the contents of register B:
 - a. Write a 1 to the UTI bit to prevent transfers between RTC bytes and **user** buffer.
 - Write the appropriate value to the data format (DF) bit to select BCD or binary format for all time, alarm, and calendar bytes.

- c. **Write** the appropriate value to the hour format **(HF)** bit
- Write new values to all the time, alarm, and calendar locations.
- 3. Clear the UTI bit to allow update transfers.

On the next update cycle, the RTC updates all 10 bytes in the selected format

Table 2. Time, Alarm, and Calendar Formats

			Range	
Address	RTC Bytes	Decimal	Binary	Binary-Coded Decimal
0	Seconds	0-59	00H-3BH	00H-59H
1	Seconds alarm	0-59	00H-3BH	00H-59H
2	Minutes	0-59	00H-3BH	00H-59H
3	Minutes alarm	0-59	00H-3BH	00H-59H
4	Hours, 12-hour format	1–12	01H–OCH AM; 81H–8CH PM	01H-12H AM; 81H-92H PM
	Hours, 24-hour format	0-23	00H-17H	00H-23H
5	Hours alarm, 12-hour format	1–12	01H-OCH AM, 81H-8CH PM	01H–12H AM; 81H–92H PM
	Hous alarm, 24-hour format	0-23	00H-17H	00H-23H
6	Day of week (1=Sunday)	1–7	01H-07H	01H-07H
7	Day of month	1-31	01H-1FH	01H-31H
8	Month	1–12	01H-0CH	01H-12H
9	Year	0-99	00H-63H	00H-99H

32kHz Output

The **bq3285EC/LC** provides for a 32.768 **kHz** output. For the **bq3285EC**, the output is always active whenever **Vcc** is valid (VPFD + tcsR). The **bq3285EC** output is not affected by the bit settings in Register A. Time-keeping aspects, however, still require setting **OSO-OS2**. The **bq3285LC** output is active when the oscillator is turned on by setting the OSCO-OSC2 bits in Register A.

Interrupts

The **bq3285EC/LC** allows three individually selected interrupt events to generate an interrupt request. These three interrupt events are:

- The periodic interrupt, programmable to occur once every 122µs to 500ms.
- The alarm interrupt, programmable to occur once per second to once per day, is active in battery-backup mode, providing a 'wake-up' feature.
- The update-ended interrupt, which occurs at the end of each update cycle.

Each of the three interrupt events is enabled by an individual interrupt-enable bit in **register** B. When an event **occurs**, its event flag bit in register C is set. If the **corresponding** event enable bit is **also** set, then an interrupt request is generated. The interrupt request flag bit (INIF) of register C is set with every interrupt request. Reading **register** C **clears** all flag bits, including INTF, and makes INT high-impedance.

Two methods can be used to process bq3285EC/LC interrupt events:

- Enable interrupt events and use the interrupt request output to invoke an interrupt service routine.
- Do not enable the interrupts and use a polling routine to periodically check the status of the flag bits.

The individual interrupt sources are described in detail in the following sections.

Table 3. Periodic Interrupt Rate

		R	egister A Bi	ts			Periodic Inte	rrupt
OSC2	OSC1	OSCO	RS3	RS2	RS1	RSO	Period	Units
0	1	0	0	0	0	0	None	
0	1	0	0	0	0	1	3.90625	ms
0	1	0	0	0	1	0	7.8125	ms
0	1	0	0	0	1	1	122.070	μв
0	1	0	0	1	0	0	244.141	μв
0	1	0	0	1	0	1	488.281	με
0	1	0	0	1	1	0	976.5625	μs
0	1	0	0	1	1	1	1.953125	ms
0	1	0	1	0	0	0	3.90625	ms
0	1	0	1	0	0	1	7.8125	ms
0	1	0	1	0	1	0	15.625	ms
0	1	0	1	0	1	1	31.25	ms
0	1	0	1	1	0	0	62.5	ms
0	1	0	1	1	0	1	125	ms
0	1	0	1	1	1	0	250	ms
0	1	0	1	1	1	1	500	ms
0	1	1	х	х	х	x	same as above by RS3-R	

6/24 July 1996

Periodic Interrupt

If the periodic interrupt event is enabled by writing a 1 to the periodic interrupt enable bit (PIE) in register C, an interrupt request is generated once every 122µs to 500ms. The period between interrupts is selected with bits RS3-RS0 in register A (see Table 3).

Alarm Interrupt

The alarm interrupt is active in battery-backup mode, providing a "wake-up" capability. During each update cycle, the RTC compares the hours, minutes, and seconds bytes with the three corresponding alarm bytes. If a match of all bytes is found, the alarm interrupt event flag bit, AF in register C, is set to 1. If the alarm event is enabled, an interrupt request is generated.

An alarm byte may be removed **from** the comparison by setting it to a 'don't *care*" state. An alarm byte is set to a 'don't care' state by writing a 1 to each of its two most-significant bits. A 'don't care' state may be **used** to select the frequency of alarm interrupt events as follows:

- If none of the three alarm bytes is 'don't are,' the frequency is once per day, when hours, minutes, and seconds match.
- If only the hour alarm byte is "don't care," the frequency is once per hour, when minutes and seconds match.
- If only the hour and minute alarm bytes are 'don't care," the frequency is once per minute, when seconds match.
- If the hour, minute, and second alarm bytes are don't care, the frequency is once per second.

Update Cycle Interrupt

The update cycle ended flag bit (UF) in register C is set to a 1 at the end of an update cycle. If the update interrupt enable bit (UIE) of register B is 1, and the update transfer inhibit bit (UTI) in register B is 0, then an interrupt request is generated at the end of each update cycle.

Accessing RTC bytes

The EXTRAM pin must be low to access the RTC registers. Time and calendar bytes read during an update cycle may be in error. Three methods to access the time and calendar bytes without ambiguity are:

- Enable the update **interrupt** event to generate interrupt **requests** at the end of the update cycle. The **interrupt** handler has a maximum of 999ms to **access** the **clock** bytes before the next update cycle begins (see Figure 3).
- Poll the update-in-progress bit (UIP) in register A. If UIP = 0, the polling routine has a minimum of tBUC time to access the clock bytes (see Figure 3).
- Use the periodic interrupt event to generate interrupt requests every tPI time, such that UIP = 1 always occurs between the periodic interrupts. The interrupt handler has a minimum of tPI/2 + tBUC time to access the clock bytes(see Figure 3).

Oscillator Control

When power is first applied to the **bq3285LC** and V_{CC} is above V_{PPD}, the internal **oscillator** and frequency divider are turned on by writing a 010 pattern to **bits** 4 through 6 of register A. A pattern of **11X turns** the oscillator on but keeps the frequency divider disabled. Any other pattern to these bits **keeps** the **oscillator** off, A pattern of 010 must be set for the **bq3285EC/LC** to keep time in battery backup mode.

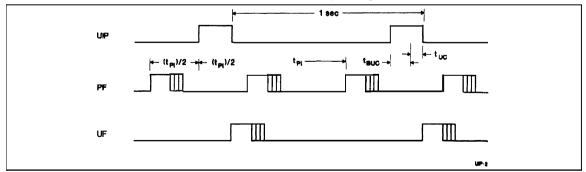


Figure 3. Update-Ended/Periodic Interrupt Relationship

July 1996 7/24

Power-Down/Power-Up Cycle

The bq3285EC and bq3285LC power-up/power-down cycles are different. The bq3285LC continuously monitors Vcc for out-of-tolerance. During a power failure, when Vcc falls below Vppp (2.53V typical), the bq3285LC write protects the clock and storage registers. The power source is switched to BC when Vcc is less than Vppp and BC is greater than Vppp, or when Vcc is less than Vpc and Vpc is less than Vpc and Vpc is less than Vppp. RTC operation and storage data are sustained by a valid backup energy source. When Vcc is above Vppp, the power source is Vcc. Write-protection continues for tosp time after Vcc rises above Vppp.

The bq3285EC continuously monitors Vcc for out-of-tolerance. During a power failure, when Vcc falls below VpfD (4.17V typical), the bq3285EC write-protects the clock and storage registers. When Vcc is below Vbc (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When Vcc is above Vbc, the power source is Vcc. Write-protection continues for tcsr time after Vcc rises above VpfD.

Control/Status Registers

The four **control/status** registers of the **bq3285EC/LC** are accessible regardless of the status of the update cycle (see Table 4).

Register A

7 6 5 4 3 2 1 0 UIP OS2 OS1 OS0 RS3 RS2 RS1 RS0	Register A Bits								
THE OS2 OS1 OS0 RS3 RS2 RS1 RS0		7	6	5	4	3	2	1	0
		тпр	OS2	OS1_	_OS0_	RS3	RS2	RS1	_RS0_

Register A programs:

- The frequency of the periodic event rate.
- Oscillator operation.

Time-keeping

Register A provides:

Status of the update cycle.

RS0-RS3 - Frequency Select

7	6	5	4	3	2	1	0
	•		•	RS3	RS2	RS1	RS0

These bits select the periodic interrupt rate, as shown in Table 3.

OS0-OS2 - Oscillator Control

7	6	5	4	3	2	1	0
-	OS2	OS1	OS0		•		•

These three bits control the state of the oscillator and divider stages. A pattern of 010 or 011 enables RTO operation by turning on the oscillator and enabling the frequency divider. This pattern must be set to turn the oscillator on for the bq3285LC and to ensure that the bq3285EC/LC will keep time in battery-backup mode. A pattern of 11X turns the oscillator on, but keeps the frequency divider disabled. When 010 is written, the begins its first update after 500ms.

UIP - Update Cyck Status

7	6	5	4	3	2	1	0
UIP	-	-	-		-	•	-

This read-only bit is set prior to the update cycle. When UIP equals 1, an RTC update cycle may be in progress. UIP is cleared at the end of each update cycle. This bit is also cleared when the update transfer inhibit (UTI) bit in register B is 1.

Table 4. Control/Status Registers

	Loc.							***	Bit	Name	and	State o	n Re	set					
Reg.		Read	Write	7 (M	SB)	6	}		5	4	}	3		2	2	1		0 (L	SB)
A	0A	Yes	Yes ¹	UIP	na	OS2	na	OS1	na	OS0	na	RS3	na	RS2	na	RS1	na	RS0	na
В	0B	Yes	Yes	UTI	na	PIE	0	AIE	0	UIE	0	-	0	DF	na	HF	na	DSE	na
С	0C	Yes	No	INTF	0	PF	0	AF	0	UF	0	-	0	-	na	-	0	-	0
D	0D	Yes	No	VRT	na	-	0	-	0	-	0		0	-	0	-	0	-	0

Notes:

na = not affected.

1. Except bit 7.

5

Register B

Register B Bits										
7 / 6 / 5 1 4 1 3 2 1 0										
UTI	PIE	AIE	UIE	-	DF	HF	DSE			

Register B enables:

- Update cycle transfer operation
- Interrupt events
- Daylight saving adjustment

Register B selects:

Clock and calendar data formats

All bits of register B are read/write.

Bit 3 - Unused Bit.

DSE-Daylight Saving Enable

7_	6	5	4	3	2	1	0
							DSE

This bit enables daylight-saving time adjustments when written to 1:

- On the last Sunday in October, the first time the bq3285EC/LC increments past 1:59:59 AM, the time falls back to 1:00:00 AM.
- On the first Sunday in April, the time springs forward from 2:00:00 AM to 3:00:00 AM.

HF - Hour Format

7	6	5	4	3	2	1	0
						HF	

This bit selects the time-of-day and alarm hour format:

1 = 24-hour format

0 = 12-hour format

DF - Data Format

	7	/ 6	/ 5	1 4	1 3	2	1	0
Ī						DF		

This bit selects the numeric format in which the time, alarm, and calendar bytes are represented:

1 = Binary

0 = BCD

UIE - Update Cycle Interrupt Enable

7	6	5	4	3	2	1	0
-	•		UIE	-	•	-	

This bit enables an interrupt request due to an update ended **interrupt** event:

1 = Enabled

0 = Disabled

The ${\bf UIE}$ bit is automatically cleared when the ${\bf UTI}$ bit equals 1.

AIE - Alarm Interrupt Enable

7	6	5	4	3	2	1	0
•	•	AIE	•	-	•	•	

This bit enables an interrupt request due to an alarm interrupt event:

1 = Enabled

0 = Disabled

PIE - Periodic Interrupt Enable

•													
	7	6	5	4	3	2	1	0					
	-	PIE			•	-	•	-					

This bit enables an interrupt request due to a periodic interrupt event:

1 = Enabled

0 = Disabled

UTI - Update Transfer inhibit

7	6	5	4	3	2	1	0
UTI	-	-		-	-	-	-

This bit inhibits the transfer of RTC bytes to the user buffer:

1 = Inhibits transfer and clears UIE

0 = Allows transfer

bq3285EC/LC

Register C

	Register C Bits											
7	6	5	4	3	2	1	_0					
INTF	PF	AF	UF	0	-	0	0					

Register C is the read-only event status register.

Bits 0, 1, 2, 3 - Unused Bits

7	6	5	4	3	2	1	0
-		•	•	0	-	0	0

These bits are always set to 0.

UF - Update Event Flag

7	6	5	4	3	2	1	0
	-		UF	-	-	-	-

This bit is set to a 1 at the end of the update cycle. Reading register C clears this bit.

AF - Alarm Event Flag

Γ	7	6	5	4	3	2	1	0
	-	-	AF	•	-	-	-	•

This bit is set to a 1 when an alarm event occurs. Reading register C clears this bit.

PF - Periodic Event Flag

7	6	5	4	3	2	1	0
-	PF	-	-	-		-	-

This bit is set to a 1 every **tp**1 time, where **tp**1 is the time period selected by the settings of RS0-RS3 in register A. Reading register C clears this bit.

INTF - interrupt Request Flag

7	6	5	4	3	2	1	0
INTF		-	-	-	-		-

This flag is set to a 1 when any of the following is true:

AIE = 1 and AF = 1

PIE = 1 and PF = 1

UIE = 1 and UF = 1

Reading register C clears this bit.

Register D

	Register D Bits									
7	7 6 5 4 3 2 1 0									
VRT	0	0	0	0	0	0	0			

Register D is the read-only data integrity status register.

Bits 0-6 - Unuwd Bits

7	6	5	4	3	2	1	0
-	0	0	0	0	0	0	0

These bits are always set to 0.

VRT - Valid RAM and Time

7	6	5	4	3	2	1	0
VRT		-					

1 = Valid backup energy source

0 = Backup energy source is depleted

When the backup energy source is depleted (VRT = 0), data integrity of the RTC and storage registers is not guaranteed.

Absolute Maximum Ratings—bq3285EC

Symbol	Parameter	Value	Unit	Conditions
Vœ	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	v	V_T ≤ V_{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	Commercial
TsTG	Storage temperature	-55 to +125	°C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Solderingtemperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functional operation should be **limited** to the Recommended DC Operating Conditions detailed in **this** data sheet. Exposure to conditions beyond the operational limits for extended periods of time may **affect** device reliability.

Absolute Maximum Ratings—bq3285LC

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on V∞ relative to Vss	-0.3 to 7.0	V	
Vτ	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	Commercial
TSTG	Storage temperature	-55 to +125	°C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	260	"C	For 10 seconds

Note:

Permanent device **damage** may occur if **Absolute Maximum Ratings** are exceeded. **Functional** operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. **Exposure** to conditions beyond the operational limits for **extended periods** of time may **affect** device reliability.

July 1996 11/24

Recommended DC Operating Conditions—bq3285EC (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	4.5	5.0	5.5	V
Vss	Supply voltage	0	0	0	V
$\overline{V_{IL}}$	Input low voltage	-0.3		0.8	V
VIH	Input high voltage	2.2		Vcc + 0.3	V
V _{BC}	Backup cell voltage	2.4		4.0	V

Note: Typical values indicate operation at $T_A = 25$ °C.

Recommended DC Operating Conditions—bq3285LC (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	2.7	3.0	5.5	V
Vss	Supply voltage	0	0	0	V
VIL	Input low voltage	-0.3		0.6	V
VIH	Input high voltage	2.2		Vcc + 0.3	V
V _{BC}	Backup cell voltage	2.4		4.0	V

Note: Typical values indicate operation at TA = 25°C.

Crystal Specifications—bq3285EC/LC (DT-26 or Equivalent)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
fo	Oscillation frequency		32.768		kHz
$\mathbf{C}_{\mathbf{L}}$	Load capacitance		6		pF
T_{P}	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant			-0.042	ppm/°C
Q	Quality factor	40,000	70,000		
R ₁	Series resistance			45	ΚΩ
Co	Shunt capacitance		1,1	1.8	pF
Co/C1	Capacitance ratio		430	600	
DL	Drive level			1	μW
Δ f /f _O	Aging (first year at 25°C)		1		ppm

12/24 July 1996

DC Electrical Characteristics—bq3285EC (TA = TOPR, VCC = 5V +- üH HÇ@ 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
III	Input leakage current			±1	μA	V _{IN} = V _{SS} to V _{CC}
ILO	Output leakage current			± 1	μА	AD ₀ -AD ₇ and INT in high impedance, Vour = V ₈₈ to V _{CC}
Vон	Output high voltage	2.4			V	I _{OH} = -2.0 mA
Vol	Output low voltage			0.4	v	I _{OL} = 4.0 mA
I_{CC}	Operating supply current		7	15	mA	Min. cycle, duty = 100%, IOH = 0mA, IOL = 0mA
Iccsb	Standby supply current		300		μA	$\frac{V_{DN} = V_{SS} \text{ or } V_{CC},}{CS \ge V_{CC} \cdot 0.2}$
V_{SO}	Supply switch-over voltage		V_{BC}		V	
Iccb	Battery operation current		0.3	0.5	μА	V _{BC} = 3V, T _A = 25°C
V _{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	V	
I_{RCL}	Input current when $\overline{RCL} = V_{SS}$.			185	μA	Internal 30K pull-up
Імотн	Input current when MOT = V_{CC}			-185	μA	Internal 30K pull-down
-3.20 111	Input current when MOT = V _{SS}			0	μA	Internal 30K pull-down
IXTRAM	Input current when EXTRAM = Vcc			-185	μA	Internal 30K pull-down
	Input current when EXTRAM = Vss			0	μА	Internal 30K pull-down

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, Vcc = 5V or $V_{BC} = 3V$.

DC Electrical Characteristics—bq3285LC (TA = TOPR, VCC = 3V)

Symbol	Parameter	Minimum	Typical ¹	Maximum	Unit	Conditions/Notes
ILI	Input leakage current	1		±1	μА	V _{IN} = V _{SS} to V _{CC}
Iw	Output leakage current			± 1	μА	AD ₀ -AD ₇ and INT in high impedance, Vout = Vss to vcc
V _{OH}	Output high voltage	2.2			V	I _{OH} = -1.0 mA
$ m V_{OL}$	Output low voltage			0.4	V	I _{OL} = 2.0 mA
Icc	Operating supply current		5 ²	9	mA	Min. cycle, duty = 100%, $I_{OH} = 0$ mA, $I_{OL} = 0$ mA
Iccsb	Standby supply current	-	100 ³	•	μA	CS ≽Wess co.¥cc,
$ m V_{SO}$	Supply switch-over voltage		V_{PFD}		V	$V_{\rm BC} > V_{\rm PFD}$
			V _{BC}		V	V _{BC} < V _{PFD}
I_{CCB}	Battery operation current	-	0.3	0.5	μA	V _{BC} = 3V, T _A = 25°C, V _{CC} < V _{BC}
V_{PFD}	Power-fail-detectvoltage	2.4	2.53	2.65	V	
IRCL	Input current when $\overline{RCL} = Vss.$			120	μA	Internal 30K pull-up
Імотн	Input current when MOT = Vcc			-120	μА	Internal 30K pull-down
	Input current when MOT = V _{SS}	•	-	0	μΑ	Internal 30K pull-down
Ixtram	Input current when EXTRAM = Vcc	-	-	-120	μА	Internal 30K pull-down
	Input current when EXTRAM = Vss			0	μA	Internal 30K pull-down

Note:

- 1. Typical values indicate operation at TA = 25°C, V_{CC} = 3V.
- 2. 7mA at Vcc = 5V
- 3. $300\mu A$ at Vcc = 5V

14/24 July 1996

Capacitance—bq3285EC/LC (TA = 25℃, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			7	рF	Vour = OV
CIN	Input capacitance			5	pF	V _{IN} = OV

Note: This parameter is sampled and not 100% tested. It does not include the X1 or X2 pin.

AC Test Conditions—bq3285EC

Parameter	Test Conditions		
Input pulse levels	0 to 3.0 V		
Input rise and fall times	5 ns		
Input and output timing reference levels	1.5 V (unless otherwise specified)		
Output load (including scope and jig)	See Figures 4 and 5		

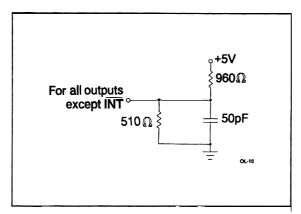


Figure 4. Output Load--bq3285EC

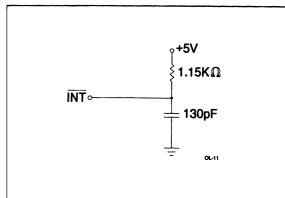


Figure 5. Output Load--bq3285EC

July 1996

AC Test Conditions—bq3285LC

Parameter	Test Conditions			
Input pulse levels	$0 \text{ to } 2.3 \text{ V}, \text{ Vcc} = 3\text{V}^1$			
Input rise and fall times	5 ns			
Input and output timing reference levels	1.2 V (unless otherwise specified)			
Output load (including scope and jig)	See Figures 6 and 7			

Note:

1. For 5V timing, please refer to bq3285EC.

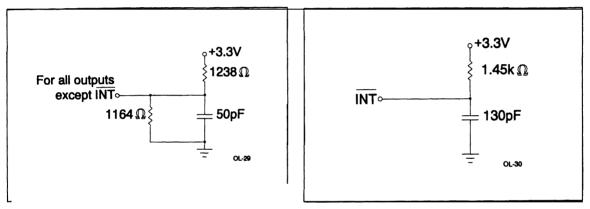


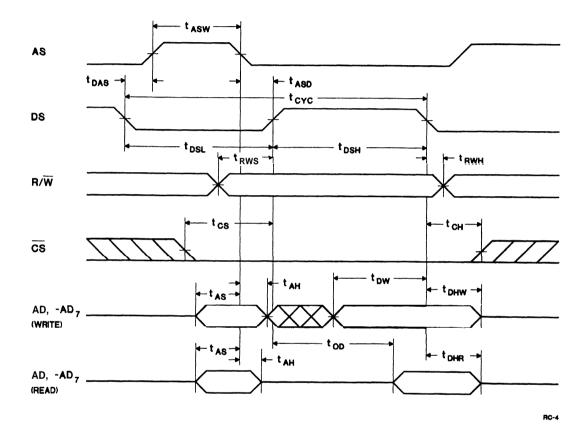
Figure 6. Output Load-bq3285LC

Figure 7. Output Load B--bq3285LC

July 1996

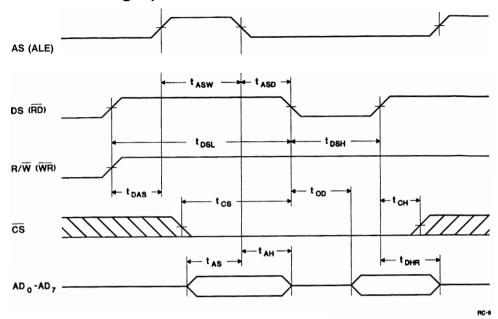
Read/Write Timing—bq3285EC (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
toyo	Cycle time	160			ns	
$t_{ m DSL}$	DS low or RD/WR high time	80			ns	
tosh	DS high or RD/WR low time	55			ns	
trwh	R∕W hold time	0			ns	
trws	R∕W setup time	10			ns	
tes	Chip select setup time	5			ns	
tcH	Chip select hold time	0			ns	
tDHR	Read data hold time	0		25	ns	
tDHW	Write data hold time	0			ns	
tas	Address setup time	20			ns	
tah	Address hold time	5			ns	
tDAS	Delay time, DS to AS rise	10			ns	
tasw	Pulse width, AS high	30			ns	
t _{ASD}	Delay time, AS to DS rise fall)	35			ns	
	Output data delay time from DS rise (RD fall)			50	ns	
tow	Write data setup time	30			ns	
tBUC	Delay time before update cycle		244		μв	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle	-	1		he	

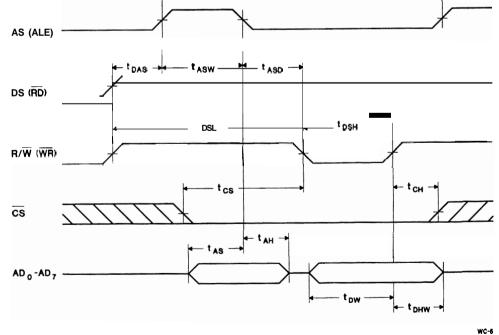

July 1996 17/24

Read/Write Timing—bq3285LC (TA = TOPR, $VCC = 3V \pm 10\%$)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcyc	Cycle time	270			ns	
tDSL	DS low or RD/WR high time	135			ns	
tDSH	DS high or RD/WR low time	90			ns	
trwh	R /W hold time	0			ne	
trws	R√W setup time	15			ne	
tcs	Chip select setup time	8			ns	
tch	Chip select hold time	0			ns	
tDHR	Read data hold time	0		40	ns	
tDHW	Write data hold time	0			ne	
t _{AS}	Address setup time	30			ns	
tah	Address hold t i e	15			ne	
tdas	Delay time, DS to AS rise	15			ns	
tasw	Pulse width, AS high	50			US	
tasd	Delay time, AS to DS rise (RD/WR fall)	55			ne	
top	Output data delay time from DS rise (RD fall)			100	ns	
t _D w	Write data setup t i e	50			ns	
tBUC	Delay time before update cycle		244		μв	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle		1		μя	


July 1996

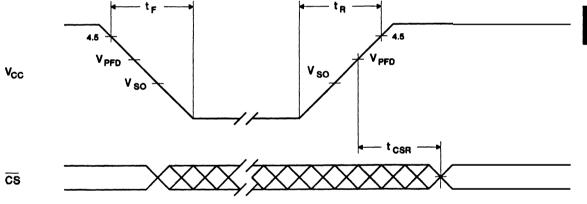
Motorola Bus Read/Write Timing bq3285EC/LC



July 1996 19/24

Intel Bus Read Timing bq3285EC/LC

Intel Bus Write Timing bq3285EC/LC


20/24 July 1996

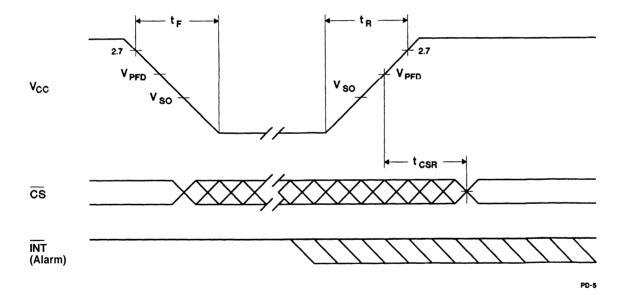
Power-Down/Power-Up Timing—bq3285EC (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tr	Vcc slew from 4.5V to OV	300			µ8	
tr	Vcc slew from OV to 4.5V	100			μs	
tcsr	CS at VIH after power-up	20		200	ms	Internal write-protection period after VCC passes VPFD on power-up.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing bq3285EC

PD-4A

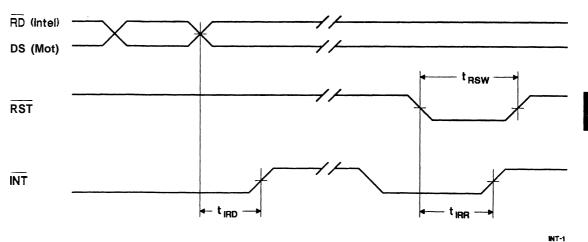

July 1996

Power-Down/Power-Up Timing—bq3285LC (TA = TOPR)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tF	V _{CC} slew from 2.W to 0V	300			μs	
tR	V _{CC} slew from OV to 2.W	100			μя	
tcsr	CS at VIH after power-up	20		200	ms	Internal write-protection period after VCC passes VPFD on power-up.

 $\begin{array}{ll} \textbf{Caution:} & \textbf{Negative under shoots below the absolute maximum rating of -0.3V in battery-backup mode} \\ & \textbf{may affect data integrity.} \end{array}$

Power-Down/Power-Up Timing bq3285LC



22/24 July 1996

Interrupt Delay Timing—bq3285EC/LC (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
trsw	Reset pulse width	5			μв
tirr	INT release from RST			2	μв
t _{IRD}	INT release from DS			2	με

Interrupt Delay Timing bq3285EC/LC

July 1996 23/24

Ordering Information

```
bq3285EC/LC

Temperature:
blank = Commercial(0 to +70°C)

Package Option:
S = 24-pin SOIC (0.300)
SS= 24-pin SSOP (0.150)

Device:
bq3285EC Real-Time Clock with 242
bytes of general storage
or
bq3285LC Real-Time Clock with 242
bytes of general storage
(3V operation)
```

24/24 July 1996

bq3287/bq3287A

Real-Time Clock (RTC) Module

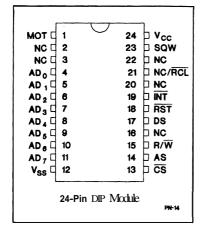
Features

- Direct clock/calendar replacement for IBM
 AT-compatible computers and other applications
- Functionally compatible with the DS1287/DS1287A and MC146818A
- 114 **bytes** of general nonvolatile storage
- ➤ Integral lithium cell and crystal
- ➤ 160 ns cycle time allows **fast** bus operation
- ➤ Selectable Intel or Motorola bus timing
- ➤ 14 bytes for clock/calendar and control
- BCD or binary format for clock and calendar data
- Time of day in seconds, minutes, and hours
 - 12- or 24-hour format
 - Optional daylight saving adjustment

- Calendar in day of the week, day of the month, months, and years with automatic leap-year adjustment
- Programmable square wave output
- Three individually maskable interrupt event flags:
 - Periodic rates from 122 μs to 500 ms
 - Time-of-day alarm once per second to once per day
 - End-of-clock update cycle
- Better than one minute per month clock accuracy

General Description

The CMOS bq3287/bq3287A is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. Other features include three maskable interrupt sources, squarewave output, and 114 bytes of general nonvolatile storage. The bq3287A version is identical to the


bq3287, with the addition of the RAM clear input.

The **bq3287** is a fully compatible real-time clock for **IEM AT-compat**-ible computers and other applications. The **bq3287 write-protects** the clock, calendar, and storage **registers** during power failure. The integral backup energy source then maintains data and operates the clock and calendar.

As shipped from **Benchmarq**, the real time clock **is** turned off to maximize battery capacity for in-system operation.

The **bq3287** is **functionally** equivalent to the **bq3285**, except that the battery (16, 20) and crystal (2, 3) pins are not accessible. **These** pins are connected internally to a **coin** cell and quartz crystal. The coin cell is sized to provide 10 years of data retention and clock operation in the **absence** of power. For a complete description of features, operating conditions, electrical characteristics. **bus** timing, and pin descriptions, **see** the **bq3285** data sheet.

Pin Connections

Pin Names

ADo-AD7	Multiplexed address/data input/output	RST	Reset input
	• • •	SQW	Square wave output
MOT	Bus type select input	NC	No connect
CS	Chip select input	RCL	Day design
AS	Address strobe input	RCL	RAM clear input (bq3287A only)
DS	Data strobe input	v_{cc}	+5V supply
R/W	Read/write input	v_{ss}	Ground
ĪNT	Interrupt request output		

Sept. 1996 D 1/4

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	_
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	V_T ≤ V_{CC} + 0.3
	Operating temperature	0 to +70	°C	Commercial
TOPR	operating temperature	-20 to +70	°C	Extended "I"
	Storage temperature	-40 to +70	°C	Commercial
T_{STG}	Storage temperature	40 to +70	°C	Extended "I"
m	Temperature under bias	-10 to +70	°C	Commercial
T_{BIAS}	Temperature under outs	-20 to +70	°C	Extended T
TSOLDER	Soldering temperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are** exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. Exposure to conditions beyond the operational **limits** for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	4.5	5.0	5.5	V
Vss	Supply voltage	0	0	0	V
V_{IL}	Input low voltage	-0.3		0.8	V
VIH	Input high voltage	2.2		Vcc + 0.3	V

Note:

DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μA	$V_{IN} = V_{SS}$ to V_{CC}
ILO	Output leakage current			±1	μA	AD ₀ -AD ₇ , INT and SQW in high impedance
VoH	Output high voltage	2.4			V	I _{OH} = -1.0 mA
v_{ol}	Output low voltage			0.4	V	I _{OL} = 4.0 mA
I_{CC}	Operating supply current		7	15	mA	Min. cycle, duty = 100%, IOH = 0mA, IOL = 0mA
v_{so}	Supply switch-overvoltage		3.0		V	
V_{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	V	
I _{RCL}	Input current when $\overline{RCL} = V_{SS}$			185	μА	Internal 30K pull-up (bq3287A only)
Імотн	Input current when MOT = V _{CC}			-185	μΑ	Internal 30K pull-down

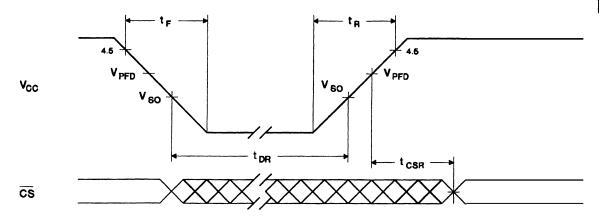
Note:

Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

2/4

Sept. 1996 D

Typical values indicate operation at $T_A = 25$ °C.


Power-Down/Power-Up Timing (TA = TOPR)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tf	Vcc slew from 4.5V to OV	300			με	
tR	V _{CC} slew from OV to 4.5V	100			μв	
tcsr	CS at V _{IH} after power-UP	20		200	ms	Internal write-protection period after Vcc passes VPFD on power-up.
$t_{ m DR}$	Data-retentionand timekeeping time	10			years	T _A = 25°C.

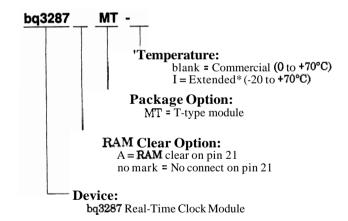
Note: Clock accuracy is better than ± 1 minute per month at 25°C for the period of tDR.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

PD-4

Data Sheet Revision History


Change No.	Page No.	Description	Nature of Change
1	1	Address strobe input	Clarification
1	2	Power-fail detect voltage VPFD	Was 4.1 min, 4.25 max; is 4.0 min, 4.35 max
2	1	Was: "As shipped from Benchmarq, the backup cell is electrically isolated from the memory." Is: "As shipped from Benchmarq, the backup cell is electrically isolated from the active circuitry."	Clarification
2	2, 4	Changed temperature from N (industrial, -40 to +85°C) to I (extended, -20 to +70°C)	Specification change
3	2	IRCL max. was 275; is now 185. Pull-up = 30K IMOTH max. was -275; is now -185. Pull-down = 30K	Changed values

Note: Change 1 = Nov. 1992 B changes from June 1991 A.

Change 2 = Nov. 1995 C changes from Nov. 1992 B.

Change 3 = Sept. 1996 D changes from Nov. 1995 C

Ordering Information

'Contact factory for availability.

4/4 Sept. 1996 D

bq3287E/bq3287EA

Real-Time Clock (RTC) Module

Features

- Direct clock/calendar_ replacement for IBM® AT-compatible computers and other applications
- Functionally compatible with the DS1287/DS1287A and MC146818A/MC146818B
- 242 bytes of general nonvolatile storage
- Provides a 32.768kHz output for power management
- System wake-up capability alarm interrupt active in battery-backup mode
- Integral lithium cell and crystal
- 160 ns cycle time allows fast bus operation
- 14 bytes for clock/calendar and
- Time of day in **seconds**, minutes, and hours
 - 12- or **24-hour format**
 - Optional daylightsaving adjustment

- Calendar in day of the week, day of the month, months, and years with automatic leap-year adjustment
- Programmable square wave output
- Three individually maskable interrupt event flags:
 - Periodic rates from 122 us to
 - Time-of-day alarm once per second to once per day
- Better than one minute per month clock accuracy

End-of-clock update cycle

General Description

The CMOS bq3287E/bq3287EA is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. Other features include three maskable interrupt sources, squarewave output, and 242 bytes of general nonvolatile storage. A **32.768kHz** output is available for sustaining power-management activities. Wake-up capability is provided by an alarm interrupt, which

is active in battery-backup mode. The bq3287EA version is identical to the bq3287E, with the addition of the **RAM** clear input.

The **bq3287E** is a fully compatible realtime clock for IBM AT-compatible puters and other applications. The bo3287E write-protects the clock, calendar, and storage registers during correct failure. The **integral** backup energy source then maintains data and operates the clock and calendar.

As shipped from **Benchmarg**, the real time clock is turned off to maximize battery capacity for in-system operation.

The **bq3287E** is functionally equivalent to the **bq3285E**, except the battery (16,20) and pins (2,3) are not accessible. These pine are connected internally to a coin cell and quartz crystal. The coin cell is sized to provide 10 years of data retention and clock operation in the absence of power. For a complete description of features, operating conditions, electrical characteristics, bus timing, and pin descriptions, see the **bq3285E** data sheet.

Pin Connections

,		,	
MOT 🗆 1	24	þ	V _{CC}
NC C 2	23	þ	SQW
NC 🗆 3	22	Þ	EXTRAM
AD _o 4	21	þ	NC/RCL
AD 1 5	20		NC
AD ₂ G	19		INT
AD3 7	18		RST
AD ₄ □8	17	г	DS
AD ₅ □9	16		NC_
AD ₆ 10	15		R/W
AD ₇ [11	14		AS
V ₈₈ 🗆 12	13	P	CS
24-Pin	DIP Module	_	PH-53
Sept. 1996 C			

Pin Names

ADO-AD7	Multiplex address/data	RST	Reset input
	input/output	SQW	Square wave output
MOT		EXTRAM	Extended RAM enable
CS	Chip select input	NC	No connect
AS	Address strobe input	RCL	RAM clear input
DS	Data strobe input	Rez	(bq3287EA only)
R/W	Read/write input	Vcc	+5 V supply
INT	Interrupt request output	Vss	Ground

1/4

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 7.0	V	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	Commercial
TsTG	Storage temperature	-40to +70	°C	Commercial
TBIAS	Temperature under bias	-10to +70	°C	Commercial
TSOLDER	Solderingtemperature	260	°C	For 10 seconds

Note:

Permanent device damage may **occur** if **Absolute Maximum Ratings** are **exceeded.** Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device **reliability**.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
v_{cc}	Supply voltage	4.5	5.0	5.5	V
v_{ss}	Supply voltage	0	0	0	V
V_{IL}	Input low voltage	-0.3		0.8	V
VIH	Input high voltage	2.2		Vcc + 0.3	V

Note:

Typical values indicate operation at $T_A = 25$ °C.

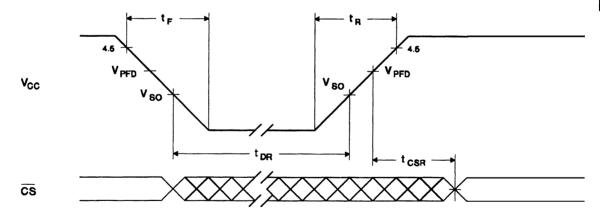
DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Svmbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μA	$V_{IN} = V_{SS}$ to V_{CC}
Iro	Output leakage current			± 1	μA	AD ₀ –AD ₇ , INT and SQW in high impedance
VOH	Output high voltage	2.4			V	$I_{OH} = -1.0 \text{ mA}$
V_{OL}	Output low voltage			0.4	V	$I_{OL} = 4.0 \text{mA}$
Icc	Operating supply current		7	15	mA	Min. cycle, duty = 100%, IOH = 0mA, IOL = 0mA
Vso	Supply switch-over voltage		3.0		V	
VPFD	Power-fail-detectvoltage	4.0	4.17	4.35	V	
I_{RCL}	Input current when $\overline{RCL} = V_{SS}$			185	μА	Internal 30K pull-up (bq3287EA only)
I _{MOTH}	Input current when MOT = V CC			-185	μA	Internal 30K pull-down
IXTRAM	Input current when EXTRAM = Vcc			-185	μA	Internal 30K pull-down

Note:

Typical values indicate operation at $T_A = 25^{\circ}\text{C}$, $V_{CC} = 5\text{V}$.

2/4


Power-Down/Power-Up Timing (TA - TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tr	V _{CC} slew from 4.5V to OV	300			μs	
tR	V _{CC} slew from OV to 4.5V	100			με	
tcsr	CS at V _{IH} after power-up	20	•	200	ms	Internal write-protection period after Vcc passes VPFD on power-up.
$t_{ m DR}$	Data-retentionand timekeeping time	10			years	T _A = 25°C.

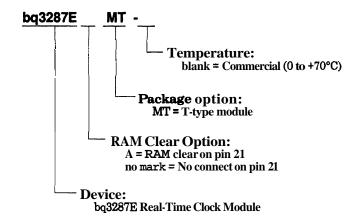
Note: Clock accuracy is better than ± 1 minute per month at 25°C for the period of tor.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

PD-4

Data Sheet Revision History


Change No.	Page No.	Description	Nature of Change
1	8	Register C, bit 2	Was 0; is na (not affected)
2	2	IRCL max. was 275; is now 185. Pull-down=30K.	Value change
2	2	Ixtram max. was -75; is now -185.	Value change

Note:

Change 1 = Apr. 1994 B "Final" changes from Dec. 1993 A "Preliminary."

Change 2 = Sept. 1996 C changes from April 1994 B.

Ordering Information

Real-Time Clock (RTC) With NVRAM Control

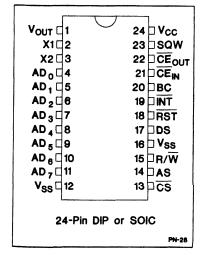
Features

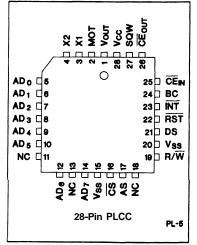
- Direct clock/calendar replacement for IBM® AT-compatible computers and other applications
- Functionally compatible with the **DS1285**
 - Closely matches MC146818A pin configuration
- 114 bytes of general nonvolatile storage
- ➤ Automatic backup and write-protect control to external SRAM
- 160 ns cycle time allows fast bus operation
- Selectable Intel or Motorola bus timing (PLCC), Intel bus timing (DIP and SOIC)
- Less than 0.5 μA load under battery operation
- 14 bytes for clock/calendar and control

- Calendar in day of the week, day of the month, months, and years, with automatic leap-year adjustment
- Time of day in seconds, minutes, and hours
 - 12- or 24-hour format
 - Optional daylight saving adjustment
- BCD or binary format for clock and calendar data
- ➤ Programmable square wave output
- Three individually maskable interrupt event flags:
 - Periodic rates from 122 μs to 500 ms
 - Time-of-day alarm once per second to once per day
 - End-of-clock update cycle
- ➤ 24-pin plastic DIP or SOIC and 28-pin PLCC

General Description

The CMOS bq4285 is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. Other features include three maskable interrupt sources, square wave output, and 114 bytes of

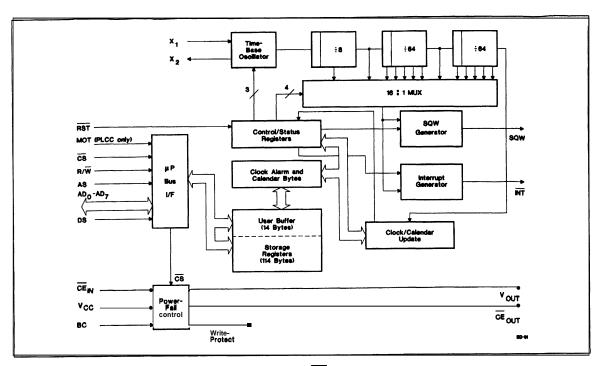

general nonvolatile storage.


The bq4285 write-protects the clock, calendar, and storage registers during power failure. A backup battery then maintains data and operates the clock and calendar.

The bq4285 is a fully compatible realtime clock for IBM AT-compatible reputers and other applications. The only external components are a 32.768kHz crystal and a backup battery.

The **bq4285** integrates a **battery**-backup controller to make a standard CMOS SRAM nonvolatile during power-fail conditions. During power-fail, the **bq4285** automatically write-protects the external SRAM and **provides** a Vcc **output sourced** from the clock backup battery.

Pin Connections



Pin Names

ADo-AD7	Multiplexed address/data input/output
МОТ	Bus type select input (PLCC only)
<u>cs</u>	Chip select input
AS	Address strobe input
DS	Data strobe input
<u>R/₩</u>	Read/write input
INT	Interrupt request output
RST	Reset input
sqw	Square wave output
BC	3V backup cell input
X1, X2	Crystal inputs
NC	No connect
CEIN	RAM chip enable input
CEOUT	RAM chip enable output
Vour	Supply output
V _C C	+5V supply
v_{ss}	Ground

Nov. 1993 C

Block Diagram

Pin Descriptions

ADo-AD7 Multiplexed address/data input/output

The bq4285 bus cycle consists of two phases: the address **phase** and the data-transfer phase. The address phase precedes the data-transfer phase. During the address phase, an address placed on AD₀-AD₇ is latched **into** the **bq4285** on the falling edge of the AS signal. **During** the data-transfer phase of **the** bus cycle, **the** AD₀-AD₇ pins serve as a bidirectional data bus.

MOT Bus type select input (PLCC package only)

MOT **selects** bus timing for either Motorola or Intel architecture. **This** pin should be tied to **Vcc** for Motorola timing or to **Vss** for Intel timing (see Table 1). The setting should not be changed during system operation. MOT is internally pulled low by a 20KR resistor. For the DIP and SOIC packages, this pin is internally connected to **Vss**, enabling the bus timing for the Intel architecture.

Chip select input

CS should be driven low and held stable during the data-transfer phase of a bus cycle accessing the bq4285.

Table 1. Bus Setup

Bus Type	MOT Level	DS Equivalent	R/W Equivalent	AS Equivalent
Motorola	v_{cc}	DS, E, or Φ2	R∕W	AS
Intel	Vss	RD, MEMR, or I/OR	WR, MEMW, or I/OW	ALE

2/20 Nov. 1993 C

AS Address strobe input

AS serves to demultiplex the address/data bus. The falling edge of AS latches the address on ADo-ADo. This demultiplexing process is independent of the CS signal. For DIP, SOIC, and PLCC packaged with MOT = Vcc, the AS input is provided a signal similar to ALE in an Intel-based system.

DS Data **strobe** input

For DIP, SOIC, and PLCC packages with MOT = Vss, the DS input is provided a signal similar to RD, MEMR, or VOR in an Intel-based system. The falling edge on DS is used to enable the outputs during a read cycle.

For the **PLCC** package, when MOT = Vcc, DS controls data transfer during a **bq4285** bus cycle. **During** a read cycle, the bq4285 **drives** the bus after the **rising** edge on DS. During a write cycle, the falling edge on DS is used to latch write data into the chip.

R/W Read/write input

For DIP, **SOIC**, and PLCC **packages** with MOT = Vss, RW is provided a signal similar to WR, MEMW, or VOW in an Intel-based

The rising edge on RW latches data into the **bq4285**.

For the PLCC package, when MOT = Vcc, the level on RW identifies the direction of data transfer. A high level on RW indicates a read bua cycle, whereas a low on this pin indicates a write bus cycle.

INT Interrupt request output

INT is an open-drain output. INT is asserted low when any event flag is set and the **corresponding** event enable bit is also set. INT becomes high-impedance whenever register C is read (see the **Control/Status** Registers section).

RST Reset input

The **bq4285** is reset when **RST** is pulled low. When **reset**, INT becomes high-impedance, and the **bq4285** is not accessible. Table 4 in the **Control/Status** Registers section lists the register bits that are cleared by a **reset**.

Reset may be disabled by connecting RST to Vcc. This allows the control bite to retain their states through power-down/power-up cycles.

SQW Square-wave output

SQW may output a programmable frequency square-wave signal during normal (Vcc valid) system operation. Any one of the 13 specific frequencies may be selected through register A This pin is held low when the square-wave enable bit (SQWE) in register B is 0 (see the Control/Status Registers section).

BC 3V backup cell input

BC should be **connected** to a **3V** backup cell for RTC operation and storage **register non**-volatility in the **absence** of power. When **Vcc** slews down **past Vbc** (**3V** typical), the integral control **circuitry switches** the power **source** to **BC**. When **Vcc** returns above **Vbc**, the power **source** is **switched** to **Vcc**.

Upon power-up, a voltage within the VBC range must be present on the BC pin for the oscillator to start up.

X1,X2 Crystal input

The **X1**, X2 inputs are provided for an external **32.768Khz** quartz **crystal**, **Daiwa** DT-26 or equivalent, with **6pF** load capacitance. A trimming capacitor may be **necessary** for extremely precise time-base generation.

CEIN External RAM chip enable input, active

CEIN should be driven low enable the con-

trolled external **RAM**. **CEIN** is internally pulled up with a 50K Ω resistor.

CEOUT External RAM chipenable output, active low

When power is valid, $\overline{\textbf{CE}}_{\textbf{OUT}}$ reflects $\overline{\textbf{CE}}_{\textbf{IN}}$.

Vour Supply output

Vout provides the higher of **Vcc** or **VBC**, **switched** internally, to **supply external** RAM.

V_{CC} +5V supply

Vss Ground

Nov. 1993 C

Functional Description

Address Map

The bq4285 provides 14 bytes of clock and control/status registers and 114 bytes of general nonvolatile storage. Figure 1 illustrates the address map for the bq4285.

Update Period

The update period for the bq4285 is one second. The bq4285 updates the contents of the clock and calendar

locations during the update cycle at the end of each update period (see Figure 2). The alarm flag bit may also be set during the update cycle.

The **bq4285** copies the local register updates into the user buffer accessed by the **host processor.** When a 1 is written to the update transfer inhibit bit (UTI) in register B, the user copy of the clock and calendar bytes remains unchanged, while the local mpy of the same bytes continua to be updated every second.

The update-in-progress bit **(UIP)** in **register** A is set **truc** time before the **beginning** of an **update** cycle(see Figure 2). **This** bit is cleared and the update-complete flag **(UF)** is set at the end of the update cycle.



Figure 1. Address Map

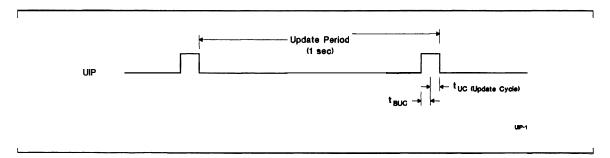


Figure 2. Update Period Timing and UIP

4/20 Nov. 1993 C

Programming the RTC

The time-of-day, alarm, and calendar bytes can be written in either the BCD or binary format (see Table 2).

These steps may be followed to program the time, alarm, and calendar:

- 1. **Modify** the **contents** of register B:
 - a. Write a 1 to the UTI bit to prevent transfers between RTC bytes and user buffer.
 - Write the appropriate value to the data format (DF) bit to select BCD or binary format for all time, alarm, and calendar bytes.

- c. Write the appropriate value to the hour **format (HF)** bit.
- Write new values to all the time, alarm, and calendar locations.
- 3. Clear the UTI bit to allow update transfers.

On the next update cycle, the RTC updates all $10\ \mathrm{bytes}$ in the selected format.

Table 2. Time, Alarm, and Calendar Formats

		Range					
Address	RTC Bytes	Decimal	Binary	Binary-Coded Decimal			
0	Seconds	0-59	00H-3BH	00H-59H			
1	Seconds alarm	0-59	00H-3BH	00H-59H			
2	Minutes	0-59	00H-3BH	00H-59H			
3	Minutes alarm	0–59	00H-3BH	00H-59H			
4	Hours, 12-hour format	1–12	01H-OCH AM; 81H-8CH PM	01H–12H AM; 81H–92H PM			
	Hours, 24-hour format	0-23	00H-17H	00H-23H			
5	Hours alarm, 12-hour format	1–12	01H-OCH AM; 81H-8CH PM	01H–12H AM; 81H–92H PM			
	Hours alarm, 24-hour format	0–23	00H-17H	00H-23H			
6	Day of week (1=Sunday)	1–7	01H-07H	01H-07H			
7	Day of month	1-31	01H-1FH	01H-31H			
8	Month	1–12	01H-0CH	01H-12H			
9	Year	0-99	00H-63H	00H-99H			

Nov. 1993 C 5/20

but keeps the frequency divider disabled. Any other pattern to **these** bite keeps the oscillator off.

Power-Down/Power-Up Cycle

The bq4285 continuously monitors Vcc for out-of-tolerance. During a power failure, when Vcc falls below Vprp (4.17V typical), the bq4285 write-protects the clock and storage registers. When Vcc is below Vpc (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When Vcc is above Vpc, the power source is Vcc. Write-protection continues for tcsr time after Vcc rises above Vprp.

An external CMOS static RAM is battery-backed using the **Vour** and chip enable output **pins** from the **bq4285**. **As** the voltage input **Voc slows down** during a power failure, the chip enable output, \overline{CE}_{OUT} is forced inactive independent of the chip enable input \overline{CE}_{IN} .

This activity unconditionally write-protects the external SRAM as Vcc falls below VPPD. If a memory access is in process to the external SRAM during power-fail detection, that memory cycle continues to completion before the memory is write-protected. If the memory cycle is not terminated within time twpp (30µs maximum), the chip enable output is unconditionally driven high, write-protecting the controlled SRAM.

As the supply continues to fall past **VPFD**, an internal switching **device forces** Vow to the external backup energy source. **CEOUT** is held high by the **VOUT** energy source.

During power-up, Vow is switched back to the 5V supply as Vcc rises above the backup cell input voltage sourcing Vout. CEOUT is held inactive for time tcer (200ms maximum) after the power supply has reached VPFD, independent of the CEIN input, to allow for processor stabilization.

During power-valid operation, the $\overline{\mathbf{CE}}_{\mathbf{IN}}$ input is passed through to the $\mathbf{CE}_{\mathbf{OUT}}$ output with a propagation delay of least than 10ms.

Figure 4 shows the hardware hookup for the external RAM.

A primary backup energy source input is provided on the **bq4285**. The BC input **accepts** a 3V primary battery, typically some type of lithium chemistry. To prevent battery drain when there is no valid data to retain, **Vour** and **CEour** are internally isolated from BC by the initial connection of a battery. Following the first application of Vcc above **VPFD**, this isolation is **broken**, and the backup cell provides power to Vow and **CEour** for the external **SRAM**.

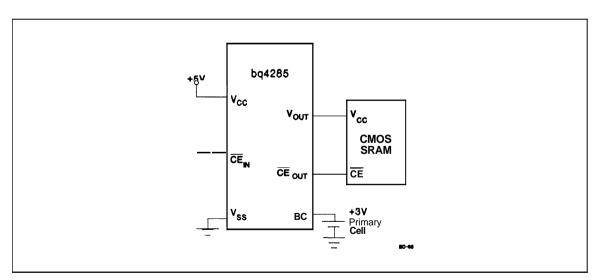


Figure 4. External RAM Hookup to the bq4285 RTC

8/20 Nov. 1993 C

5

Control/Status Registers

The four **control/status** registers of the **bq4285** are **acces**sible regardless of the status of the update cycle (see Table 4).

Register A

			Reaiste	Reaister A Bits										
7	6	5	4	3	2	1	0							
UIP	OS2	OS1	OS0	RS3	RS2	RS1	RS0							

Register A programs:

- The frequency of the square-wave and the periodic event rate.
- Oscillator operation.

Register A provides:

Status of the update cycle.

R\$0-R\$3 - Frequency Select

7	6	5	4	3	2	1	0
			_	RS3	RS2	RS1	RSO

These bits select one of the 13 frequencies for the SQW output and the periodic interrupt rate, as shown in Table 3.

OS0-OS2 - Oscillator Control

			,				
7	6	5	4	3	2	1	0
	OS2	OS1	OS0				

These three bits control the state of the oscillator and divider stages. A pattern of 010 **enables** RTC operation by turning on the oscillator and enabling the frequency

divider. A pattern of 11X turns the oscillator on, but keeps the frequency divider disabled. When 010 is written, the RTC begins its first update after 500ms.

UIP - Update Cycle Status

7	6	5	4	3	2	1	0
UIP		-	•	-	-	-	•

This read-only bit is **set** prior to the update cycle. When UIP equals 1, an RTC update cycle may be in progress. UIP is cleared at the end of each update cycle. **This** bit is also cleared when the update **transfer** inhiiit (**UTI**) bit in register B is 1.

Register B

			Registe	er B Bit8	}		
7	6	5	4	3	2	1_	0
UTI	PIE	AIE	UIE	SQWE	DF	HF	DSE

Register B enables:

- a Update cycle transfer operation
- a Square-waveoutput
- Interrupt events
- a Daylight saving adjustment

Register B selects:

Clock and calendar data formats

All bits of register B are read/write.

Table 4. Control/Status Registers

	_								Bit	Name	and	State o	n Re	set					
Reg.	Loc. (Hex)	Read	Write	7 (M	SB)		3		5	4	1	3		2	2			0 (L	SB)
A	0A	Yes	Yes ¹	UIP	na	OS2	na	OS1	na	OS0	na	RS3	na	RS2	na	RS1	na	RS0	na
В	0B	Yes	Yes	UTI	na	PIE	0	AIE	0	UIE	0	SQWE	0	DF	na	HF	na	DSE	na
С	0C	Yes	No	INTF	0	PF	0	AF	0	UF	0	-	0		0	-	0	-	0
D	0D	Yes	No	VRT	na	-	0	-	0	-	0		0		0	-	0		0

Notes:

na = not affected.

1. Except bit 7.

Nov. 1993 C

9/20

DSE - Daylight Saving Enable

7	6	5	4	3	2	1	0
							DSE

This bit enables daylight-saving time adjustments when written to 1:

- On the last Sunday in October, the **first** time the **bq4285** increments **past 1:59:59** AM, the time falls back to **1:00:00** AM.
- On the first Sunday in April, the time springs forward from 2:00:00 AM to 3:00:00 AM.

HF - Hour Format

7	6	5	4	3	2	1	0
-	-		•	-	-	HF	

This bit selects the time-of-day and alarm hour format:

- 1 = 24-hour format
- 0 = 12-hour format

DF - Data Format

7	6	5	4	3	2	1	0
				•	DF	•	

This bit selects the numeric format in which the time, alarm, and calendar bytes are represented:

- 1 = Binary
- 0 = BCD

SQWE - Square-Wave Enable

7	6	5	4	3	2	1	0
-	-	-	-	SQWE	•	-	-

This bit enables the square-wave output:

- 1 = Enabled
- 0 = Disabled and held low

UIE - Update Cyck Interrupt Enable

	7	6	5	4	3	2	1	0
Γ	-			UIE	-	-	-	•

This bit enables an interrupt request due to an update ended interrupt event:

- 1 = Enabled
- 0 = Disabled

The **UIE** bit **is** automatically cleared when the **UTI** bit equals 1.

AIE - Alarm interrupt Enable

7	6	5	4	3	2	1	0
	-	AIE		•	•	•	-

This bit enables an interrupt request due to an alarm interrupt event:

- 1 = Enabled
- 0 = Disabled

PIE - Periodic Interrupt Enable

	7	6	5	4	3	2	1	0
-	-	PIE			-	-	-	-

This bit enables an **interrupt** request due to a periodic interrupt event:

- 1 = Enabled
- 0 = Disabled

UTI - Update Transfer inhibit

7	6	5	4	3	2	1	0
UTI	-			-	-	-	•

This bit inhibits the transfer of RTC bytes to the user buffer:

- 1 = Inhibits transfer and clears **UIE**
- 0 = Allows transfer

5

Register C

			Reaiste	r C Bits	3		
7	6	5	4	3	2	1	0
INTF	PF	AF	UF	0	0	ō	Ö

Register C is the read-only event status register.

Bits 0-3 - Unuwd Bits

7	6	5	4	3	2	1	0
	-	-	-	0	0	0	. 0

These bits are always set to 0.

UF - Update-Event Flag

7	6	5	4	3	2	1	0
-	-		UF	-		-	-

This bit is set to a 1 at the end of the update cycle. Reading register C clears this bit.

AF - Alarm Event Flag

7	6	5	4	3	2	1	0
-	-	AF		-	-	-	-

This bit is set to a **1** when an alarm event occurs. Reading register C clears this bit.

PF - Periodic Event Flag

	,							
7	6	5	4	3	2	1	0	
-	PF	-	-		-	-		

This bit is set to a 1 every **tpt** time, where **tpt** is the time period selected by the settings of RS0-RS3 in register A. Reading register C clears this bit.

INTF - interrupt Request Flag

7	6	5	4	3	2	1	0
INTF	•	•					

This flag is set to a 1 when any of the following is true:

AIE = 1 and AF = 1

PIE=1 and PF=1

UIE = 1 and UF = 1

Reading register C clears this bit.

Register **D**

			Registe	r D Bits	3		
7	6	5	4	3	2	1	0_
VRT	0	0	0	0	0	0	0

Register D is the read-only data integrity status register.

Bits 0-6 - Unused Bits

These bits are always set to 0.

7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0

VRT - Valid RAM and Time

1 = Valid backup energy source

7	6	5	4	3	2	1	0
VRT		-	-	-			

0 = Backup energy source is depleted

When the backup energy source is depleted (VRT = 0), data integrity of the RTC and storage registers is not guaranteed.

Nov. 1W3 C

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
V_{T}	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 7.0	٧	$V_{\rm T} \le V_{\rm CC} + 0.3$
Topr	Operating temperature	0 to +70	°C	Commercial
TsTG	Storage temperature	-55 to +125	°C	
TBIAS	Temperature under bias	-40to +85	°C	
TSOLDER	Solderingtemperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	4.5	5.0	5.5	V
Vss	Supply voltage	0	0	0	V
VIL	Input low voltage	-0.3		0.8	V
VIH	Input high voltage	2.2		Vcc + 0.3	V
V_{BC}	Backup cell voltage	2.5		4.0	V

Note:

Typical values indicate operation at $T_A = 25$ °C.

DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typlcai	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			±1	μA	V _{IN} = V _{SS} to V _{CC}
Iw	Output leakage current			± 1	μА	AD ₀ -AD ₇ , INT, and SQW in high impedance, Vour = Vss to Vcc
VoH	Output high voltage	2.4			V	I _{OH} = -2.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 4.0 mA
I _{CC}	Operating supply current		7	15	mA	Min. cycle, duty = 100%, I _{OH} = 0mA, I _{OL} = 0mA
Vso	Supply switch-over voltage		V_{BC}		V	
I _{CCB}	Battery operation current		0.3	0.5	μА	V _{BC} = 3V, T _A = 25°C, no load on Vour or CEour
V _{PFD}	Power-fail-detact voltage	4.0	4.17	4.35	V	
Voun	Vour voltage	Vcc - 0.3V	-		V	Iour = 100mA, Vcc > VBc
V _{OUT2}	Vour voltage	VBC - 0.3V				I _{OUT} = 100μA, V _{CC} < V _{BC}
Імотн	Input current when MOT = Vcc			-275	pi	Internal 20K pull-down
ICE	Chip enable input current			100	pi	Internal 50K pull-up

Note:

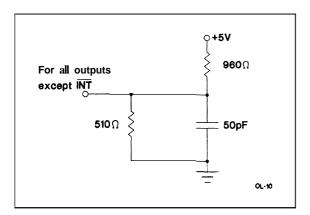
Typical values indicate operation at $T_A = 25^{\circ}C$, Vcc = 5V or VBC = 3V.

Crystal Specifications (DT-26 or Equivalent)

Symbd	Parameter	Minimum	Typical	Maximum	Unit
fo	Oscillation frequency		32.768		kHz
CL	Load capacitance		6		рF
T_P	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant			-0.042	ppm/°C
Q	Quality factor	40,000	70,000		
R ₁	Series resistance			45	ΚΩ
C ₀	Shunt capacitance		1.1	1.8	pF
C ₀ /C ₁	Capacitanceratio		430	600	
DL	Drive level			1	μW
Δf/f _O	Aging (first year at 25°C)		1		ppm

Nov. 1993 C

13/20


Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Cvo	Input/output capacitance			7	pF	V _{OUT} = 0V
CIN	Input capacitance			5	τP	V _{IN} = 0V

Note: This parameter is sampled and not 100% tested.

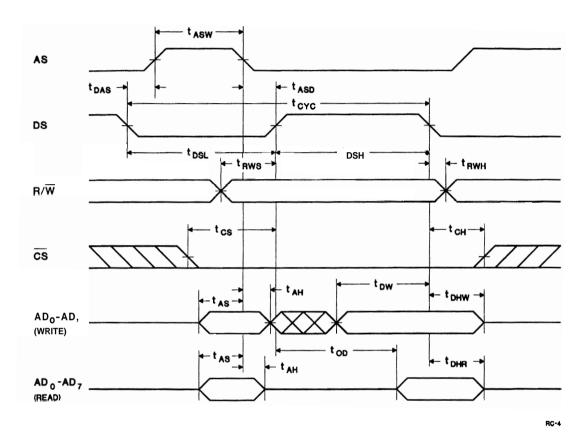
AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0 to 3.0 V
Input rise and fall times	5ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 5 and 6

0+5V
1.15K Ω
130pF

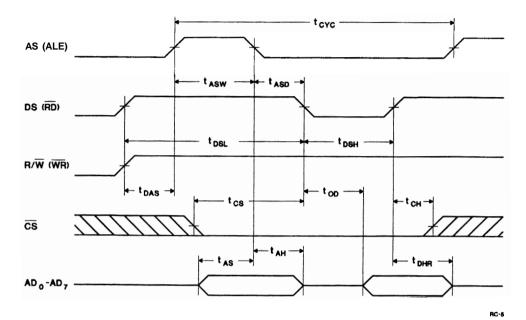
Figure 5. Output Load A

Figure 6. Output Load B

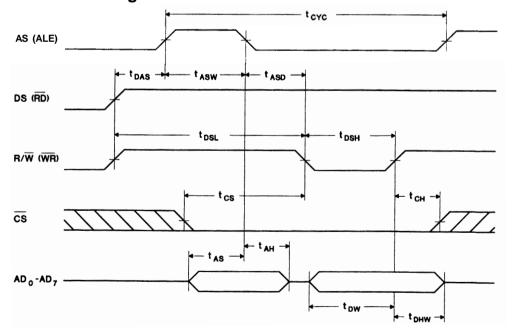

14/20 Nov. 1993 C

Read/Write Timing (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcyc	Cycle time	160			ns	
tosl	D Slow or RD/WR high time	80	-	•	ns	
tdsh	DS high or RD/WR low time	55	-		ns	
trwH	R∕W hold time	1 0 1,	- I	. I n	s 1	
trws	R √ W setup time	10			ns	
tcs	Chip select setup time	5			ns	
tch	Chip select hold time	0			ns	
t _{DHR}	Read data hold time	0	•	25	ns	
tDHW	Write data hold time	0			ns	
tas	Address setup time	20	<u>-</u>	-	ns	
tah	Address hold time	5			ns	
tdas	Delay time, DS to AS rise	10			ns	
tasw	Pulse width, AS high	30			ns	
t _{ASD}	Delay time, AS to DS rise (RD/WR fall)	35	•		ns	
t _{OD}	Output data delay time from DS rise (RD fall)	-	-	50	ns	
tow	Write data setup time	30		-	ns	
tBUC	Delay time before update		244		μв	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle		1		μв	


Nov. 1993 C

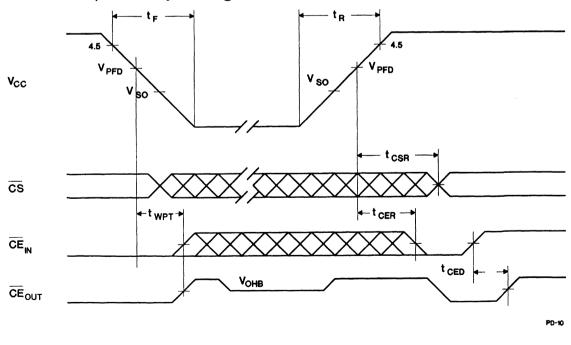
Motorola Bus Read/Write Timing (PLCC Package Only)



16/20 Nw. 1903 C

Intel Bus Read Timing

Intel Bus Write Timing

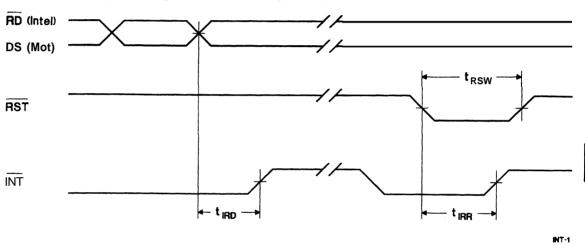

Nov. 1993 C 17/20

Power-Down/Power-Up Timing (TA - TOPR)

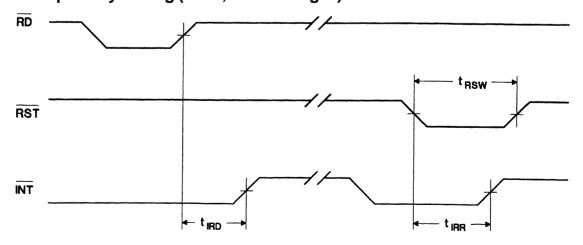
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tf	Vcc slew from 4.5V to OV	300			μs	
tR	V _{CC} slew from OV to 4.5V	100			μв	
tcsr	CS at V _{IH} after power-up	20		200	ms	Internal write-protection period after VCC passes VPFD on power-up.
twer	Write-protect time for external RAM	10	16	30	μв	Delay after Vcc slews down past Vpp before SRAM is write-protected.
tcer	Chip enable recovery time	tcsr		tcsr	ms	Time during which external SRAM is write-protected after Vcc passes VPFD on power-up.
t _{CED}	Chip enable propagation delay to external SRAM		7	10	ns	

 $\label{lem:caution: Negative undershoots below the absolute maximum rating of $-0.3V$ in battery-backup \textit{mode}$ may affect data integrity.}$

Power-Down/Power-Up Timing


18/20 Nw. 1993 C

19/20

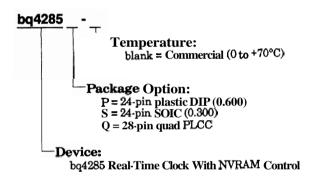

Interrupt Delay Timing (TA = TOPR)

Symbol	Parameter	Minimum	Typicai	Maximum	Unit
trsw	Reset pulse width	5			μв
tirr	INT release from			2	μв
tird	INT release from DS (RD)			2	μв

Interrupt Delay Timing (PLCC Package Only)

Interrupt Delay Timing (SOIC, DIP Packages)

Ñov. 1993 C


Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	3	Address strobe input	Clarification
1	12	Backup cell voltage V _{BC}	Was 2.0 min; is 2.5 min
1	13	Power-fail detect voltage V _{PFD}	Was 4.1 min, 4.25 max; is 4.0 min, 4.35 max
1	13	Chip enable input current	Additional specification
2	3, 13	Crystal type Daiwa DT-26 (not DT-26S)	Clarification

Note: Change 1 = Nov. 1992 B changes from June 1991 A.

Change 2 = Nov. 1993 C changes from Nov. 1992 B.

Ordering Information

Nov. 1993 C

bq4285E/bq4285L

Enhanced RTC With NVRAM Control

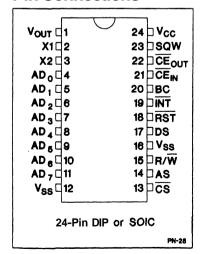
Features

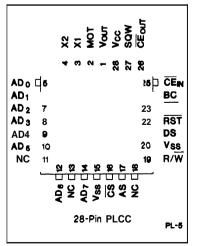
- Direct clock/calendar replacement for IBM^D AT-compatible computers and other applications
- ➤ 114 bytes of general nonvolatile storage
- ➤ Enhanced features include:
 - System wake-up capability alarm interrupt output active in battery-backup mode
 - 2.7–3.6V operation (bq4285L);
 4.5–5.5V operation (bq4285E)
 - **32KHz** output for power management
- Automatic backup and writeprotect control to external SRAM
- > Functionally compatible with the **DS1285**
- Less than 0.5 μA load under battery operation
- Selectable Intel or Motorola bus timing (PLCC), Intel bus timing (DIP and SOIC)

- 14 bytes for clock/calendar and control
- BCD or binary format for clock and calendar data
- Calendar in day of the week, day of the month, months, and years, with automatic leap-year adjustment
- Time of day in seconds, minutes, and hours
 - **12-** or 24-hour format
 - Optional daylight saving adjustment
- Programmable square wave output
- ➤ Three individually maskable interrupt event flags:
 - Periodic rates from 122 μs to 500 ms
 - Time-of-day alarm once per second to once per day
 - End-of-clock update cycle
- 24-pin plastic **DIP** or SOIC and **28-pin PLCC**

General Description

The CMOS bq4285E/bq4285L is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. Other features include three maskable interrupt sources, square wave output, and 114 bytes of general nonvolatile storage.

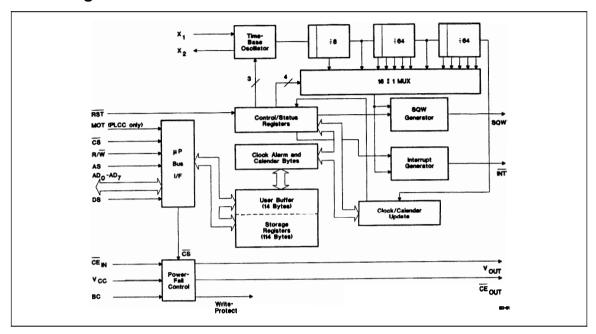

A 32.768kHz output is available far sustaining power-management activities. Wake-up capability is provided by an alarm interrupt, which is active in battery-backup mode.


The **bq4285E/bq4285L** write-protects the **clock**, calendar, and **storage** registers during power failure. A backup battery then maintains data and **operates** the clock and calendar.

The **bq4285E/bq4285L** is a fully compatible real-time clock for **IBM AT**-compatible computers and other applications. **The** only external components are a 32.768kHz **crystal** and a backup battery.

The **bq4285E/bq4285L** integrates a battery-backup controller to make a

Pin Connections


Pin Names

AD0-AD7	Multiplexed address/data input/output
MOT	Bus type select input (PLCC only)
CS	Chip select input
AS	Address strobe input
DS	Data strobe input
R/W	Read/write input
INT	Interrupt request output
RST	Reset input
SQW	Square wave output
BC	3V backup cell input
X1, X2	Crystal inputs
NC	No connect
CE _{OUT}	RAM chip enable input RAM chip enable output
Vout	Supply output
Vcc	+5vsupply
Vss	Ground

May 1994

1/26

Block Diagram

standard CMOS SRAM nonvolatile during power-fail conditions. During power-fail, the **bq4285E/bq4285L** automatically write-protects the external SRAM and provides a **Vcc** output sourced from the clock backup battery.

Pin Descriptions

ADo-AD7 Multiplexed address/data input/output

The **bq4285E/bq4285L** bus cycle consists of two phases: the address phase and the data-transfer phase. The address phase precedes the data-transfer phase. During the **address** phase, an address placed on **AD0-AD7** is latched **into** the **bq4285E/bq4285L** on the falling edge of the AS signal. **During** the data-transfer phase of the bus cycle, the **AD0-AD7** pins serve as a **bidirectional** data bus.

MOT Bus type select input (PLCC package only)

MOT selects bus timing for either Motorola or Intel **architecture.** This pin should be tied to **Voc** for Motorola timing or to Vss for Intel timing (see Table 1).

The setting should not be changed during system operation. MOT is internally pulled low by a 20KR resistor. For the DIP and SOIC packages, this pin is internally connected to Vss, enabling the bus timing for the Intel architecture.

CS Chip select input

CS should be driven low and held stable during the data-transfer phase of a bus cycle accessing the **bq4285E/bq4285L**.

Table 1. Bus Setup

Bus Type	MOT Level	DS Equivalent	R/W Equivalent	AS Equivalent
Motorola	v_{cc}	₽8 , E, or Ф2	R∕W	AS
Intel	Vss	RD, MEMR, or I/OR	WR, MEMW, or VOW	ALE

May 1994

AS Address strobe input

AS serves to demultiplex the address/data bus. The falling edge of AS latches the address on ADo-AD7. This demultiplexing process is independent of the CS signal. For DIP, SOIC, and PLCC packages with MOT = VCC, the AS input is provided a signal similar to ALE in an Intel-based system.

DS Data strobe input

For DIP, SOIC, and PLCC packages with MOT = Vss, the DS input is provided a signal similar to RD, MEMR, or VOR in an Intel-based system. The falling edge on DS is used to enable the outputs during a read cycle.

For the PLCC package, when MOT = Vcc, DS controls data transfer during a bq4285E/bq4285L bus cycle. During a read cycle, the bq4285E/bq4285L drives the bus after the rising edge on DS. During a write cycle, the falling edge on DS is used to latch write data into the chip.

R/W Read/write input

For DIP, **SOIC**, and PJXC packages with MOT = VSS, R/W is provided a signal similar to WR, MEMW, or VOW in an Intel-based system. The rising edge on R/W latches data into the bq4285E/bq4285L.

For the PLCC package, when MOT = Vcc, the level on \mathbb{R}/\overline{W} identifies the direction of data transfer. A high level on \mathbb{R}/\overline{W} indicates a read bus cycle, whereas a low on this pin indicates a write bus cycle.

INT Interrupt request output

INT is an open-drain output. This allows INT to be valid in battery-backup mode for the alarm interrupt. To use this feature, INT must be connected to a power supply other than Vcc. INT is asserted low when any event flag is set and the corresponding event enable bit is also set. INT becomes high-impedance whenever register C is read (see the Control/Status Registers section).

RST Reset input

The bq4285E/bq4285L is reset when \overline{RST} is pulled low. When reset, \overline{INT} becomes high-impedance, and the bq4285E/bq4285L is not accessible. Table 4 in the Control/Status Registers section lists the register bits that are cleared by a reset.

Reset may be disabled by connecting RST to Voc. This allows the control bits to retain their states through power-down/power-up cycles.

SQW Square-wave output

SQW may output a programmable frequency square-wave signal during normal (Vcc valid) system operation. Any one of the 13 specific frequencies may be selected through register A This pin is held low when the square-wave enable bit (SQWE) in register B is 0 (see the Control/Status Registers section).

A 32.768kHz output is enabled by setting the SQWE bit in register B to 1 and the 32KE bit in register C to 1 after setting OSC2-OSC0 in register A to 011 (binary).

BC 3V backup cell input

BC should be connected to a 3V backup cell for RTC operation and storage register non-volatility in the absence of power. When Vcc slews down past VBC (3V typical), the integral control circuitry switches the power source to BC. When Vcc returns above VBC, the power source is switched to Vcc.

Upon power-up, a voltage within the **VBC** range must **be** present on the BC pin for the oscillator to start up.

X1, X2 Crystal input

The **X1**, X2 **inputs** are provided for an external **32.768Khz** quartz crystal, **Daiwa** DT-26 or equivalent, with **6pF** load capacitance. A trimming capacitor may be necessary for **extremely** precise time-base generation.

CEIN External RAM chip enable input, active low

 $\overline{\text{CE}_{IN}}$ should be driven low to enable the controlled external RAM. $\overline{\text{CE}_{IN}}$ is internally pulled up with a 50K Ω resistor.

CEOUT External RAM chip enable output, active low

When power is valid, $\overline{\mathbf{CE}}_{\mathbf{OUT}}$ reflects $\overline{\mathbf{CE}}_{\mathbf{DL}}$.

Vour Supply output

Vout provides the higher of **Vcc** or **VBC**, **switched** internally, to supply external RAM.

Vcc Positive power supply

Vss Ground

May 1994

Functional Description Address Map

The bq4285E/bq4285L provides 14 bytes of clock and control/status registers and 114 bytes of general nonvolatile

1 illustrates the address map for the bq4285L.

Update Period

The update period for the **bq4285E/bq4285L** is one second. The **bq4285E/bq4285L** updates the contents of the clock and calendar locations during the update cycle

at the end of each update period (see Figure 2). The alarm flag bit may also be set during the update cycle.

The bq4285E/bq4285L copies the local register updates into the user buffer accessed by the host processor. When a 1 is written to the update transfer inhibit bit (UTI) in register B, the user copy of the clock and dendar bytes remains unchanged, while the local copy of the same bytes continues to be updated every second.

The update-in-progress bit (UIP) in register A is set the time before, the beginning of an update cycle (see Figure 2). This bit is cleared and the update-complete flag (UF) is set at the end of the update cycle.

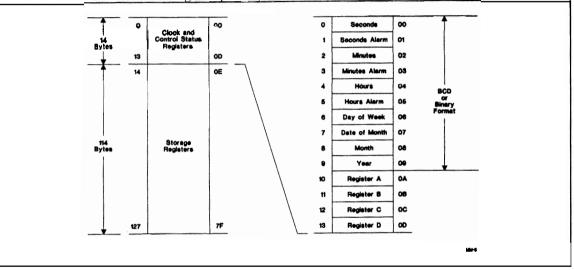


Figure 1. Address Map

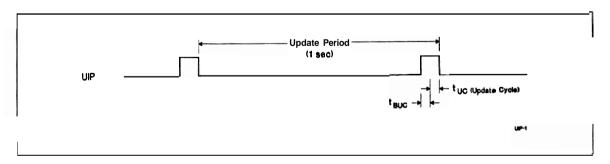


Figure 2. Update Period Timing and UIP

4/26 May 1994

Programming the RTC

The time-of-day, alarm, and calendar bytes can be written in either the BCD or binary format (see Table 2).

These steps may be followed to program the time, alarm, and calendar:

- 1. Modify the **contents** of register B:
 - a. Write a 1 to the UTI bit to prevent transfers between **RTC** bytes and user buffer.
 - Write the appropriate value to the data format (DF) bit to select BCD or binary format for all time, alarm, and calendar bytes.
 - Write the appropriate value to the hour format (HF) bit.

- 2. Write new values to all the time, alarm, and calendar **locations**.
- 3. Clear the UTI bit to allow update transfers.

On the next update cycle, the RTC updates all 10 bytes in the selected format.

Table 2. Time, Alarm, and Calendar Formats

			Range	
Address	RTC Bytes	Decimal	Binary	Binary-Coded Decimal
0	Seconds	0-59	00H-3BH	00H-59H
1	Seconds alarm	0-59	00H-3BH	00H-59H
2	Minutes	0–59	00H-3BH	00H-59H
3	Minutes alarm	0-59	00H-3BH	00H-59H
4	Hours, 12-hour format	1–12	01H-OCH AM; 81H-8CH PM	01H-12H AM; 81H-92H PM
	Hours, 24-hour format	0–23	00H-17H	00H-23H
5	Hours alarm, 12-hour format	1–12	01H-OCH AM; 81H-8CH PM	01H-12H AM; 81H-92H PM
	Hours alarm, 24-hour format	0-23	00H-17H	00H-23H
6	Day of week (1=Sunday)	1–7	01H-07H	01H-07H
7	Day of month	1-31	01H-1FH	01H-31H
8	Month	1–12	01H-0CH	01H-12H
9	Year	0-99	00H-63H	00H-99H

May 1994 5/26

Square Wave Output

The **bq4285E/bq4285L** divides the **32.768kHz** oscillator frequency to produce the 1 Hz update frequency for the clock and calendar. Thirteen taps from the frequency divider are fed to a **16:1** multiplexer circuit. The output of this mux is fed to the SQW output and periodic interrupt generation circuitry. The four least-significant bite of register A, RSO-RS3, select among the 13 taps (see Table 3). The square-wave output is enabled by writing a 1 to the square-wave enable bit (SQWE) in register B. A **32.768kHz** output may be selected by setting OSC2-OSC0 in register A to 011 while SQWE = 1 and **32KE** = 1.

Interrupts

The bq4285E/bq4285L allows three individually selected interrupt events to generate an interrupt request. These three interrupt events are:

■ The periodic interrupt, programmable to occur once every 122 us to 500 ms.

- The alarm interrupt, programmable to occur once per second to once per day, is active in battery-backup mode, providing a "wake-up" feature.
- The update-ended interrupt, which occurs at the end of each update cycle.

Each of the three interrupt events is enabled by an individual **interrupt-enable** bit in register B. When an event occurs, **its** event flag bit in **register** C is set. If the corresponding event enable bit is **also** set, then an interrupt request is generated. The interrupt request flag bit (**INTF**) of register C is set with every interrupt request. Reading **register** C **clears** all flag bits, including **INTF**, and makes **INT** high-impedance.

Two methods can be used to process **bq4285E/bq4285L** interrupt events:

- Enable interrupt events and use the interrupt request output to invoke an interrupt service routine.
- Do not enable the interrupts and use a polling routine to periodically check the status of the flag bits.

The individual **interrupt** sources are described in detail in the following **sections**.

		Reg	gister A E	Bits			Square	Wave	Periodic	interrupt	
OSC2	OSC1	OSC0	RS3	RS2	RS1	RS0	Frequency	Units	Period	Units	
0	1	0	0	0	0	0	None		None		
0	1	0	0	0	0	1	256	Hz	3.90625	ms	
0	1	0	0	0	1	0	128	Hz	7.8125	ms	
0	1	0	0	0	1	1	8.192	kHz	122.070	μв	
0	1	0	0	1	0	0	4.096	kHz	244.141	μв	
0	1	0	0	1	0	1	2.048	kHz	488.281	μs	
0	1	0	0	1	1	0	1.024	kHz	976.5625	μв	
0	1	0	0	1	1	1	512	Hz	1.953125	ms	
0	1	0	1	0	0	0	256	Hz	3.90625	ms	
0	1	0	1	0	0	1	128	Hz	7.8125	ms	
0	1	0	1	0	1	0	64	Hz	15.625	ms	
0	1	0	1	0	1	1	32	Hz	31.25	ms	
0	1	0	1	1	0	0	16	Hz	62.5	ms	
0	1	0	1	1	0	1	8	Hz	125	ms	
0	1	0	1	1	1	0	4	Hz	250	ms	
0	1	0	1	1	1	1	2	Hz	500 ms		
0	1	1	x	х	х	х	32.768	kHz	same as above define by RS3-RS0		

Table 3. Square-Wave Frequency/Periodic Interrupt Rate

8/26 May 1904

Periodic Interrupt

The mux output used to drive the SQW output also drives the interrupt-generation circuitry. If the periodic interrupt event is enabled by writing a 1 to the periodic interrupt enable bit (PIE) in register C, an interrupt request is generated once every 122µs to 500ms. The period between interrupts is selected by the same bits in register A that select the square wave frequency (see Table 3). Setting OSC2-OSCO in register A to Oll does not affect the periodic interrupt timing.

Alarm Interrupt

The alarm interrupt request is valid in battery-backup mode, providing a 'wake-up' capability. During each update cycle, the RTC compares the hours, minutes, and seconds bytes with the three corresponding alarm bytes. If a match of all bytes is found, the alarm interrupt event flag bit, A F in register **C, is** set to 1. If the alarm event is enabled, an interrupt request is generated.

An alarm byte may be removed from the **comparison** by setting it to a 'don't care" state. An alarm byte is set to a 'don't care' state by writing a 1 to each of its two most-significant bits. A 'don't care" state may be used to select the **frequency** of alarm interrupt events as follows:

- If none of the three alarm bytes is 'don't care,' the frequency is once per day, when hours, minutes, and seconds match.
- If only the hour alarm byte is 'don't care,' the frequency is once per hour, when minutes and seconds match.
- If **only** the hour and minute **alarm** bytes are "don't *care*;" the frequency is once per minute, when seconds match.
- If the hour, minute, and second alarm bytes are 'don't care,' the frequency is once per second.

Update Cycle Interrupt

The update cycle ended flag bit (UF) in register C is set to a 1 at the end of an update cycle. If the update interrupt enable bit (UIE) of register B is 1, and the update transfer inhibit bit (UTI) in register B is 0, then an interrupt request is generated at the end of each update cycle.

Accessing RTC bytes

Time and calendar bytes read **during** an update cycle may be in error. Three methods to access the time and calendar bytes without ambiguity are:

- Enable the update interrupt event to generate interrupt requests at the end of the update cycle. The interrupt handler has a maximum of 999ms to access the clock bytes before the next update cycle begins (see Figure 3).
- Poll the update-in-progress bit (UIP) in register A. If
 UIP = 0, the polling routine has a minimum of tBUC time to access the clock bytes (see Figure 3).
- Use the periodic interrupt event to generate interrupt requests every tpi time, such that UIP = 1 always occurs between the periodic interrupts. The interrupt handler will have a minimum of tpy/2 + tbuc time to access the clock bytes (see Figure 3).

Oscillator Control

When power is first applied to the **bq4285E/bq4285L** and V_{CC} is above VPPD, the internal **oscillator** and frequency divider are turned on by writing a **010 pattern** to bits 4 through 6 of **register A**. A pattern of **011** behaves as **010** but additionally **transforms register C** into a **read/write** register. This allows the 32,768kHz output on the square

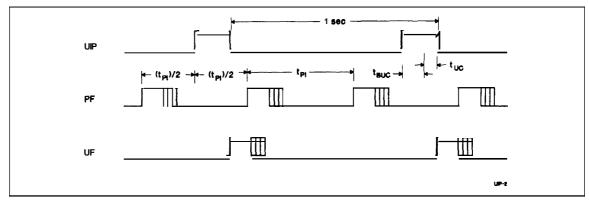


Figure 3. Update-Ended/Periodic Interrupt Relationship

May 1994 7/26

wave pin to be turned on. A pattern of 11X turns the oscillator on, but keeps the frequency divider disabled. Any other pattern to these bits keeps the oscillator off.

Power-Down/Power-Up Cycle

The bq4285E/bq4285L power-up/power-down cycles are different. The bq4285L continuously monitors Vcc for out-of-tolerance. During a power failure, when Vcc falls below Vpp (2.53V typical), the bq4285L write-protects the clock and storage registers. The power source is switched to BC when Vcc is less than Vpp and BC is greater than Vpp, or when Vcc is less than Vpc and Vpc is less than Vpp. RTC operation and storage data are sustained by a valid backup energy source. When Vcc is above Vpp, the power source is Vcc. Write-protection continues for toss time after Vcc rises above Vpp.

The bq4285E continuously monitors V_{CC} for out-of-tolerance. During a power failure, when V_{CC} falls below V_{PFD} (4.17V typical), the bq4285E write-protects the clock and storage registers. When V_{CC} is below V_{BC} (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When V_{CC} is above V_{BC} , the power source is V_{CC} . Write-protection continues for test time after V_{CC} rises above V_{PFD} .

An external CMOS static RAM is battery-backed using the **Vout** and chip enable output pins from the **bq4285E/bq4285L**. As the voltage input Vcc **slows** down during a power failure, the chip enable output, **CEour**, is forced inactive independent of the chip enable input **CE**IN.

This activity unconditionally write-protects the **external** SRAM **as Vcc** falls below **VPFD**. If a memory **access** is in **process** to the external SRAM during power-fail detection, that memory cycle continues to completion before the memory is write-protected. If the memory cycle is not terminated within time twpt (30µs maximum), the chip enable output is unconditionally driven high, write-protecting the **controlled** SRAM.

As the supply continues to fall past VPPD, an internal switching device forces V ow to the external backup energy source. CEOUT is held high by the V ow energy source.

During power-up, Vout is switched back to the main supply as Voc rises above the backup cell input voltage sourcing Vout. If VPFD < VBC on the bq4285L, the switch to the main supply occurs at VPFD. $\overline{\text{CE}}_{\text{OUT}}$ is held inactive for time toer (200ms maximum) after the power supply has reached VPFD, independent of the $\overline{\text{CE}}_{\text{IN}}$ input, to allow for processor stabilization.

During power-valid operation, the \overline{CE}_{EN} input is passed through to the \overline{CE}_{OUT} output with a propagation delay of less than **10ns**.

Figure 4 shows the hardware hookup for the external RAM.

A primary backup energy source input is provided on the bq4285E/bq4285L. The BC input accepts a 3V primary battery, typically some type of lithium chemistry. To prevent battery drain when there is no valid data to retain, V ow and CEout are internally isolated from BC by the initial connection of a battery. Following the first application of Vcc above Vppd, this isolation is broken, and the backup cell provides power to Vout and CEout for the external SRAM.

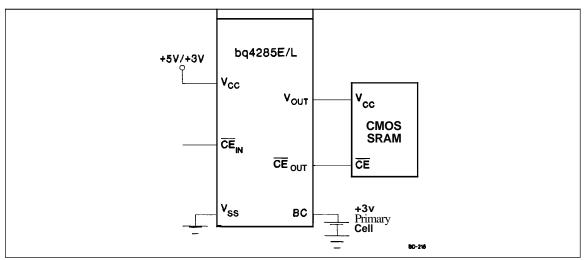


Figure 4. External RAM Hookup to the bq4285E/bq4285L RTC

8/26 May 1994

Control/Status Registers

The four control/status registers of the bq4285E/bq4285L are accessible regardless of the status of the update cycle (see Table 4).

Register A

	Register A Bits											
7 6 5 4 3 2 1 0												
UIP	OS2	OS1	OS0	RS3	RS2	RS1	RS0					

Register A programs:

- The frequency of the square-wave and the periodic event rate.
- Oscillator operation.

Register A provides:

Status of the update cycle.

RS0-RS3 - Frequency Select

7	6	5	4	3	2	1	0
•				RS3	RS2	IWI	RS0

These bits select one of the 13 frequencies for the SQW output and the periodic interrupt rate, as shown in Table 3.

OS0-OS2 - Oscillator Control

1	7	6	5	4	3	2	1	0	_
		OS2	OS1	OS0	-	-			_

These three bits control the state of the oscillator and divider stages. A pattern of 010 enables RTC operation by turning on the oscillator and enabling the frequency

divider. A pattern of 011 behaves as 010 but additionally transforms register C into a read/write register. This allows the 32.768kHz output on the square wave pin to be turned on. A pattern of 11X turns the oscillator on, but keeps the frequency divider disabled. When 010 is written, the RTC begins its first update after 500ms.

UIP • Update Cycle Status

7	6	5	4	3	2	1	0
UIP		-	-	-			-

This read-only bit is set prior to the update cycle. When **UIP** equals 1, an **RTC** update cycle may be in **progress**. **UIP** is cleared at the **end** of each update cycle. This bit is **also** cleared when the update **transfer** inhibit (**UTI**) bit in register B is 1.

Register B

	Register B Bits											
7	7 6 5 4 3 2 1 0											
UTI	PIE	AIE	UIE	SQWE	DF	HF	DSE					

Register B enables:

- Update cycle transfer operation
- Square-waveoutput
- Interrupt events
- Daylight saving adjustment

Register B selects:

Clock and calendar data formats

All bits of register B are read/write.

Table 4. Control/Status Registers

					Bit Name and State on Reset														
Reg.	Loc. (Hex)	Read	Write	7 (M	SB)		3		5	4		3		2	2	•		0 (L	SB)
A	0A	Yes	Yes ¹	UIP	na	OS2	na	OS1	na	OS0	na	RS3	na	RS2	na	RS1	na	RS0	na
В	0B	Yes	Yes	UTI	na	PIE	0	AIE	0	UE	0	SQWE	0	DF	na	HF	na	DSE	na
С	0C	Yes	No ²	INTF	0	PF	0	AF	0	UF	0		0	32KE	na	-	0	-	0
D	0D	Yes	No	VRT	na		0	-	0		0	-	0	-	0	-	0		0

Notes:

na = not affected.

- 1. Except bit 7.
- 2. Read/write only when OSC2-OSC0 in register A is 011 (binary).

May 1994

9/26

DSE Daylight Saving Enable

7	6	5	4	3	2	1	0
							DSE

This bit enables daylight-saving time adjustments when written to 1:

- On the last Sunday in October, the **first** time the **bq4285E/bq4285L** increments past **1:59:59** AM, the time falls back to **1:00:00** AM.
- On the first Sunday in April, the time springs forward from 2:00:00 AM to 3:00:00 AM.

HF - Hour Format

7	6 5		4	3	2	1	0
-	-		•	-	-	HF	-

This bit selects the time-of-day and alarm hour format:

1 = 24-hour format

0 = 12-hour format

DF Data Format

7	6	5	4	3	2	1	0
-	-	-	-	-	DF	-	-

This bit **selects** the numeric format in which the time, alarm, and calendar bytes are represented:

1 = Binary

0 = BCD

SQWE - Square-Wave Enable

7	6	5	4	3	2	1	0
	-		•	SQWE			

This bit enables the square-wave output:

1 = Enabled

0 = Disabled and held low

UIE - Update Cycle Interrupt Enable

7	6	5	4	3	2	1	0
	-	-	UIE	-	-	-	-

This bit enables an interrupt request due to an update ended interrupt event:

1 = Enabled

0 = Disabled

The UIE bit is automatically cleared when the UTI bit equals 1.

AIE - Alarm Interrupt Enable

7	6	5	4	3	2	1	0
-	•	AIE	-	-	-	-	•

This bit enables an interrupt request due to an **alarm** interrupt event:

1 = Enabled

0 = Disabled

PIE - Periodic Interrupt Enable

7	6	5	4	3	2	1	0
-	PIE	-	-	-	-	-	-

This bit enables an interrupt request due to a periodic interrupt event:

1 = Enabled

0 = Disabled

UTI - Update Transfer Inhibit

7	6	5	4	3	2	1	0
UTI	-	-	-	-	-	-	-

This bit inhibits the transfer of RTC bytes to the user buffer:

1 = Inhibits transfer and clears UIE

0 = Allows transfer

5

Register C

Register C Bits									
7	6	5	4	3	2	1	0		
INTF	PF	AF	UF	0	32KE	0	0		

Register C is the read-only event status register.

Bits 0-3 * Unused Bits

7	6	5	4	3	2	1	0
			I - (0 1	- 1	0 1	0

These bits are always set to 0.

32KE-32KHz Enable Output

7	6	5	4	3	2	1	0
-	-	-	-	-	32KE	-	

This bit may be set to a 1 only when the OSC2—OSC0 bits in register A are set to 011. Setting OSC2—OSC0 to anything other than 011 clears this bit. If SQWE in register B and 32KE are set, a 32.768KHz waveform is output on the square wave pin.

UF - Update-Event Flag

7	6	5	4	3	2	1	0
		•	UF	-	-		

This bit is set to a 1 at the end of the update cycle. **Reading** register C clears this bit.

AF - Alarm Event Flag

[7	6	5	4	3	2	1	0
		•	AF			•	-	•

This bit is set to a 1 when an alarm event occurs. Reading register C clears this bit.

PF - Periodic Event Flag

7	6	5	4	3	2	1	0	
-	PF	-	-	-	-	-		

This bit is set to a 1 every **tPI** time, where **tPI** is the time period selected by the settings of **RSO-RS3** in register A. Reading register C clears this bit.

INTF - interrupt Request Flag

7	6	5	4	3	2	1	0
INTF	•	•		-	•	•	-

This flag is set to a 1 when any of the following is true:

AIE = 1 and AF = 1

PIE = 1 and PF = 1

UIE = 1 and UF = 1

Reading register C clears this bit.

Register D

Reaister D Bits								
7 6 5 4 3 2 1 0								
VRT	0	0	0	0	0	0	0	

Register D is the read-only data integrity status register.

Bits 0-6 • Unused Bits

7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0

These bits are always set to 0.

VRT - Valid RAM and Time

7	6	5	4	3	2	1	0
VRT	-	-	-			-	

1 = Valid backup energy source

0 = Backup energy source is depleted

When the backup energy source is depleted (VRT = 0), data integrity of the RTC and storage registers is not guaranteed.

May 1994 11/26

Absolute Maximum Ratings—bq4285E

Symbol	Parameter	Value	Unit	Conditions
V_{CC}	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	v	
$v_{\mathbf{T}}$	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	v	V _T ≤ V _{CC} + 0.3
		0 to +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial "N"
Tstg	Storage temperature	-55 to +125	°C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds

Note:

Permanent device damage may **occur** if Absolute Maximum **Ratings** are exceeded. Functional operation should be limited to the **Recommended** DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

Absolute Maximum Ratings—bq4285L

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 6.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 6.0	V	V _T ≤ V _{cc} + 0.3
Topr	Operating temperature	Oto +70	°C	Commercial
Tstg	Storage temperature	-55 to +125	°C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

12/26 May 1994

Recommended DC Operating Conditions—bq4285E (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	4.5	5.0	5.5	V
V_{IL}	Input low voltage	-0.3		0.8	V
VIH	Input high voltage	2.2		V _{CC} + 0.3	V
V_{BC}	Backup cell voltage	26		4.0	V

Notes: Typical values indicate operation at $T_A = 25^{\circ}C$.

Potentials are relative to Vss.

Recommended DC Operating Conditions—bq4285L (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	2.7	3.15	3.6	V
$v_{\rm IL}$	Input low voltage	-0.3		0.6	V
VIH	Input high voltage	2,2		Vcc + 0.3	V
V _{BC}	Backup cell voltage	2.4		4.0	V

Notes: Typical values indicate operation at $T_A = 25^{\circ}C$.

Potentials are relative to Vss.

Crystal Specifications—bq4285E/bq4285L (DT-26 or Equivalent)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
fo	Oscillation frequency		32.768		kHz
$\mathbf{C}_{\mathbf{L}}$	Load capacitance		6		pF
T_P	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant			-0.042	ppm/°C
Q	Quality factor	40,000	70,000		
R_1	Series resistance			45	KR
C ₀	Shunt capacitance		1,1	1.8	pF
C ₀ /C ₁	Capacitanceratio		430	600	
DL	Drive level			1	μW
Δf/f _O	Aging (first year at 25°C)		1		ppm

May 1994 13/26

DC Electrical Characteristics—bq4285E (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μA	$V_{IN} = V_{SS \text{ to }} V_{CC}$
ILO	Output leakage current			±1	μА	AD ₀ -AD ₇ , INT, and SQW in high impedance, Vout = Vss to Vcc
Voh	Output high voltage	2.4			V	I _{OH} = -2.0 mA
Vol	Output low voltage			0.4	v	I _{OL} = 4.0 mA
Icc	Operating supply current		7	15	mA	Min. cycle, duty = 100%, I _{OH} = 0mA, I _{OL} = 0mA
v_{so}	Supply switch-over voltage		V_{BC}		V	
Іссв	Battery operation current		0.3	0.5	ДA	V_{BC} = 3V, T_A = 25°C, no load on Vour or \overline{CE}_{OUT}
Iccsb	Standby supply current		300		μA	V _{IN} = Vcc or Vss, CS ≥ Vcc • 0.2, no load on Vout
V _{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	V	
Vouri	Vow voltage	Vcc - 0.3V	-		V	$I_{OUT} = 100$ mA, $V_{CC} > V_{BC}$
Vout2	V _{OUT} voltage	V _{BC} - 0.3V				$I_{OUT} = 100 \mu A$, $V_{CC} < V_{BC}$
Імотн	Input current when MOT = Vcc			-275	μА	Internal 20K pull-down
ICE	Chip enable input current			100	μA	Internal 50K pull-up

Note: Typical values indicate operation at $TA = 25^{\circ}C$, Vcc = 5V or $V_{BC} = 3V$.

14/26 May 1994

DC Electrical Characteristics—bq4285L (TA = TOPR, VCC = 3.13V ± 0.45%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μА	V _{IN} = V _{SS} to V _{CC}
ILO	Output leakage current			±1	μA	ADo-AD1, INT, and SQW in high impedance, Vour=Vss to Vcc
Voh	Output high voltage	2.2			V	Iон = -2.0 mA
Vol	Output low voltage	•	-	0.4	v	I _{OL} = 4.0 mA
I_{CC}	Operating supply current		5	9	mA	Mia cycle, duty = 100%, I _{OH} = 0mA, I _{OL} = 0mA
	Supply switch-over voltage		V _{PFD}		V	$V_{\rm BC} > V_{\rm PFD}$
Vso			V _{BC}		v	V _{BC} < V _{PFD}
Iccb	Battery operation current	•	0.3	0.5	μА	V _{BC} = 3V, T _A = 25°C, no load on Vour or CEour
ICCSB	Standby supply current		100	•	μА	V _{IN} = V _{CC} or V _{SS} , CS ≥ V _{CC} · 0.2, no load on Vovr
VPFD	Power-fail-detect voltage	2.4	2.53	2.65	V	
Vout1	Vour voltage	V _{CC} - 0.3V	•		V	$Iovr = 80mA, V_{CC} > V_{BC}$
Vour2	V _{OUT} voltage	V _{BC} · 0.3V				Ι _Ο Τ = 100μΑ, Vcc < V _{BC}
Імотн	Input current when MOT = VCC			-185	μΑ	Internal 30K pull-down
Ice	chip enable input current	•	•	120	μA	Internal 30K pull-up

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 3V$.

May 1994 15/26

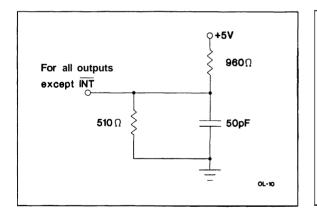
Capacitance—bq4285E/bq4285L (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Ci⁄o	Input/output capacitance			7	рF	V _{OUT} = 0V
Cin	Input capacitance			5	рF	V _{IN} =OV

Note: This parameter is sampled and not 100% **tested**. It does not include the X1 or X2 pin.

AC Test Conditions—bq4285E

Parameter	Test Conditions
Input pulse levels	0 to 3.0 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 5 and 6



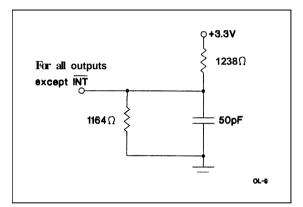

Figure 5. Output Load A-bq4285E

Figure 6. Output Load B-bq4285E

16/26 May 1994

AC Test Conditions—bq4285L

Parameter	Test Conditions
Input pulse levels	0 to 2.3 V
Input rise and fall times	5 ns
Input and output timing reference levels	1.2 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 7 and 8

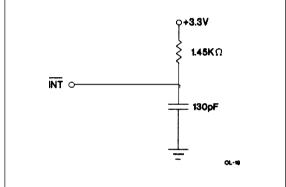


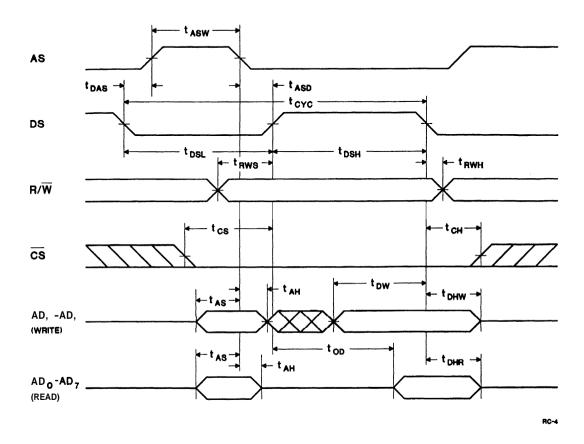
Figure 7. Output Load A—bq4285L

Figure 8. Output Load B-bq4285L

May 1994 17/26

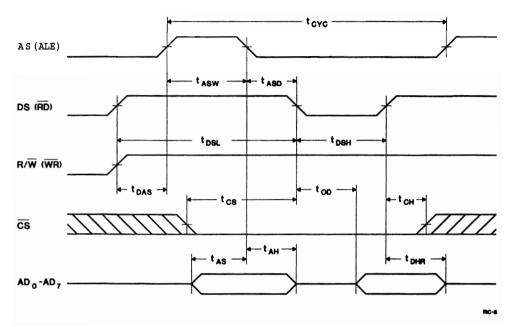
Read/Write Timing—bq4285E (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcyc	Cycle time	160			ns	
$t_{ m DSL}$	DS low or RD/WR high time	80			ns	
$t_{ m DSH}$	DS high or $\overline{RD}/\overline{WR}$ low time	55			ns	
trwH	R√W hold time	0			ns	
trws	R√W setup time	10			ns	
tcs	Chip select setup time	5			ns	
tch	Chip select hold time	0			ns	
tDHR	Read data hold time	0		25	ns	
$\mathbf{t}_{\mathrm{DHW}}$	Write data hold time	0			ns	
tas	Address setup time	20			ns	
tah	Address hold time	5			ns	
tDAS	Delay time, DS to AS rise	10			ns	
tasw	Pulse width, AS high	30			ns	
tasd	Delay time, AS to DS rise (RD/WR fall)	35			ns	
tod	Output data delay time from DS rise (RD fall)		•	50	ns	
tow	Write data setup time	30			ns	
tBUC	Delay time before update		244		με	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle		1		μв	

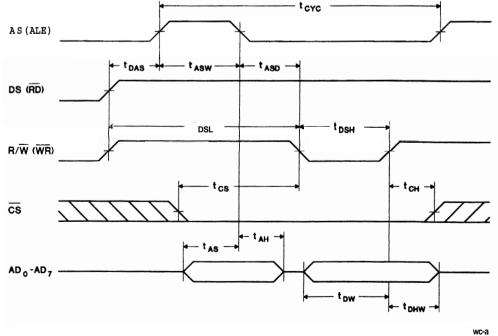

18/26 _____ May 1994

Read/Write Timing—bq4285L (TA - TOPR, VCC - 3.15V ± 0.45%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
tcyc	Cycle time	270			ns	
tosl	DS low or RD/WR high time	135			ns	
tdsh	DS high or RD/WR low time	90			ns	
trwH	R√W hold time	0			ns	
trws	R∕W setup time	15			ns	
tcs	Chip select setup time	8			ns	
tch	Chip select hold time	0			ns	
tDHR	Read data hold time	0		40	ns	
tDHW	Write data hold time	0			ns	
tas	Address setup time	30			ns	
tah	Address hold time	15			ns	
tdas	Delay time, DS to AS rise	15			ns	
tasw	Pulse width. AS high	50			ns	
tasd	Delay time, AS to DS rise (RD/WR fall)	55			ns	
top	Output data delay time from DS rise (RD fall)			100	ns	
tow	Write data setup time	50			ns	
tBUC	Delay time before update		244		μs	
tpi	Periodic interrupt time interval					See Table 3
tuc	Time of update cycle		1		μв	


May 1994 19/26

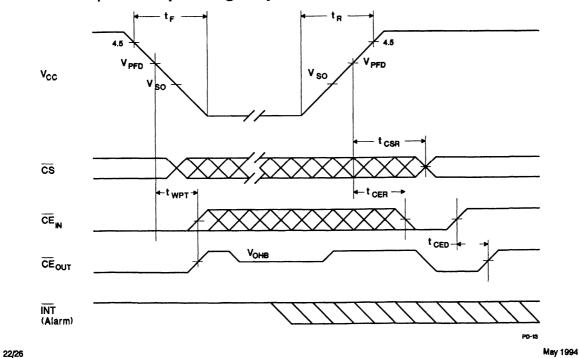
Motorola Bus Read/Write Timing—bq4285E/bq4285L (PLCC Package Only)



20/26 May 1994

Intel Bus Read Timing-bq4285E/bq4285L

Intel Bus Write Timing—bq4285E/bq4285L


May 1994 21/26

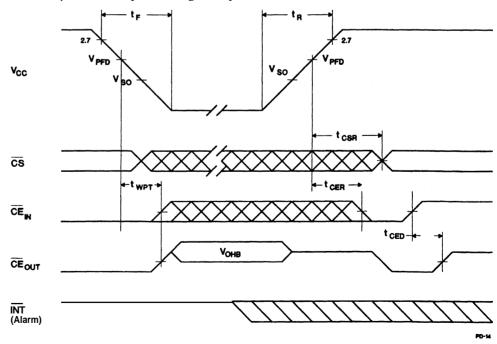
Power-Down/Power-Up Timing—bq4285E (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tr	V _{CC} slew from 4.5V to OV	300			μв	
tr	V _{CC} slew from OV to 4.5V	100				
tcsr	CS at VIH after power-up	20		200	ms	Internal write-protection period after VCC passes VPFD on power-up.
twpr	Write-protect time for external RAM	10	16	30	με	Delay after VCC slows down past VPFD before SRAM is write-protected.
tcer	Chip enable recovery time	tcsR		tcsr	ms	Time during which external SRAM is write-protected after VCC passes VPFD on power-up.
tced	Chip enable propagation delay to external SRAM		7	10	ns	

 $\label{lem:continuous} \textbf{Caution:} \quad \textbf{Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.}$

Power-Down/Power-Up Timing—bq4285E

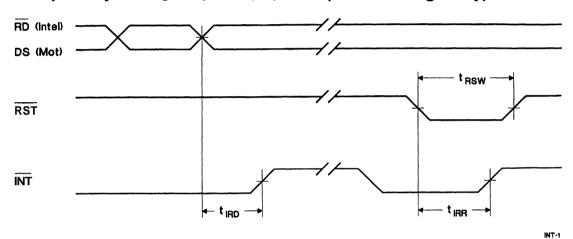
23/26

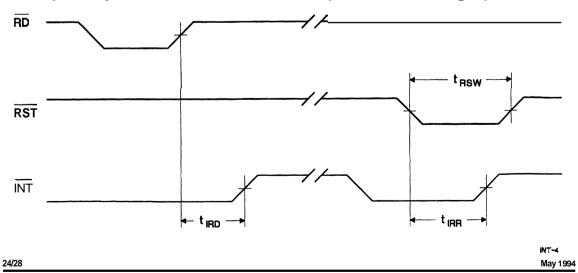

Power-Down/Power-Up Timing—bq4285L (TA - TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tr	V _{CC} slew from 2.7V to OV	300				
tr	Vcc slew from OV to 2.7V	100			με	
tcsr	CS at V _{IH} after power-up	20		200	ms	Internal write-protection period after VCC passes VPFD on power-up.
twpr	White protect time for		0			V _{BC} > V _{PFD}
****1	Write-protect time for external RAM	10	16	30	μв	V _{BC} < V _{PFD}
tcer	Chip enable recovery time	tcsr		tcsr	ms	Time during which external SRAM is write-protected after Vcc passes VPFD on power-up.
tced	Chip enable propagation delay to external SRAM		9	15	ns	

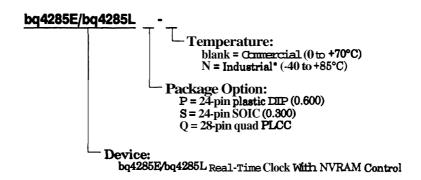
Caution. Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing—bq4285L


May 1994


Interrupt Delay Timing—bq4285E/bq4285L (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
trsw	Reset pulse width	5			με
tirr	INT release from RST			2	μв
tird	INT release from DS (RD)			2	μв


Interrupt Delay Timing—bq4285E/bq4285L (PLCC Package Only)

Interrupt Delay Timing—bq4285E/bq4285L (SOIC, DIP Packages)

Ordering information

^{*}bq4285E Q and S packages only.

May 1994 25/26

Notes

26/26 M_{kly} 1994

Real-Time Clock Module With NVRAM Control

Features

- ➤ Direct clock/calendar replacement for IBM® AT-compatible computers and other applications
- ➤ Functionally compatible with the DS1287/DS1287A and MC146818A
- ➤ 114 bytes of general nonvolatile storage
- Automatic backup supply and write-protection to make external SRAM nonvolatile
- Integral lithium call and crystal
- ➤ 160 ns cycle time allows fast bus operation
- ➤ Intel bus timing
- 14 bytes for clock/calendar and control
- ➤ BCD or binary **format** for clock and calendar data
- ➤ Calendar in day of the week, day of the month, months, and years

Pin Connections

Nov. 1993 C

- with automatic leap-year adjustment
- ➤ Time of day in seconds, minutes. and hours
 - 12- or 24-hour format
 - Optional daylight saving adjustment
- Programmable square wave output
- ➤ Three individually maskable interrupt event flags:
 - Periodic rates from 122 µs to 500 ms
 - Time-of-day alarm once per second to once per day
 - End-of-clock update cycle
- ➤ Better than one minute per month clock accuracy

General Description

The CMOS bq4287 is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. Other features

include three **maskable** interrupt sources, square wave output, and 114 bytes of general nonvolatile **storage**.

The **bq4287** write-protects the clock, calendar, and storage registers during power failure. The integral backup energy source then maintains data and operates the clock and calendar.

The bq4287 uses its integral battery-backup controller and battery to make a standard CMOS SRAM nonvolatile during power-fail, the bq4287 automatically write-protects the external SRAM and provides a Vcc output sourced from its internal battery.

The **bq4287** is a fully compatible realtime clock for IBM AT-compatible computers and other applications.

As shipped from **Benchmarq**, the backup cell is electrically isolated from **the** memory. Following the **first** application of **Vcc**, this isolation is broken, and the backup cell provides data retention **to the** clock, internal RAM, **Vout**, and **CEOUT on subsequent** power-downs.

The **bq4287** is functionally equivalent to the **bq4285**, except that the battery (16, 20) and crystal pins (2, 3) are not accessible. These pins are **connected** internally to a coin cell and quartz crystal. The coin cell provides **130mAh** of capacity. For a complete description of features, operating conditions, electrical characteristics, bus timing, and pin descriptions, see the **bq4285** data sheet.

Pin Names

Vout 1	24 D VCC				
	1 1				
NC ☐2	23				
ис□з	22 □ CE _{OUT}				
AD _o □4	21 □ CE _{IN}				
AD₁ ☐5	20 NC				
AD ₂ □6	19 □ INT				
AD ₃ □7	18 □RST				
AD ₄ □8	17 🗆 RD				
AD ₅ □9	16 □ NC				
AD ₆ ☐ 10	15				
AD 7 🗆 11	14 DALE				
V _{SS} ☐ 12	13 □ CS				
24-Pin DIP Module					
	PN-29				

AD0-AD7 Multiplexed address/data input/output CS Chip select input ALE Address strobe input Data strobe input WR Read/write input INT Interrupt request output RST Reset input SQW Square wave output CEIN **RAM** chip enable input CEour **RAM** chip enable output NCNo connect Vour Supply output Vcc +5V supply Vss Ground

Caution:

Take care to avoid inadvertent discharge through Vout and CEout after battery isolation has been broken.

1/6

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
Topr	Operating temperature	0 to +70	°C	Commercial
Tstg	Storage temperature	-40 to +70	°C	Commercial
TBIAS	Temperature under bias	-10 to +70	°C	Commercial
TSOLDER	Solderingtemperature	260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Vcc	Supply voltage	4.5	5.0	5.5	V
V_{SS}	Supply voltage	0	0	0	V
$V_{\rm IL}$	Input low voltage	-0.3		0.8	V
V _{IH}	Input high voltage	2.2		V _{CC} + 0.3	V

Note:

Typical values indicate operation at $T_A = 25$ °C.

DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

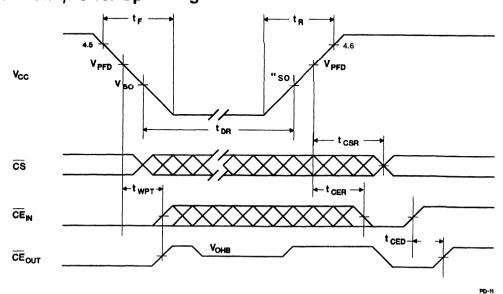
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
С	Battery capacity		130		mAh	Refer to graphs in <i>Typical</i> Battery Characteristics section
ILI	Input leakage current			±1	μА	$V_{\rm IN} = V_{\rm SS}$ to $V_{\rm CC}$
ILO	Output leakage current			± 1	μА	AD ₀ -AD ₇ , INT and SQW in high impedance
Voh	Output high voltage	2.4	-	-	V	I _{OH} = -1.0 mA
Vol	Output low voltage	-	-	0.4	V	$I_{OL} = 4.0 \text{ mA}$
I_{CC}	Operating supply current	-	7	15	mA	Min. cycle, duty = 100%, I _{OH} = 0mA, I _{OL} = 0mA
I _{CCB}	Battery operation current	-	0.3	0.5	μА	$V_{BC} = 3V$, $T_A = 25$ °C, no load on V_{OUT} or \overline{CE}_{OUT}
Vso	Supply switch-over voltage	-	3.0	-	V	
V_{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	v	
V_{BC}	Backup cell voltage	-	3.0	-	v	Internal backup cell voltage; refer to graphs in Typical Battery Characteristics section
Vout1	Vour voltage	Vcc - 0.3V		-	V	$I_{OUT} = 100 \text{mA}, V_{CC} > V_{BC}$
Vout2	Vour voltage	V _{BC} - 0.3V	-		V	$I_{OUT} = 100 \mu A$, $V_{CC} < V_{BC}$
ICE	Chip enable input current	-		100	μA	Internal 50K pull-up

Note:

Typical values indicate operation at TA = 25°C, VCC = 5V.

2/6

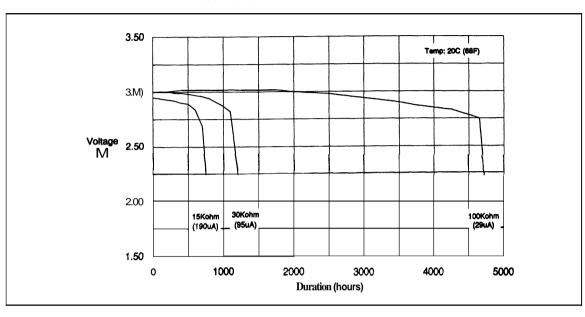
Nov. 1993 C

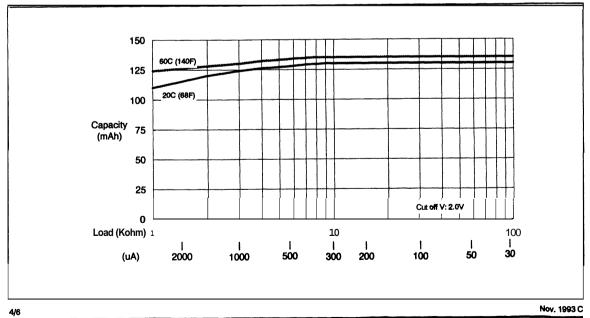

Power-Down/Power-Up Timing (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tf	vcc slew from 4.5V to OV	300			μв	
tr	V _{CC} slew fixom OV to 4.5V	100			μв	
tcsr	CS at V _{IH} after power-up	20		200	me	Internal write-pmtection period after VCC passes VPFD on power-up.
$t_{ m DR}$	Data-retention and timekeeping time	10			years	$T_{A} = 25^{\circ}C$, no load on V_{OUT} or $\overrightarrow{CE}_{OUT}$.
twpr	Write-protect time for external RAM	10	16	30	μв	Delay after Vcc slows down past Vpp before SRAM is write-protected.
tcer	Chip enable recovery time	tcsr		tcsr	ms	Time during which external SRAM is write-protected after Vcc passes VPPD on power-up.
t _{CED}	Chip enable pmpagation delay to external SRAM		7	10	ns	

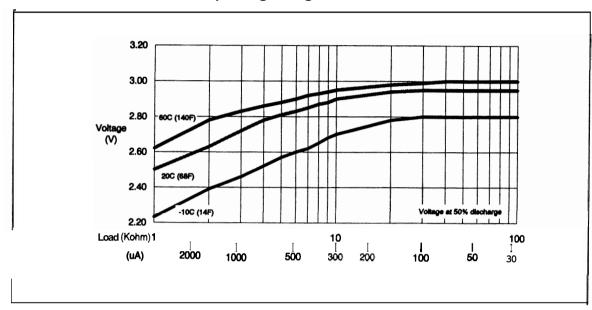
Note: Clock accuracy is better than ± 1 minute per month at 25°C for the period of tor.

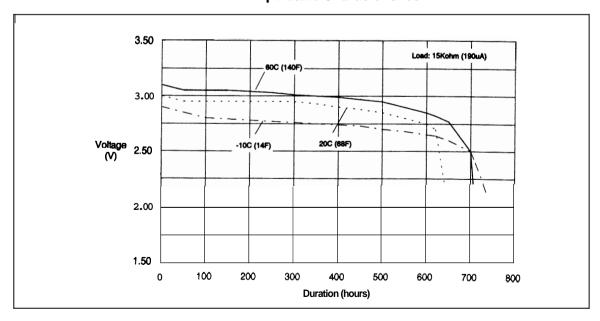
Caution. Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.


Power-Down/Power-Up Timing


Nw. 1993 C 3/6

Typical Battery Characteristics (source = Panasonic)


CR1632 Load Characteristics

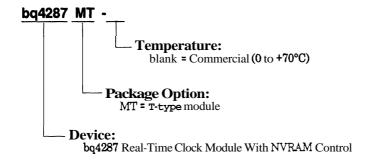

CR1632 Capacity vs. Load Resistance

CR1632 Operating Voltage vs. Load Resistance

CR1632 Temperature Characteristics

Nov. 1993 C

5/6


Data Sheet Revision History

Change	Page No.	Description	Nature of Change
1	2	Power-fail detect voltage VPFD	Was 4.1 min, 4.25 max; is 4.0 min, 4.36 max
1	2	Chip enable input current	Additional specification
2	9	Wes: "As shipped from Benchmarq, the backup cell is electrically isolated from the memory." Is: 'As shipped from Benchmarq, the backup cell is electrically isolated from the active circuitry."	Clarification
2	14	Deleted specifications for trwH and trws	Clarification; these parameters are not supported by the bq4287

Note:

Change 1 = Nov. 1992 B changes from June 1991 A. Change 2 = Nov. 1993 C changes from Nov. 1992 B.

Ordering Information

6/6 Nov. 1993 C

Enhanced RTC Module With NVRAM Control

Features

- ➤ Direct clock/calendar replacement for IBM AT-compatible computers and other applications
- ➤ 114 bytes of general nonvolatile storage
- ➤ Enhanced features include:
 - System wake-upcapability alarm interrupt output active in battery-backup mode
 - **32kHz** output for power management
- Automatic backup and writeprotect control to external SRAM
- Integral lithium **cell** and crystal in 24-pin DIP module
- 160 ns cycle time allows fast bus operation
- Better than one minute per month clock accuracy
- 14 bytes for clock/calendar and control
- BCD or binary format for clock and calendar data

- Calendar in day of the week, day of the month, months, and years, with automatic leap-year adjustment
- Time of day in seconds, minutes, and hours
- Programmablesquare wave output
- Three individually maskable interrupt event flags:
 - Periodic rates from 122μs to 500ms
 - Time-of-day alarm once per second to once per day
 - End-of-clock update cycle

General Description

The CMOS bq4287E is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation Other features include three maskable interrupt sources, square wave output, and 114 bytes of general nonvolatile storage.

A 32.768kHz output is available for sustaining power-management acti-

vitiee. Wake-up capability is provided by an alarm **interrupt**, which **is** active in battery-backup mode.

The **bq4287E** write-protects the clock, calendar, and **storage registers** during power failure. The integral backup energy source then maintains data and **operates** the clock and calendar.

The bq4287E is a fully compatible realtime clock for IBM AT-compatible computers and other applications.

The **bq4287E** integrates a battery-backup controller and battery to make a **standard** CMOS **SRAM** non-volatile during **power-fail** conditions. During power-fail, the **bq4287E** automatically write-protects the external **SRAM** and provides a Voc output **sourced from its** internal battery.

As shipped from **Benchmarq**, the backup cell is electrically isolated from the memory. **Following** the first application of **Voc**, this isolation is broken, and the backup cell provides data retention to the clock, internal **RAM**, **Vout**, and **CEOUT** on subsequent power-downs.

The **bq4287E** is functionally equivalent to the **bq4285E**, except the battery (16, 20) and crystal pin (2, 3) are not accessible. These **pins** are connected internally to a coin cell and quartz crystal. The coin cell provides 130mAh of capacity. For a complete description of features, operating conditions, electrical characteristics, bus timing, and pin descriptions, see the **bq4285E** data sheet.

Pin Connections

Vout 🗆	1	24 🏻 Vcc			
NC 🗆	2	23			
NC 🗆	3	22 □ CE _{OUT}			
AD ₀	4	21 □ CE _{IN}			
AD ₁ 🗆	5	20 □NC			
AD 2	6	19 DINT			
AD ₃	7	18 □ RST			
AD 4	8	17 🗆 RD			
AD 5	9	16 □ NC			
AD 6	10	15 🗆 WR			
AD 7	11	14 DALE			
V _{SS} [12	13 ⊅ <u>CS</u>			
24-Pin DIP Module					
	. 	PN-29			

Pin Names

AD ₀ -AD ₇	Multiplexed address/data input/output
CS	Chip select input
ALE	Address strobe input
$\overline{\mathtt{RD}}$	Data strobe input
WR	Read/write input
ĪNT	Interrupt request output
RST	Reset input
SQW	Square wave output
CEIN	RAM chip enable input
CE out	RAM chip enable output
NC	No connect
Vout	Supply output
v_{cc}	+5V supply
v_{ss}	Ground

Caution:

Take care to avoid inadvertent discharge through Vour and CEour after battery isolation has been broken.

May 1004

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
V_{CC}	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
V_{T}	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
	0	0 to +70	"C	Commercial
T_{OPR}	Operating temperature	-40 to +85	°C	Industrial "N"
	Stage of temperature	-40 to +70	"C	Commercial
T _{STG}	torage temperature	-40 to +85	°C	Industrial "N"
	Tammanatuma undan bias	-10 to +70	°C	Commercial
$T_{ m BIAS}$	Temperature under bias	-40 to +85	"C	Industrial "N"
TSOLDER	Soldering temperature	260	"C	For 10 seconds

Note:

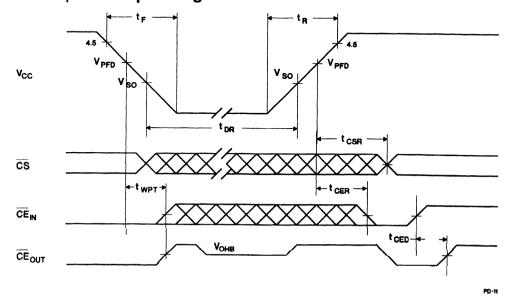
Permanent device damage may occur if **Absolute Maximum Rattings** are exceeded. Functional operation should be limited to the **Recommended DC** Operating **Conditions** detailed in **thii** data sheet. **Exposure** to conditions beyond the operational limits for extended periods of **time** may affect device reliability.

DC Electrical Characteristics (TA = TOPR, VCC = 5V ± 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
С	Battery capacity		130		mAh	Refer to graphs in Typical Battery Characteristics section
ILI	Input leakage current			± 1	μA	$V_{IN} = V_{SS \text{ to}} V_{CC}$
ILO	Output leakage current			± 1	μA	AD₀-AD₇, INT and SQW in highimpedance
V _{OH}	Output high voltage	2.4			V	$I_{OH} = -1.0 \text{ mA}$
V_{OL}	Output low voltage			0.4	V	IoL = 4.0 mA
Icc	Operating supply current		7	15	mA	Min. cycle, duty = 100%, I _{OH} = 0mA, I _{OL} = 0mA
Іссв	Battery operation current		0.3	0.5	μA	$V_{BC} = 3V$, $T_A = 25$ °C, no load on Vow or \overline{CE}_{OUT}
I _{CCSB}	Standby supply current		300		μA	$V_{IN} = V_{CC} \text{ or } V_{SS},$ $\overline{CS} = \overline{CE}_{IN} \ge V_{CC} - 0.2,$ no load on Vom
Vso	Supply switch-over voltage		3.0		V	
V_{PFD}	Power-fail-detect voltage	4.0	4.17	4.35	V	
V_{BC}	Backup cell voltage		3.0		v	Internal backup cell voltage; refer to graphs in Typical Battery Characteristics section
Vouti	Vow voltage	Vcc - 0.3V			V	$I_{OUT} = 100$ mA, $v_{CC} > V_{BC}$
V _{OUT2}	Vow voltage	V _{BC} • 0.3V			V	$I_{OUT} = 100 \mu A$, $V_{CC} < V_{BC}$
ICE	Chip enable input current			100	μA	Internal 50K pull-up

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

2/6 May 1994

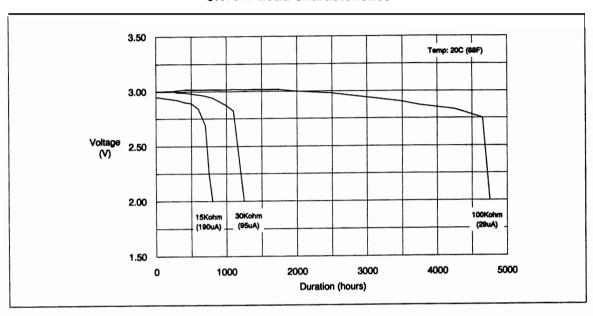

Power-Down/Power-Up Timing (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tr	Vcc slew from 4.5V to OV	300				
tR	Vcc slew from OV to 4.5V	100				
tcsr	CS at V _{IH} after power-up	20		200	me	Internal write-protection period after VCC passes VPFD on power-up.
tDR	Data-retention and timekeeping time	10			years	$T_A = 25$ °C, no load on V_{OUT} or \overline{CE}_{OUT} .
twpr	Write-protect time for external RAM	10	16	30	μв	Delay after VCC elews down past VPFD before SRAM is write-protected.
tcer	Chip enable recovery time	tcsr		tcsr	ms	Time during which external SRAM is write-protected after VCC passes VPFD on power-up.
tCED	Chip enable propagation delay to external SRAM		7	10	ns	

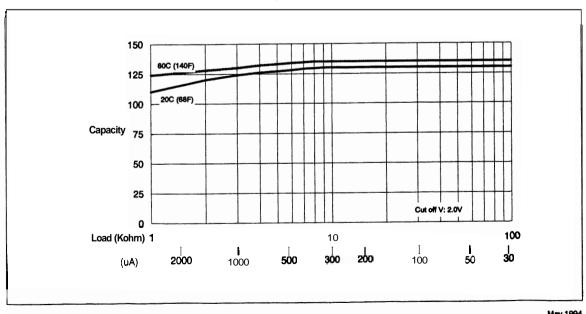
Note: Clock accuracy is better than ± 1 minute per month at 25°C for the period of tpp.

Caution. Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

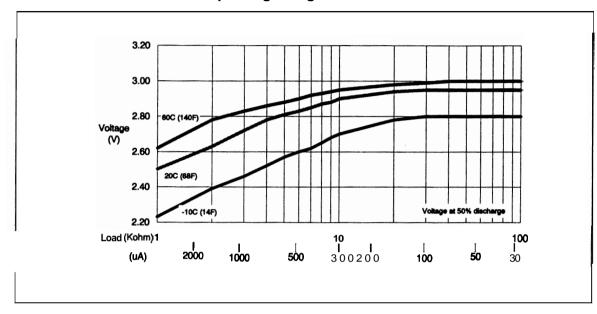


May 1994

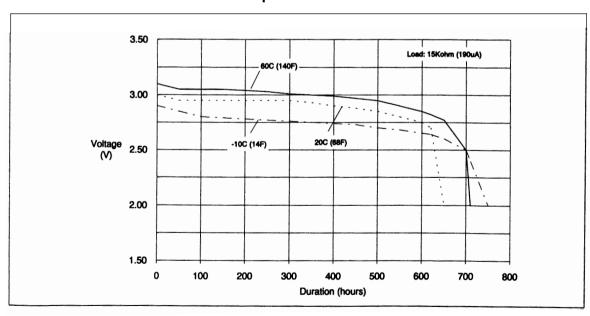

3/6

Typical Battery Characteristics (source = Panasonic)

CR1632 Load Characteristics

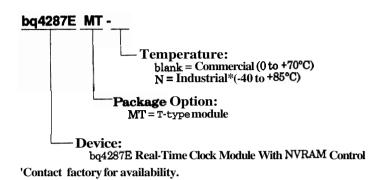


CR1632 Capacity vs. Load Resistance



4/6 May 1994

CR1632 Operating Voltage vs. Load Resistance



CR1632 Temperature Characteristics

May 1994 5/6

Ordering Information

6/6 May 1994

RTC Module With 32Kx8 NVSRAM

Features

- Integrated SRAM, real-time clock, crystal, power-fail control circuit, and battery
- Real-Time Clock counts seconds through years in BCD format
- RAM-like clock access
- Pin-compatible with industrystandard 32K x 8 SRAMs
- Unlimited write cycles
- 10-year minimm data retention and clock operation in the absence of power
- Automatic power-fail chip deselect and write-protection
- Software clock calibration for greater than ±1 minute per month accuracy
- 10% tolerance of Vcc for write-protect

General Description

The **bq4830Y RTC** Module is a non-volatile 262,144-bit SRAM organized as 32,768 words by 8 bits with an integral accessible real-time clock.

The device combines an internal lithium battery, quartz crystal, clock and power-fail chip, and a full CMOS SRAM in a plastic 28-pin DIP module. The RTC Module directly replaces industry-standard SRAMs and also fits into many EPROM and EEPROM sockets without any requirement for special write timing or limitations on the number of write cycles.

Registers for the real-time *clock* and clock calibration are located in registers **7FF8h-7FFFh** of the memory array.

The clock registers are dual-port read/write SRAM locations that are updated once per second by a clock control circuit from the internal clock counters. The dual-part registers allow clock updates to occur without interrupting normal access to the rest of the SRAM array.

The bq4830Y also contains a power-fail-detect circuit. The circuit deselects the device whenever V_{∞} falls below tolerance, providing a high degree of data security. The battery is electrically isolated when shipped from the factory to provide maximum battery capacity. The battery remains disconnected until the first application of V_{∞} .

Pin Connections

28 □ V_{CC} A 12 2 27 р WE A 7 [26 □ A₁₃ 25 □ A₈ d Asd 5 24 □ A₉ $\mathbf{A}_{\mathbf{A}} \mathbf{\Box}$ **□** A₁₁ 6 23 DOE d 7 22 8 21 □ A₁₀ □ CE A, [9 20 A₀ \square 10 19 DQ7 DQ o 11 18 DQ DQ 1 DQs 12 17 DQ, [13 DQ4 16 Vss 🗆 15 DQ3 28-Pin DIP Module m u

Pin Names

A ₀ -A ₁₄	Address input
CE	Chip enable
$\overline{\mathbf{w}}\overline{\mathbf{e}}$	Write enable
ŌĒ	Output enable
DQ ₀ -DQ ₇	Data in/data out
Vcc	+5 volts
V_{SS}	Ground

Sept. 1996 B 1/14

Functional Description

Figure 1 is a block diagram of the bq4830Y. The following sections describe the bq4830Y functional

operation, including memory and clock interface, and data-retention modes.

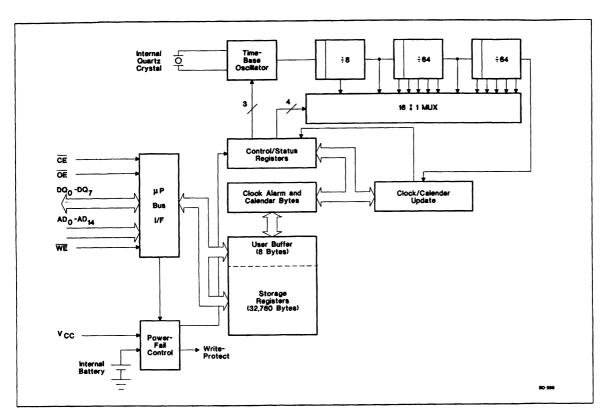


Figure 1. Block Diagram

Truth Table

Vcc	CE	ŌĒ	WE	Mode	DQ	Power
< V _{CC}	V_{IH}	X	X	Deselect	High Z	Standby
	V_{IL}	X	VIL	Write	Dm	Active
> Vcc (min.)	$V_{ m IL}$	VIL	VIH	Read	Dout	Active
	VIL	Vih	V _{IH}	Read	High Z	Active
$<$ V_{PFD} (min.) $>$ V_{SO}	X	X	X	Deselect	High Z	CMOS standby
≤V _{SO}	X	X	X	Deselect	High Z	Battery-backupmode

2/14 Sept. 1996 B

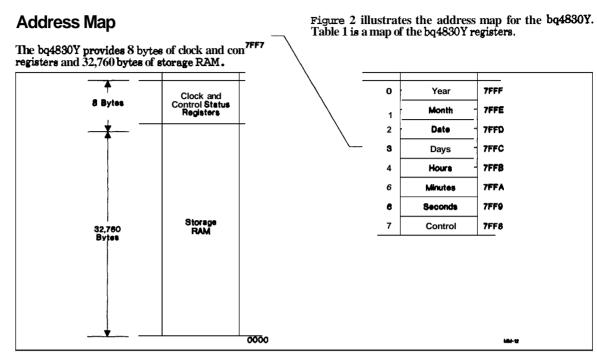


Figure 2. Address Map

Table 1. bq4830Y Clock and Control Register Map

Address	D7	D6	D5	D4	D3	D2	D1	D0	Range (h)	Register
7FFF		10	Years			Yea	ır		00-99	Year
7FFE	X	х	X	10 Month	Month				01–12	Month
7FFD	X	X	10	Date	Date				01–31	Date
7FFC	X	FTE	Х	x	X Day		0107	Days		
7FFB	X	х	10	Hours	Hours				00-23	Hours
7FFA	X		10 Minu	ites	Minutes				00–59	Minutes
7FF9	OSC		10 Seco	nds	Seconds				00–59	Seconds
7FF8	W	R	S		Calibration				00-31	Control

Note:

X = Unused bits; can be written and read. Clock/Calendar data in 24-hour BCD format.

OSC = 1 stops the clock oscillator.

Sept. 1996 B

3/14

Memory Interface

Read Mode

The bq4830Y is in read mode whenever \overline{OE} (output enable) is low and \overline{CE} (chip enable) is low. The device architecture allows npple-through access of data from eight of 262,144 locations in the static storage array. Thus, the unique address specified by the 15 address inputs defines which one of the 32,768 bytes of data is to be accessed. Valid data is available at the data I/O pins within tan (address access time) after the last addree input signal is stable, providing that the \overline{CE} and \overline{OE} (output enable) access times are also satisfied. If the \overline{CE} and \overline{OE} access times are not met, valid data is available after the latter of chip enable access time (tace) or output enable access time (toe).

CE and OE control the state of the eight three-state data I/O signals. If the outputs are activated before tAA, the data lines are driven to an indeterminate state until tAA. If the address inputs are changed while CE and OE remain low, output data remains valid for tOH (output data hold time), but goes indeterminate until the next address access.

Write Mode

The bq4830Y is in write mode whenever \overline{WE} and \overline{CE} are active. The start of a write is referenced from the latter-occurring falling edge of \overline{WE} or \overline{CE} . A write is terminated by the earlier rising edge of \overline{WE} or \overline{CE} . The addresses must be held valid throughout the cycle. \overline{CE} or \overline{WE} must return high for a minimum of twr2 from \overline{CE} or twr1 from \overline{WE} prior to the initiation of another read or write cycle.

Data-in must be valid tow prior to the end of write and remain valid for tohi or tohi afterward. \overline{OE} should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{CE} and \overline{OE} , a low on \overline{WE} disables the outputs twz after \overline{WE} falls.

Data-Retention Mode

With valid Vcc applied, the **bq4830Y** operates as a conventional static RAM. Should the supply voltage decay, the RAM automatically power-fail deselects, write-protecting **itself twpr** after **Vcc** falls below **VppD**. All outputs become high impedance, and all inputs are treated as don't care."

If power-fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpt, write-protection takes place. When Vcc drops below Vso, the control circuit switches power to the internal energy source, which preserves data.

The internal coin cell maintains data in the **bq4830Y** after the initial application of Vcc for an accumulated period of at least 10 years when Vcc is less than Vso. As system power **returns** and Vcc rises above Vso, the battery is disconnected, and the power supply is switched to external Vcc. Write-protection **continues** for toer after Vcc reaches Vprd to allow for processor stabilization. After toer, normal RAM operation can resume.

Clock Interface

Reading the Clock

The interface to the clock and control registers of the bq4830Y is the same as that for the general-purpose storage memory. Once every second, the user-accessible clock/calendar locations are updated simultaneously from the internal real time counters. To prevent reading data in transition, updates to the **bq4830Y** clock registers should be halted. Updating is halted by setting the read bit D6 of the control register to 1. As long as the read bit is 1, updates to user-accessible clock locations are inhibited. Once the frozen clock information is retrieved by reading the appropriate clock memory locations, the read bit should be reset to 0 in order to allow updates to occur from the internal counters. Because the internal counters are not halted by setting the read bit, reading the clock locations has no effect on clock accuracy. Once the read bit is reset to 0, within one second the internal registers update the user-accessible registers with the correct time. A halt command issued during a clock update allows the update to occur before freezing the data.

Setting the Clock

Bit D7 of the control register is the write bit. Like the read bit, the write bit when set to a 1 halts updates to the **clock/calendar** memory locations. Once frozen, the locations can be written with the desired information in 24-hour BCD format. Resetting the write bit to 0 causes the written values to be transferred to the internal clock counters and allows updates to the user-accessible registers to resume within one second. Use the write bit, D7, only when updating the time registers (7FFF-7FF9).

Stopping and Starting the Clock Oscillator

The OSC bit in the seconds register turns the clock on or off. If the bq4830Y is to spend a significant period of time in storage, the clock oscillator can be turned off to preserve battery capacity. OSC set to 1 stops the clock oscillator. When OSC is reset to 0, the clock oscillator is turned on and clock updates to user-accessible memory locations occur within one second.

The OSC bit is set to 1 when shipped from the Benchmarq factory.

4/14 Sept. 1996 B

Calibrating the Clock

The **bq4830Y** real-time clock **is** driven by a quartz controlled oecillator with a nominal frequency of **32,768** Hz. The quartz **crystal** is contained within the **bq4830Y** package along with the battery. The clock accuracy of the **bq4830Y** module **is** tested to be within **20ppm** or about **1** minute per month at **25°C**. The oscillation rates of **crystals** change with temperature **as Figure 3 shows**. To compensate for the frequency shift, the **bq4830Y** offers **onboard software** clock calibration. The user can **adjust** the calibration based on the typical operating temperature of individual applications.

The software calibration bits are located in the control register. Bits DO-D4 control the magnitude of correction, and bit D5 the direction (positive or negative) of correction. Assuming that the oscillator is running at exactly 32,786 Hz, each calibration step of DO-D4 adjusts the clock rate by +4.068 ppm (+10.7 seconds per month) or -2.034 ppm (-5.35 seconds per month) depending on the value of the sign bit D5. When the sign bit is 1, positive adjustment occurs; a 0 activates negative adjustment. The total range of clock calibration is +5.5 or -2.75 minutes per month.

Two methods can be used to ascertain how much calibration a given **bq4830Y** may require in a system. The **first** involves simply setting the clock, letting it run for a month, and then comparing the time to an accurate **known** reference like WWV radio broadcasts. Based on the variation to the standard, the end user can adjust the clock to match the system's environment even after the product is packaged in a non-serviceable enclosure. The only requirement is a utility that allows the end user to access the calibration **bits** in the control register.

The second approach uses a bq4830Y test mode. When the frequency test mode enable bit FTE in the days

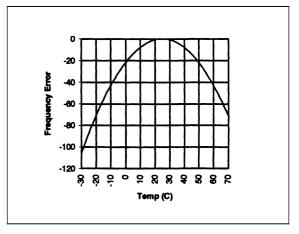


Figure 3. Frequency Error

register is set to a 1, and the oscillator is running at exactly 32,768 Hz, the LSB of the seconds register toggles at 512 Hz. Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. For example, a reading of 512.01024 Hz indicates a (1E6+0.01024)512 or +20 ppm oscillator frequency error, requiring ten steps of negative calibration (10+2.034 or -20.34) or 001010 to be loaded into the calibration byte for correction. To read the test frequency, the bq4830Y must be selected and held in an extended read of the seconds register, location 7FF9, without having the read bit set. The frequency appears on DQ0. The FTE bit must be set using the write bit control. The FTE bit must be reset to 0 for normal clock operation to resume.

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
V _T	DC voltage applied on any pin excluding Vcc relative to Vss -0.3 to 7.0 V		V	$V_T \le V_{CC} + 0.3$
Topr	Operating temperature	0 to +70	°C	
TstG	Storage temperature (Vcc off; oscillator off)	-40 to +70	°C	
TBIAS	Temperature under bias	-10 to +70	°C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute Maximum Ratings are exceeded. Functional** operation should be limited to the **Recommended** DC Operating **Conditions** detailed in **this** data sheet. **Exposure to** conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	v	
Vss	Supply voltage	0	0	0	v	
VIL	Input low voltage	-0.3	-	0.8	v	
VIH	Input high voltage	2.2	•	Vcc + 0.3	v	

Note:

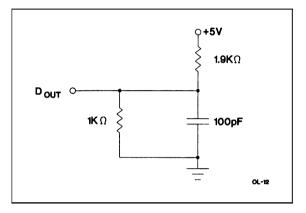
Typical values indicate operation at TA = 25°C.

DC Electrical Characteristics (TA = TOPR, VCCmin & VCC & VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μA	V _{IN} = V _{SS} to V _{CC}
Iro	Output leakage current			± 1	μА	$\frac{\overline{CE} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$
Vон	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current		3	6	mA	$\overline{CE} = V_{IH}$
I _{SB2}	Standby supply current		2	4	mA	$\overline{CE} \geq V_{CC} \cdot 0.2V,$ $0V \leq V_{IN} \leq 0.2V,$ or $V_{IN} \geq V_{CC} \cdot 0.2V$
Icc	Operating supply current		55	75	mA	$\underline{\underline{Min}}$, cycle, duty = 100%, \underline{CE} = V_{IL} , $I_{I/O}$ = 0mA
V _{PFD}	Power-fail-detectvoltage	4.30	4.37	4.50	V	
Vso	Supply switch-over voltage		3		V	

Notes: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			10	рF	Output voltage = OV
CIN	Input capacitance			10	рF	Input voltage = 0V

Note: These parameters are sampled and not 100% tested.

Sept. 1996 B 7/14

AC Test Conditions

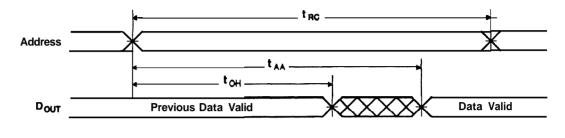
Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 4 and 5

1.9KΩ

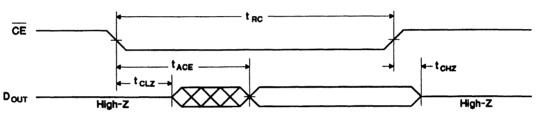
1.9KΩ

5pF

Figure 4. Output Load A

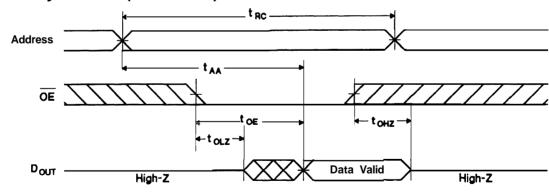

Figure 5. Output Load B

Read Cycle (TA = TOPR, VCCmin ≤ VCC ≤ VCCmax)


		-85			
Symbol	Parameter	Min.	Max.	Unit	Conditions
trc	Read cycle time	85		ns	
taa	Address access time		85	ns	Output load A
tace	Chip enable access time		85	ns	Output load A
toe	Output enable to output valid		45	ns	Output load A
tclz	Chip enable to output in low Z	5		ns	Output load B
tolz	Output enable to output in low Z	0		ns	Output load B
tcHz	Chip disable to output in high Z	0	35	ns	Output load B
tonz	Output disable to output in high Z	0	25	ns	Output load B
ton	Output hold from address change	10		ns	Output load A

8/14 Sept. 1998 B

Read Cycle No. 1 (Address Access) 1,2



Read Cycle No. 2 (CE Access) 1,3,4

C-2

Read Cycle No. 3 (OE Access) 1,5

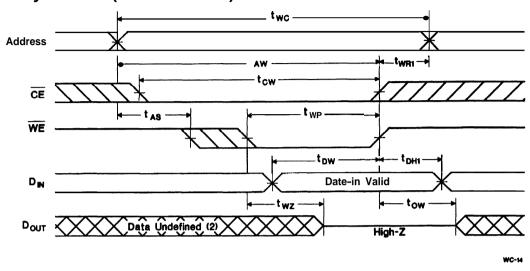
RC-3

Notes:

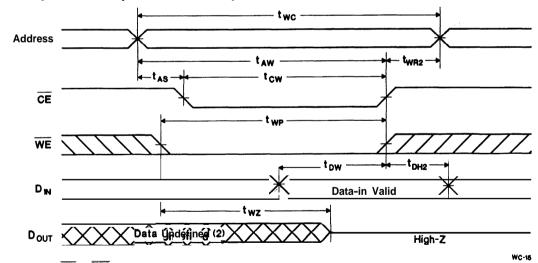
- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = VIL$
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 6. Device is continuously selected: $\overline{CE} = V_{IL}$.

Sept. 1996 B

9/14


Write Cycle (TA =TOPR, VCCmin \(\text{VCC} \text{ \text{VCCmax}} \)

		-85			
Symbol	Parameter	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	85		ns	
tcw	Chip enable to end of write	75		ns	(1)
taw	Address valid to end of write	75		ns	(1)
tas	Address setup time	0		ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	65		ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5		ns	Measured from WE going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15		ns	Measured from $\overline{\textbf{CE}}$ going high to end of write cycle. (3)
tow	Data valid to end of write	35		ns	Measured to first low-to-high transition of either CE or WE.
t _{DH1}	Data hold time (write cycle 1)	o		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10		ns	Measured from $\overline{\mathbf{CE}}$ going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	30	ns	I/O pins are in output state. (5)
tow	Output active from end of write	0		ns	I/O pins are in output state. (5)


Notes:

- 1. A write ends at the earlier transition of $\overline{\mathbf{CE}}$ going high and $\overline{\mathbf{WE}}$ going high.
- 2. A write occurs during the overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write begins at the later transition of $\overline{\text{CE}}$ going low and $\overline{\text{WE}}$ going low.
- 3. Either twn1 or twn2 must be met.
- 4. Either tpH1 or tpH2 must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the outputs remain in high-impedance state.

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

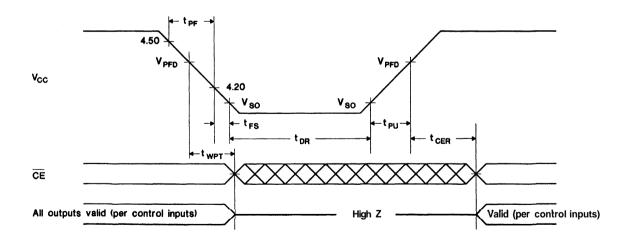
Notes:

- 1. $\overline{\textbf{CE}}$ or $\overline{\textbf{WE}}$ must be high during address transition.
- 2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twR1 or twR2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1996 B

11/14

Power-Down/Power-Up Cycle (TA = TOPR)


Symbol	Parameter	Parameter Minimum Typical Maximum Unit		Conditions		
tpr_	Vcc slew, 4.50 to 4.20 V	300	1		μв	
trs	V _{CC} slew, 4.20 to V _{SO}	10			με	
tpu	Vcc slew, Vso to VPFD (max.)	0			μв	
tcer	Chip enable recovery time	40	100	200	ms	Time during which SRAM is write-protected after Vcc passes VFPD on power-up.
tDR	Data-retention time in absence of Vcc	10			years	T _A = 25°C.(2)
twpr	write-protect time	40	100	160	μв	Delay after Vcc slews down past Vppp before SRAM is write-protected.

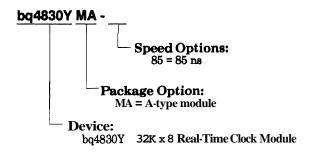
Notes:

- 1. Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.
- 2. Battery is disconnected from circuit until after Voc is applied for the first time. ton is the accumulated time in absence of power beginning when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

12/14 Sept. 1996 B


PD-16

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	7	Valuechange	I _{SB1} typ. and max. were 4, 7; are now 3, 6.
1	7	Value change	I_{SB2} typ. was 2.5; is now 2.

Note: Change 1 = Sept. 1996 B changes from Oct. 1995.

Ordering Information

14/14 Sept. 1996 B

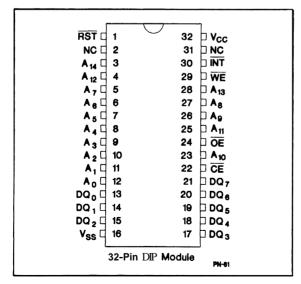
RTC Module With 32Kx8 NVSRAM

Features

- Integrated SRAM, real-time clock, CPU supervisor, crystal, power-fail circuit, and battery
- Real-Time Clock counts hundredths of seconds through years in BCD format
- RAM-like clock access
- Compatible with industrystandard 32K x 8 SRAMs
- Unlimited write cycles
- 10-year minimum data retention and clock operation in the absence of power
- Automatic power-fail chip deselect and write-protection
- Watchdog timer, power-on reset, alarm/periodic interrupt, powerfail and battery-low warning
- Software clock calibration for greater than ±1 minute per month accuracy

General Description

The **bq4832Y RTC** Module is a non-volatile 262,144-bit **SRAM** organized as 32,768 words by 8 bits with an integral real-time clock and CPU supervisor. The CPU supervisor provides a programmable watchdog timer and a microprocessor reset. Other features include an alarm, power-fail and periodic interrupt, and a battery low warning.


The device combines an internal lithium battery, quartz crystal, clock and power-fail chip, and a full CMOS SRAM in a plastic 32-pin DIP module. The RTC Module directly replaces industry-standard SRAMs and also fits into many EPROM and EEPROM sockets without any requirement for special write timing or limitations on the number of write cycles.

Registers for the real-time clock, alarm and other special functions are located in registers **7FF0h**–**7FFFh** of the memory array.

The clock and alarm registers are dual-port read/write SRAM locations that are updated once per second by a clock control circuit from the internal clock counters. The dual-port registers allow clock updates to cocur without interrupting normal access to the rest of the SRAM array.

The **bq4832Y** also contains a power-fail-detect circuit. The circuit deselects the device whenever Vcc falls below tolerance, providing a high degree of data security. The battery is electrically isolated when shipped from the factory to provide maximum battery capacity. The battery remains disconnected until the first application of Vcc.

Pin Connections

Pin Names

1 111 110	
A0-A14	Address input
CE	Chip enable
RST	Microprocessor reset
WE	Write enable
OE	Output enable
DQ ₀ -DQ ₇	Data. in/data out
$\overline{DQ_0}$ - $\overline{DQ_7}$	Data in/data out Programmable interrupt
	•
ĪNT	Programmable interrupt

Sept. 1996 C 1/16

Functional Description

Figure 1 is a block diagram of the bq4832Y. The following sections describe the bq4832Y functional

operation, including memory and clock interface, data-retention, modes, nower-on reset timing, watchdog timer activation, and interrupt $_{\rm g}$ eneration.

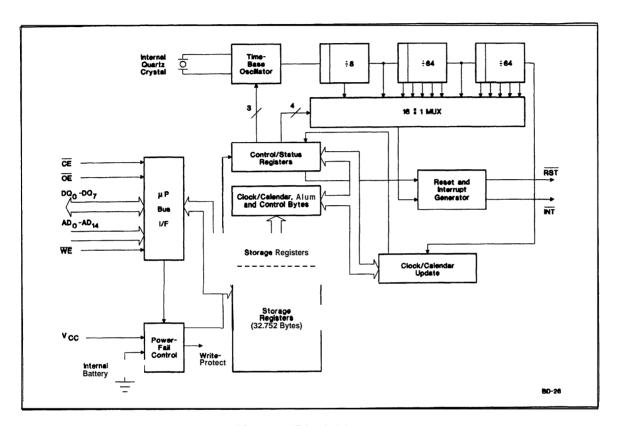


Figure 1. Block Diagram

Truth Table

Vcc	CE	ŌĒ	WE	Mode	DQ	Power
< Vcc (max.)	VIH	X	X	Deselect	High Z	Standby
	V_{IL}	X	V_{IL}	White	Din	Active
>Vcc (min.)	V _{IL}	$V_{\rm IL}$	Vm	Read	Dout	Active
	$V_{\rm IL}$	V _{IH}	V _{IH}	Read	High Z	Active
< V _{PFD} (min.) > V _{SO}	X	X	X	Deselect	High Z	CMOS standby
≤V _{SO}	X	X	X	Deselect	High Z	Battery-backup mode

2/16 Sept. 1996 C

Address Map

The **bq4832Y** provides 16 bytes of clock and control **status** registers and 32,752 **bytes of** storage RAM.

Figure 2 illustrates the address map for the **bq4832Y**. Table 1 is a map of the **bq4832Y** registers, and Table 2 describes the register bite.

Memory Interface

Read Mode

The **bq4832Y** ie **in read** mode whenever \overline{OE} (output enable) is low and \overline{CE} (chip enable) is low. The device architecture allows ripple-through **access** of data from eight of 262,144 locations in the static storage array. Thus, the unique address specified by the 15 **address** input edefines which one of the 32,768 bytes of data is to be **accessed**. Valid data is available at the data **IVO** pins within **tAA** (address access time) after the **last address** input signal is **stable**, providing that the \overline{CE} and \overline{OE} (output enable) access times are also satisfied. If the \overline{CE} and \overline{OE} access times are not met, valid data is available

after the latter of chip enable access time (tACR) or output enable access time (tOR).

CE and OE control the state of the eight three-state data I/O signals. If the outputs are activated before taa, the data lines are driven to an indeterminate state until taa. If the address inputs are changed while CE and OE remain low, output data remains valid for tOH (current data hold time), but goes indeterminate until the next address access.

Write Mode

The bq4832Y is in write mode whenever **WE** and **CE** are active. The start of a write is referenced from the latter-occurring falling edge of WE or **CE**. A write is terminated by the earlier rising edge of WE or **CE**. The addresses must be held valid throughout the cycle. **CE** or **WE** must return high for a minimum of twn from **CE** or twn from WE prior to the initiation of another read or write cycle.

Data-in must be valid tow prior to the end of write and remain valid for tohi or tohi afterward. OE should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{CE} and \overline{OE} , a low on \overline{WE} disables the outputs twz after \overline{WE} falls.

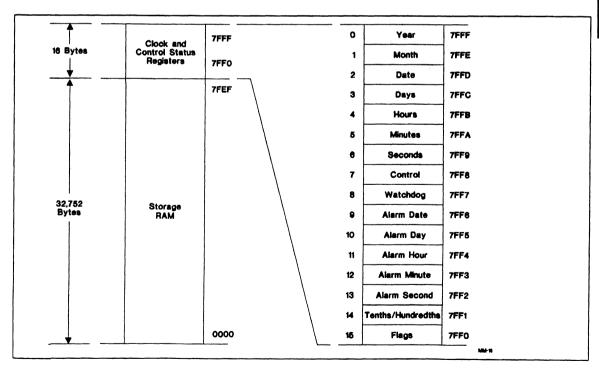


Figure 2. Address Map

Sept. 1996 C 3/16

Data-Retention Mode

With valid Vcc applied, the **bq4832Y** operates as a conventional static RAM. Should the supply voltage decay, the RAM automatically power-fail deselects, write-protecting **itself twpT** after Vcc falls below **VppD**. **All** outputs become high impedance, and all inputs are treated **as** don't care.'

If power-fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpt, write-protection takes place. When Vcc drops below Vso, the control circuit switches power to the internal energy source, which preserves data.

The internal coin cell maintains data in the bq4832Y after the initial application of Vcc for an accumulated period of at least 10 years when Vcc is less than Vso. As system power returns and Vcc rises above Vso, the battery is disconnected, and the power supply is switched to external Vcc. Write-protection continues for tcer after Vcc reaches Vpp to allow for processor stabilization. After tcer, normal RAM operation can resume.

Clock Interface

Reading the Clock

The interface to the clock and control registers of the bq4832Y is the same as that for the general-purpose storage memory. Once every **second**, the user-accessible clock/calendar locations are updated simultaneously from the internal real time counters. To prevent reading data in transition, updates to the bq4832Y clock registers should be halted. Updating is halted by setting the read bit D6 of the control register to 1. As long as the read bit is 1, updates to user-accessible clock locations are inhibited. Once the frozen clock information is retrieved by reading the appropriate clock memory locations, the read bit should be reset to 0 in order to allow updates to occur from the internal counters. Because the internal counters are not halted by setting the read bit, reading the clock locations has no effect on clock accuracy. Once the read bit is reset to 0, within one second the internal registera update the user-accessible registers with the correct time. A halt command issued during a clock update allows the update to occur before freezing the data.

Table 1. bq4832Y Clock and Control Register Map

Address	D7	D6	D5	D4	D3	D2	D1	D0	Range (h)	Register
7FFF		10 Y	ears			Yea	ır		00-99	Year
7FFE	X	X	X	10 Month		Mon	th		01-12	Month
7FFD	X	Х	10	Date		Dat	te		01–31	Date
7FFC	X	FTE	X	X	X		Day		01-07	Days
7FFB	X	Х	10 1	Hours		Hou	rs		00-23	Hours
7FFA	X		l0 Minut	es		Minu	ites		00–59	Minutes
7FF9	OSC		10 Seconds		Seconds			00-59	Seconds	
7FF8	W	R	S		Cal	libration			00–31	Control
7FF7	WDS	BM4	ВМЗ	BM2	BM1	BM0	WD1	WD0		Watchdog
7FF6	AIE	PWRIE	ABE	PIE	RS3	RS2	RS1	RS0		Interrupts
7FF5	ALM3	Х	10-da	te alarm		Alarm	date		01–31	Alarm date
7FF4	ALM2	X	10-hor	ır alarm		Alarm	hours		00-23	Alarm hours
7FF3	ALM1	Alaı	Alarm 10 minutes Alarm minutes				00–59	Alarm minutes		
7FF2	ALM0	Ala	rm 10 sec	conds	Alarm seconds				00-59	Alarm seconds
7FF1		0.1 se	econds		0.01 seconds		00-99	0.1/0.01 seconds		
7FF0	WDF	AF	PWRF	BLF	PF	X	х	Х		Flags

Notes: X =Unused bits; can be written and read.

Clock/Calendar data in 24-hour BCD format.

BLF = 1 for valid battery.

OSC = 1 stops the clock oscillator.

Interrupt enables are cleared on power-up.

4/16 Sept. 1996 C

Table 2. Clock and Control Register Bits

Bits	Description
ABE	Alarm interrupt enable in battery-backup mode
AF	Alarm interrupt flag
AIE	Alarm interrupt enable
ALM0-ALM3	Alarm repeat rate
BLF	Battery-low flag
BM0-BM4	Watchdog multiplier
FTE	Frequency test mode enable
OSC	Oscillator stop
PF	Periodic interrupt flag
PIE	Periodic interrupt enable
PWRF	Power-fail interrupt flag
PWRIE	Power-fail interrupt enable
R	Read clock enable
RS0-RS3	Periodic interrupt rate
S	Calibration sign
W	Write clock enable
WD0-WD1	Watchdog resolution
WDF	Watchdog flag
WDS	Watchdog steering

Setting the Clock

Bit **D7** of the control register is the write bit. Like the read bit, the write bit when set to a 1 halts updates to the clock/calendar memory locations. Once frozen, the locations can be written with the desired information in 24-hour BCD format. Resetting the write bit to 0 causes the written values to be transferred to the internal clock counters and allows updates to the user-accessible registers to resume within one second. Use the write bit, D7, only when updating the time registers (7FFF-7FF9).

Stopping and Starting the Clock Oscillator

The OSC bit in the **seconds** register turns the clock on or off. If the **bq4832Y is** to spend a significant period of time in storage, the clock oscillator can be turned off to preserve battery capacity. OSC **set** to 1 stops the clock oscillator. When OSC is reset to 0, the clock oscillator is turned on and clock updates to user-accessible memory locations occur within one second.

The OSC bit is set to 1 when shipped from the Benchmarq factory.

Calibrating the Clock

The bq4832Y real-time clock is driven by a quartz controlled oscillator with a nominal frequency of 32,768 He. The quartz crystal is contained within the bq4832Y package along with the battery. The clock accuracy of the bq4832Y module is tested to be within 20ppm or about 1 minute per month at 25°C. The oscillation rates of crystab change with temperature as Figure 3 shorn. To compensate for the frequency shift, the bq4832Y offers onboard software clock calibration. The user can adjust the calibration based on the typical operating temperature of individual applications.

The **software** calibration bite are located in the control register. Bits D0-D4 control the magnitude of correction, and bit D5 the direction (positive or negative) of correction. Assuming that the oscillator is running at exactly 32,786 Hz, each calibration step of D0-D4 adjusts the clock rate by **+4.068** ppm (**+10.7** seconds per month) or -2.034 ppm (-5.35 seconds per month) depending on the value of the sign bit D5. When the sign bit is 1, positive adjustment occurs; a 0 activates negative adjustment. The total range of clock calibration is **+5.5** or -2.75 minutes per month.

Two methods can be used to ascertain how much calibration a given bq4832Y may require in a system. The first involves simply setting the clock, letting it run for a month, and then comparing the time to an accurate known reference like WWV radio broadcasts. Based on the variation to the standard, the end user can adjust the clock to match the system's environment wen after the product is packaged in a non-serviceable enclosure. The only requirement is a utility that allows the and user to access the calibration bits in the control register.

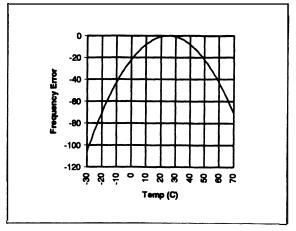


Figure 3. Frequency Error

Sept. 1996 C

The second approach uses a **bq4832Y** test mode. When the frequency test mode enable bit FTE in the days register is set to a 1, and the oscillator is running at exactly 32,768 Hz, the LSB of the seconds register toggles at 512 Hz. Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. For example, a reading of 512.01024 Hz indicates a (1E6.0.01024)/512 or +20 ppm oscillator frequency error, requiring ten steps of negative calibration (10 • - 2.034 or - 20.34) or 001010 to be loaded into the calibration byte for correction. To read the test frequency, the bq4832Y must be selected and held in an extended read of the **seconds** register, location 7FF9, without having the read bit set. The frequency appears on DQ0. The FTE bit must be set using the write bit control. The FTE bit must be reset to 0 for normal clock operation to resume.

Power-On Reset

The bq4832Y provides a power-on reset, which pulls the RST pin low on power-down and remains low on power-up for toba after VCC passes VPFD.

Watchdog Timer

The watchdog circuit monitors the microprocessor's activity. If the processor **does** not reset the watchdog timer **within the programmed** time-out period, the circuit asserts the $\overline{\text{INT}}$ or $\overline{\text{RST}}$ pin. The watchdog timer is activated by writing the desired time-out period **into** the eight-bit watchdog register described in Table 3 (device address **7FF7**). The five bits (**BM4-BM0**) store a **binary** multiplier, and the two lower-order bits (**WD1-WD0**) select the resolution, where $00 = \frac{1}{16}$ second, $01 = \frac{1}{4}$ second, 10 = 1 second, and 11 = 4 seconds.

The time-out period is the multiplication of the five-bit multiplier with the two-bit resolution. For example, writing 00011 in BM4-BMO and 10 in WD1-WD0 results in a total time-out setting of 3 x 1 or 3 seconds. A multiplier of zero disables the watchdog circuit. Bit 7 of the watchdog register (WDS) is the watchdog steering bit. When WDS is set to a 1 and a time-out occurs, the watchdog asserts a reset pulse for tcer on the RST pin. During the reset pulse, the watchdog register is cleared to all zeros disabling the watchdog. When WDS is set to a 0, the watchdog asserts the INT pin on a time-out. The INT pin remains low until the watchdog is reset by the microprocessor or a power failure occurs. Additionally,

when the watchdog times out, the watchdog flag bit (WDF) in the **flags** register, location **7FF0**, is set.

To reset the watchdog timer, the **microprocessor must** write to the watchdog register. After being reset by a write, the watchdog time-out period **starts** over. As a precaution, the watchdog circuit is disabled on a power failure. The user must, therefore, set the watchdog at boot-up for **activation**.

Interrupts

The **bq4832Y** allows four individually **selected interrupt events** to generate an interrupt **request** on the \overline{NT} pin. These four interrupt events are:

- The watchdog timer interrupt, programmable to occur according to the time-out period and conditions described in the watchdog timer section.
- The periodic interrupt, programmable to occur once every 122µs to 500ms.
- The alarm interrupt, programmable to occur once per second to once per month.
- The power-fail interrupt, which can be enabled to be asserted when the bq4832Y detects a power failure.

The periodic, alarm, and power-fail interrupts are enabled by an individual interrupt-enable bit in register **7FF6**, the interrupts register. When an event occurs, its event flag bit in the **flags** register, location **7FF0**, is set. If the corresponding event enable bit is **also** set, then an interrupt request is generated. **Reading** the flags register clears all flag bits and **makes** INT high impedance. To reset the flag register, the **bq4832Y** addresses must be held stable at location **7FF0** for at least **50ns** to avoid inadvertent resets.

Periodic Interrupt

Bits RS3–RS0 in the interrupts register program the rate for the periodic interrupt. The user can interpret the interrupt in two ways: either by polling the flags register for PF assertion or by setting PIE so that INT goes active when the bq4832Y sets the periodic flag. Reading the flags register resets the PF bit and returns INT to the high-impedance state. Table 4 shows the periodic rates.

Table 3. Watchdog Register Bits

MSB		Bits LSB					
7	6	5	4	3	2	1	0
WDS	BM4	BM3	BM2	BM1	BMO	WD1	WD0
6/16							Sent 1996 C

Table 4. Periodic Rates

RS3	RS2	RS1	RSO	Interrupt Rate
0	0	0	0	None
0	0	0	1	10ms
0	0	1	0	100ms
0	0	1	1	122.07με
0	1	0	0	244.14µs
0	1	0	1	488.281µs
0	1	1	0	976.5625
0	1	1	1	1.953125ms
1	0	0	0	3.90625ms
1	0	0	1	7.8125ms
1	0	1	0	15.625ms
1	0	1	1	31.25ms
1	1	0	0	62.5ms
1	1	0	1	125ms
1	1	1	0	250ms
1	1	1	1	500ms

Alarm Interrupt

Registers 7FF5–7FF2 program the real-time clock alarm. During each update cycle, the bq4832Y compares the date, hours, minutes, and seconds in the clock registers with the corresponding alarm registers. If a match between all the correaponding bytes is found, the alarm flag AF in the flags register is set. If the alarm interrupt is enabled with AIE, an interrupt request is generated on NT. The alarm condition is cleared by a read to the flags register. ALM3–ALM0 puts the alarm into a periodic mode of operation. Table 5 describes the selectable rates.

Table 5. Alarm Frequency(Alarm Bits DQ7 of Alarm Registers)

ALM3	ALM2	ALM1	ALMO	Alarm Frequency
1	1	1	1	Once per second
1	1	1	0	Once per minute when seconds match
1	1	0	0	Once per hour when minutes, and seconds match
1	0	0	0	Once per day when hours, minutes, and seconds match
0	0	0	0	When date, hours, minutes, and seconds match

The alarm interrupt can be made active while the bq4832Y is in the battery-backup mode by setting ABE in the interrupts register. Normally, the INT pin tristates during battery backup. With ABE set, however, INT is driven low if an alarm condition occurs and the AIE bit in set. Because the AIE bit is reset during power-on reset, an alarm generated during power-on reset updates only the flags register. The user can read the flags register during boot-up to determine if an alarm was generated during power-on reset.

Power-Fail Interrupt

When Vcc falls to the power-fail-detect point, the power-fail flag PWRF is set. If the power-fail interrupt enable bit (PWRIE) is also set, then INT in asserted low. The power-fail interrupt occurs twpr before the bq4832Y generates a reset and deselects. The PWRIE bit is cleared on power-up.

Battery-Low Warning

The **bq4832Y checks** the internal battery on power-up. If the battery voltage is below **2.2V**, the battery-low flag BLF in the flags register is set to a 1 indicating that clock and RAM data may be invalid.

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 7.0	V	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	
TstG	Storage temperature (Vcc off; oscillator off)	-40 to +70	°C	
TBIAS	Temperature under bias	-10 to +70	°C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. Exposure to conditions beyond **the** operational limits for extended periods of time may **affect** device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	V	
VSS	Supply voltage	0	0	0	V	
VIL	Input low voltage	-0.3		0.8	V	
V _{IH}	Input high voltage	2.2		Vcc + 0.3	V	

Note:

Typical values indicate operation at TA = 25°C.

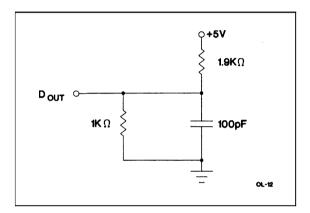
DC Electrical Characteristics (TA = TOPR, VCCmin VCC VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μA	V _{IN} = V _{SS} to V _{CC}
ILO	Output leakage current			± 1	μA	$\begin{array}{ c c c } \hline \overline{CE} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \\ \hline WE = V_{IL} \end{array}$
VOH	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 2.1 mA
IoD	RST, INT sink current	10			mA	V _{OL} = 0.4V
I _{SB1}	Standby supply current		3	6	mA	$\overline{CE} = V_{IH}$
I _{SB2}	Standby supply current		2	4	mA	$\overline{CE} \ge V_{CC} \cdot 0.2V$, $CV \le V_{IN} \le 0.2V$, or $V_{IN} \ge V_{CC} \cdot 0.2V$
Icc	Operating supply current		55	75	mA	$\frac{\text{Min. cycle, duty} = 100\%,}{\overline{\text{CE}} = V_{\text{IL}}, I_{\text{VO}} = 0\text{mA}}$
V _{PFD}	Power-fail-detectvoltage	4.30	4.37	4.50	V	
Vso	Supply switch-over voltage		3		V	

Notes:

Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$. RST and \overline{INT} are open-drain outputs.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			10	рF	Output voltage = OV
CIN	Input capacitance			10	pF	Input voltage = 0V

Note: These parameters are sampled and not 100% tested.

Sept. 1996 C

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 4 and 5

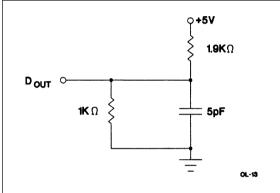
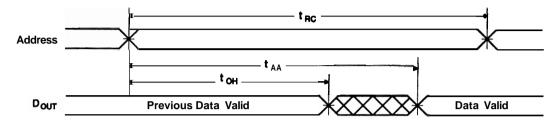
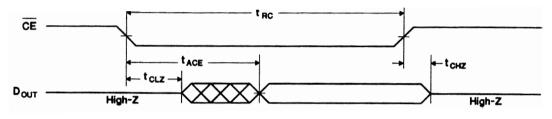


Figure 4. Output Load A

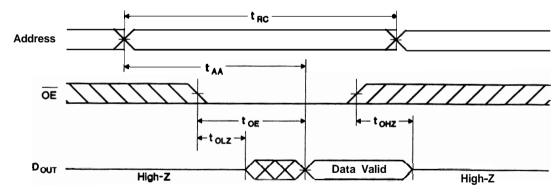

Figure 5. Output Load B

Read Cycle (TA = TOPR, VCCmin \(\leq \text{VCC} \(\leq \text{VCCmax} \)

		-85			
Symbd	Parameter	Min. Max.		Unit	Conditions
trc	Read cycle time	85		ns	
taa	Address access time		85	ns	Output load A
tace	Chip enable access time		85	ns	Output load A
toE	Output enable to output valid		45	ns	Output load A
tclz	Chip enable to output in low Z	5		ns	Output load B
tolz	Output enable to output in low Z	0		ns	Output load B
tchz	Chip disable to output in high Z	0	35	ns	Output load B
tonz	Output disable to output in high Z	0	25	ns	Output load B
tон	Output hold from address change	10		ns	Output load A


10/16 Sept. 1996 C

Read Cycle No. 1 (Address Access) 1,2


RC-1

Read Cycle No. 2 (CE Access) 1,3,4

RC-2

Read Cycle No. 3 (OE Access) 1,5

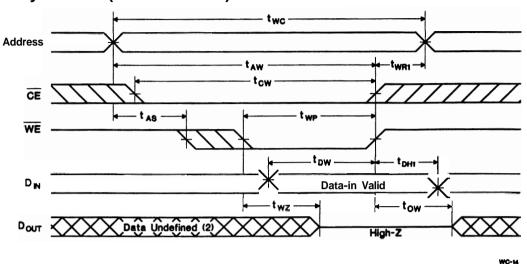
RC-a

Notes:

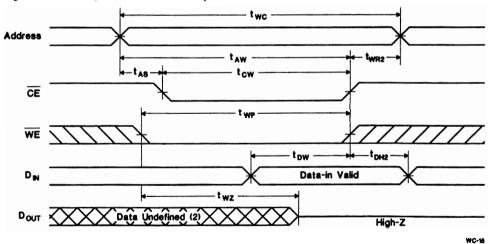
- 1. $\overline{\text{WE}}$ is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = VIL$
- 3. Address is valid prior to or coincident with \overline{CE} transition low.
- 4. $\overline{OE} = V_{IL}$
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$.

Sept. 1996 C

11/16


Write Cycle (TA =TOPR, VCCmin & VCC & VCCmax)

		-85			Conditions/Notes		
Symbol	Parameter	in.	in. Max. Units				
twc	Write cycle time	85		ns			
tcw	Chip enable to end of write	75		ns	(1)		
taw	Address valid to end of write	75		ns	(1)		
tas	Address setup time	0		ns	Measured from address valid to beginning of write. (2)		
twp	Write pulse width	65		_{ll} s	Measured from beginning of write to end of write. (1)		
twn1	Write recovery time (write cycle 1)	5		ns	Measured from WE going high to end of write cycle. (3)		
twr2	Write recovery time (write cycle 2)	15		ns	Measured from $\overline{\bf CE}$ going high to end of write cycle. (3)		
tow	Data valid to end of write	35		ns	Measured to first low-to-high transition of either CE or WE.		
t _{DH1}	Data hold time (write cycle 1)	0		ns	Measured from WE going high to end of write cycle. (4)		
t _{DH2}	Data hold time (write cycle 2)	10		_{II} S	Measured from $\overline{\mathbf{CE}}$ going high to end of write cycle. (4)		
twz	Write enabled to output in high Z	0	30	ns	1/O pins are in output state. (5)		
tow	Output active from end of write	0		ns	VO pins are in output state. (5)		


Notes:

- 1. A write ends at the earlier transition of $\overline{\bf CE}$ going high and $\overline{\bf WE}$ going high.
- 2. A <u>write occurs during the</u> overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write **begins** at the later transition of $\overline{\text{CE}}$ going low and $\overline{\text{WE}}$ going low.
- 3. Either twr1 or twr2 must be met.
- 4. Either tph1 or tph2 must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the outputs remain in high-impedance state.

Write Cycle No. 1 (WE-Controlled) 1,2,3

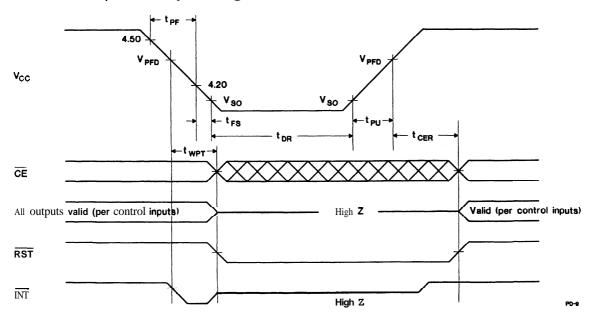
Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. $\overline{\textbf{CE}}$ or $\overline{\textbf{WE}}$ must be high during address transition.
- 2. Because VO may be active $(\overline{OE}\ low)$ during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twn1 or twn2 must be met.
- 5. Either t_{DH1} or t_{DH2} must be met.

Sept. 1996 C 13/16

Power-Down/Power-Up Cycle (TA = TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions	
tpf	V _{CC} slew, 4.50 to 4.20 V	300			μв		
trs	Vcc slew, 4.20 to Vso	10			μв		
tpu	Vcc slew, Vso to VPFD (max.)	0			μв		
tcer	Chip enable recovery time	40	100	200	ms	Time during which SRAM is write-protected after Vcc passes VFPD onpower-up.	
tDR	Data-retention time in absence of V _{CC}	10			years	T _A = 25°C. (2)	
twpr	Write-protect time	40	100	160	μв	Delay after Vcc slews down past VPFD before SRAM is write-protected.	

Notes:

- 1. Typical values indicate operation at TA = 25°C, Vcc = 5v.
- 2. Battery is disconnected from circuit until after **Vcc** is applied for the f i t time. **tpr** is the accumulated time in absence of power beginning when power is **first** applied **to** the device.

 $\begin{array}{ll} \hbox{Caution:} & \hbox{Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode} \\ & \hbox{may affect data integrity.} \end{array}$

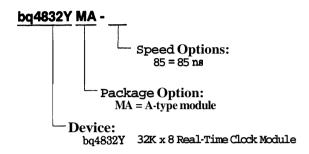
Power-Down/Power-Up Timing

Notes:

- 1. PWRIE is set to "1" to enable power fail interrupt.
- 2. RST and INT are open drain and require an external pull-up resistor.

14/16 Sept. 1996 C

Data Sheet Revision History


Change No.	Page No.	Description
1	4	Corrected the locations of bits D6 and D4 of the Interrupts Register and the corresponding bits D5 and D3 of the Flags Register (these were reversed).
2	4	Corrected the alarm date register (7FF5) to allow for 01-31 days in a month instead of 01-07 days.
2	9	lowered IsB1 from 4, 7mA to 3, 6mA; lowered IsB2 typical frcm2.5mA to 2mA.

Notes:

Change 1 = Mar.1996 B changes from Oct. 1995 A. Change 2 = Sept. 1996 C changes from Mar. 1996 B.

Sept. 1996 C

Ordering Information

16/16 Sept. 1996 C

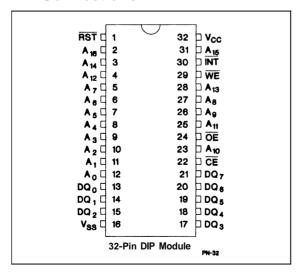
RTC Module With 128Kx8 NVSRAM

Features

- Integrated SRAM, real-time clock, CPU supervisor, crystal, power-fail control circuit, and battery
- Real-Time Clock counts hundredths of seconds through years in BCD format
- RAM-like clock access
- Compatible with industrystandard 128K x 8 SRAMs
- Unlimited write cycles
- 10-year minimum data retention and clock operation in the absence of power
- Automatic power-failchip deselect and write-protection
- Watchdog timer, power-on reset, alarm/periodic interrupt, powerfail and battery-low warning
- Software clock calibration for greater than ±1 minute per month accuracy

General Description

The **bq4842Y RTC** Module is a non-volatile 1,048,576-bit SRAM organized as 131,072 **words** by 8 bits with an integral accessible real-time clock and CPU **supervisor**. The CPU supervisor provides a programmable watchdog timer and a microprocessor **reset**. Other features include an alarm, power-fail, and periodic interrupt and a battery low warning.


The device combines an internal lithium battery, quartz crystal, clock and power-fail chip, and a full CMOS SRAM in a plastic 32-pin DIP module. The **RTC** Module directly replaces industry-standard **SRAMs** and **also** fits into many EPROM and EEPROM sockets without any requirement for special write timing or limitations on the number of write cycles.

Registers for the real-time clock, alarm and other special functions are located in registers **1FFF0h-1FFFFh** of the memory array.

The clock and alarm registers are dual-port **read/write** SRAM locations that are updated once per **second** by a clock control circuit from the internal clock counters. The dual-port **registers** allow clock **updates** to occur without **interrupting** normal access to the **rest** of the **SRAM** array.

The **bq4842Y** also **contains** a power-fail-detect circuit. The circuit deselects the device whenever **Vcc** falls below tolerance, providing a high degree of data **security**. The battery is electrically isolated when shipped from the **factory** to provide maximum battery capacity. The battery remains **disconnected** until the first application of **Vcc**.

Pin Connections

Pin Names

A ₀ -A ₁₆	Address input
CE	Chip enable
RST	Microprocessor reset
$\overline{\text{WE}}$	Write enable
ŌE	Output enable
DQ0-DQ7	Data in/data out
ĪNT	Programmable interrupt
Vcc	+5 volts
V_{SS}	Ground

Sept. 1996 C 1/16

Functional Description

Figure 1 is a block diagram of the bq4842Y. The following sections describe the bq4842Y functional

operation, including memory and clock interface, data-retention modes power on reset timing, watchdog timer activation, and interrupt generation.

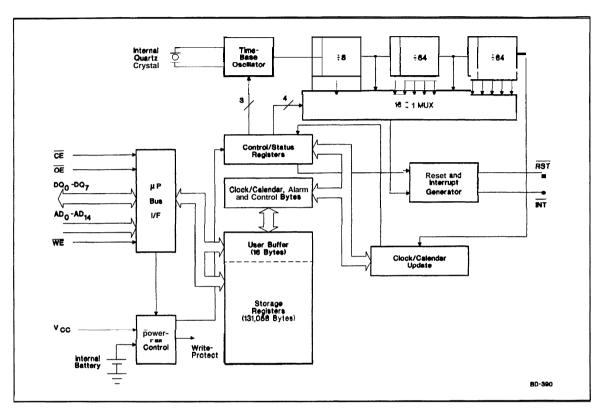


Figure 1. Block Diagram

Truth Table

Vcc	CE	ŌĒ	WE	Mode	DQ	Power
< V _{CC} (max.)	V_{IH}	X	X	Deselect	High Z	Standby
	$V_{\rm IL}$	X	VIL	Write	Dm	Active
> Vcc (min.)	VIL	VIL	V _{IH}	Read	Dout	Active
	V_{IL}	V _{IH}	V _{IH}	Read	High Z	Active
$< V_{\rm PFD} ({\rm min.}) > V_{\rm SO}$	X	X	X	Deselect	High Z	CMOS standby
≤V _{SO}	X	X	X	Deselect	High Z	Battery-backup mode

2/16 Sept. 1996 C

Address Map

The **bq4842Y** provides **16** bytes of clock and control **status registers** and **131,056** bytes of storage **RAM**.

Figure 2 illustrates the address map for the **bq4842Y**. Table 1 is a map of the **bq4842Y** registers, and Table 2 describes the register bite.

Memory Interface

Read Mode

The bq4842Y is in read mode whenever \overline{OE} (output enable) is low and \overline{CE} (chip enable) is low. The device architecture allows ripple-through access of data from eight of 1,048,576 locations in the static storage array. Thus, the unique address specified by the 17 address inputs defines which one of the 131,072 bytes of data is to be accessed. Valid data is available at the data IO pins within the (address access time) after the last address input signal is stable, providing that the \overline{CE} and \overline{OE} (output enable) access times are also satisfied. If the \overline{CE} and \overline{OE} for output enable access time (tor.)

CE and OE control the state of the eight three-state data I/O signals. If the outputs are activated before tan, the data lines

are driven to an indeterminate state until tAA. If the address inputs are charged while CE and OE remain low, output data remains valid for toH (output data hold time), but goes indeterminate until the next address access.

Write Mode

The bq4842Y is in write mode whenever \overline{WE} and \overline{CE} are active. The start of a write is referenced from the latter-occurring falling edge of \overline{WE} 3 \overline{CE} . A write is terminated by the earlier rising edge of WE or \overline{CE} . The addresses must be held valid throughout the cycle. \overline{CE} or \overline{WE} must return high for a minimum of twaz from \overline{CE} or twaz from \overline{WE} prior to the initiation of another read or write cycle.

Data-in must be valid tow prior to the end of write and remain valid for tohi afterward. OE should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on CE and OE, a low on WE disables the outputs two after WE falls.

Data-Retention Mode

With valid VCC applied, the **bq4842Y** operates as a conventional static RAM. Should the supply voltage decay, the RAM automatically power-fail deselects, write-protecting itself twpr after Vcc falls below Vppd. All outputs become high impedance, and all inputs are treated as don't care.

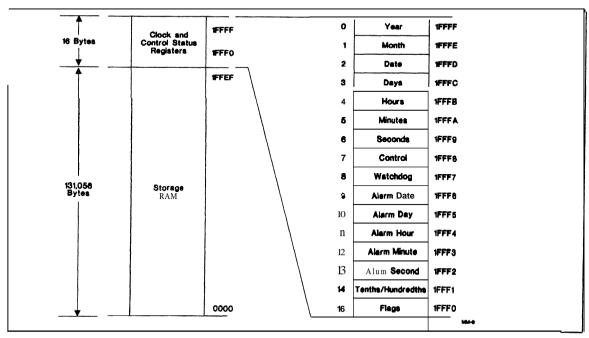


Figure 2. Address Map

Sept. 1996 C

3/16

If power-fail detection occurs during a valid access, the memory cycle continues to completion If the memory cycle fails to terminate within time twpt, write-protection takes place. When Vcc drops below Vso, the control circuit switches power to the internal energy source, which preserve8data.

The internal coin cell maintains data in the bq4842Y after the initial application of Vcc for an accumulated period of at least 10 years when Vcc is less than Vso. As system power returns and Vcc rises above Vso, the battery is disconnected, and the power supply is switched to external Vcc. Write-proketioncontinues for tcer after Vcc reaches Vprp to allow for processor stabilization After tcer, normal RAM operation can resume.

Clock Interface

Reading the Clock

The interface to the clock and control registers of the **bq4842Y** is the same as that for the **general-purpose** storage memory. Once every second, the user-accessible **clock/calendar** locations are updated simultaneously **from** the internal real time **counters**. To prevent reading data

in transition, updates to the **bq4842Y** clock registers should be halted. Updating ia halted by setting the read bit D6 of the control register to 1. As long as the read bit is 1, updates to user-accessible clock locations are inhibited. Once the frozen clock **information** is retrieved by reading the appropriate clock memory locations, the read bit should be **reset** to 0 in order to allow updates to cour from the internal counters. **Because** the internal counters are not halted by setting the read bit, reading the clock locations has no effect on clock accuracy. **Once** the read bit is **reset** to 0, within one **second** the internal registers update the **user-accessible registers** with the correct time. A halt command issued during a clock update allows the update to cour before **freezing** the data.

Setting the Clock

Bit D7 of the control register is the write bit. Like the read bit, the write bit when set to a 1 halts updates to the clock/calendar memory locations. Once frozen, the locations can be written with the desired information in 24-hour BCD format. Resetting the write bit to 0 causes the written values to be transferred to the internal clock counters and allows updates to the user-accessible registers to resume within one second. Use the write bit, D7, only when updating the time registers (1FFF-1FFF9).

Table 1. bq4842 Clock and Control Register Map

Address	D7	D6	D5	D4_	D3	D2	D1	D0	Range (h)	Register
1FFFF		10	lears			Yea	r		00–99	Year
1FFFF	X	X	X	10 Month	Month				01–12	Month
1FFFD	X	Х	10	Date		Dat	æ		01–31	Date
1FFFC	X	FTE	X	X	X Day				01–07	Days
1FFFB	X	X	101	Hours	Hours				00-23	Hours
1FFFA	X		10 Minut	es		Minu	ites		00-59	Minutes
1FFF9	OSC		10 Secon	ds		Seco	nds		00–59	Seconds
1FFF8	W	R	S		Cal	libration			00-31	Control
1FFF7	WDS	BM4	ВМЗ	BM2	BM1	ВМ0	WD1	WD0		Watchdog
1FFF6	AIE	PWRIE	ABE	PIE	RS3	RS2	RS1	RS0		Interrupts
1FFF5	ALM3	Х	10-da	te alarm		Alarm	date		01–31	Alarm date
1FFF4	ALM2	Х	10-ho	ur alarm		Alarm	hours		00-23	Alarm hours
1FFF3	ALM1	Ala	rm 10 mi	nutes Alarm minutes					00–59	Alarm minutes
1FFF2	ALMO	Alarm 10 seconds Alarm seconds					00–59	Alarm seconds		
1FFF1		0.1 seconds				0.01 seconds			00–99	0.1/0.01 seconds
1FFF0	WDF	AF	PWRF	BLF	PF	X	X	X		Flags

Note:

X = Unused bits; can be written and read.

Clock/Calendar data in 24-hour BCD format.

BLF = 1 for valid battery.

 $\overrightarrow{OSC} = 1$ stops the **clock** oscillator.

Interrupt enables are cleared on power-up.

4/16 Sept. 1996 C

Table 2. Clock and Control Register Bits

Description				
Alarm interrupt enable in battery-backup mode				
Alarm interrupt flag				
Alarm interrupt enable				
Alarm repeat rate				
Battery-low flag				
Watchdog multiplier				
Frequency test mode enable				
Oscillator stop				
Periodic interrupt flag				
Periodic interrupt enable				
Power-fail interrupt flag				
Power-fail interrupt enable				
Read clock enable				
Periodic interrupt rate				
Calibrationsign				
Write clock enable				
Watchdog resolution				
Watchdog flag				
Watchdog steering				

Stopping and Starting the Clock Oscillator

The OSC bit in the seconds register turns the clock on cr off. If the bq4842Y is to spend a significant period of time in storage, the clock oscillator can be turned off to preserve battery capacity. OSC set to 1 stops the clock oscillator. When OSC is reset to 0, the clock oscillator is turned on and clock updates to user-accessible memory locations occur within one second.

The **OSC** bit is set to 1 when shipped from the Benchmarg factory.

Calibrating the Clock

The bq4842Y real-time clock is driven by a quartz controlled oscillator with a nominal frequency of 32,768 Hz. The quartz crystal is contained within the bq4842Y package along with the battery. The clock accuracy of the bq4842Y module is tested to be within 20ppm a about 1 minute per month at 25°C. The oscillation rates of crystals change with temperature as Figure 3 shows. To compensate for the frequency shift, the bq4842Y offers onboard software clock calibration. The user can adjust

the calibration **based** on the typical operating temperature of individual applications.

The software calibration bits are located m the control register. Bite DO-D4 control the magnitude of correction, and bit D5 the direction (positive or negative) of correction. Assuming that the oscillator is running at exactly 32,786 Hz, each calibration step of D0-D4 adjusts the clock rate by +4.068 ppm (+10.7 seconds per month) or -2.034 ppm (-5.35 seconds per month) depending on the value of the sign bit D6. When the sign bit is 1, positive adjustment occurs; a 0 activates negative adjustment. The total range of clock calibration is +5.5 or -276 minutes per month.

Two methods can be used to ascertain how much calibration a given bq4842Y may require in a system. The first involves simply setting the dock, letting it run for a month, and then comparing the time to an accurate known reference like WWV radio broadcasts. Based on the variation to the standard, the end user can adjust the clock to match the system's environment even after the product is packaged in a non-serviceable enclosure. The only requirement is a utility that allows the end user to access the calibration bits in the control register.

The second approach uses a bq4842Y test mode. When the frequency test mode enable bit FTE in the days register is set to a 1, and the oscillator is running at exactly 32,768 Hz, the LSB of the seconds register toggles at 512 Hz. Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. For example, a reading of 512.01024 Hz indicates a (1E6-0.01024)/512 or +20 ppm oscillator frequency error, requiring ten steps of negative calibration (10-2.034 or -20.34) or 001010 to be loaded into the calibration byte for correction. To read the test frequency, the bq4842Y must be selected and held in an extended read of the seconds register, location 1FFF9, without having the read

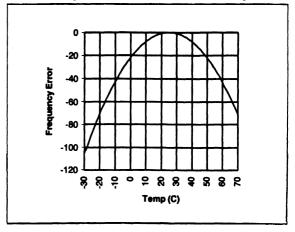


Figure 3. Frequency Error

Sept. 1996 C 5/16

bit set. The frequency appears on DQO. The FTE bit must be set using the write bit control. The FTE bit must be reset to 0 for normal clock operation to resume.

Power-On Reset

The bq4842Y provides a power-on reset, which pulls the RST pin low on power-down and remains low on power-up for tcer after Vcc passes VPFD.

Watchdog Timer

The watchdog circuit monitors the microprocessor's activity. If the processor does not reset the watchdog timer within the programmed time-out period, the circuit asserts the $\overline{\text{INT}}$ or $\overline{\text{RST}}$ pin. The watchdog timer is activated by writing the desired time-out period into the eight-bit watchdog register described in Table 3 (device address 1FFF7). The five bits (BM4–BM0) store a binary multiplier, and the two lower-order bits (WD1–WD0) select the resolution, where $0.0 = \frac{1}{16}$ second, $0.1 = \frac{1}{4}$ second, $0.1 = \frac{1}{16}$ second, and $0.1 = \frac{1}{16}$ second.

The time-out period is the multiplication of the five-bit multiplier with the two-bit resolution. For example, writing 00011 in BM4-BM0 and 10 in WD1-WD0 results in a total time-out setting of 3 x 1 or 3 seconds. A multiplier of zero disables the watchdog circuit. Bit 7 of the watchdog register (WDS) is the watchdog steering bit When WDS is set to a 1 and a time-out occurs, the watchdog asserts a reset pulse for tope on the RST pin. During the reset pulse, the watchdog register is cleared to all zeros disabling the watchdog. When WDS is set to a 0, the watchdog asserts the \overline{INT} pin on a time-out. The \overline{INT} pin remains low until the watchdog is reset by the microprocessor or a power failure occurs. Additionally, when the watchdog times out, the watchdog flag bit (WDF) in the flags register, location 1FFFO, is set.

To reset the watchdog timer, the microprocessor must write to the watchdog register. After being reset by a write, the watchdog time-out period starts over. As a precaution, the watchdog circuit is disabled on a power failure. The user must, therefore, set the watchdog at boot-up for activation.

Interrupts

The **bq4842Y** allows four individually selected **interrupt** events to generate an interrupt **request** on the **INT** pin. These four **interrupt** eventa are:

- The watchdog timer interrupt, programmable to **occur** according to the time-out period and conditions described in the watchdog timer section.
- The periodic interrupt, programmable to occur once every 122µs to 500ms.
- The alarm interrupt, programmable to occur once per second to once per month.
- The power-fail interrupt, which can be enabled to be asserted when the **bq4842Y** detects a power failure.

The periodic, alarm, and power-fail interrupts are enabled by an individual interrupt-enable bit in **register 1FFF6**, the interrupta register. When an event occurs, its event flag bit in the flage register, location **1FFF0**, is set. If the corresponding event enable bit is also set, then an interrupt request is generated. **Read**ing the flags register clears all flag bite and **makes** $\overline{1NT}$ high impedance. To reset the flag register, the **bq4842Y** addresses must be held stable at location **1FFF0** for at least **50ns** to avoid inadvertent resets.

Periodic Interrupt

Bits RS3-RS0 in the interrupts register program the rate for the periodic interrupt. The user can interpret the interrupt in two ways: either by polling the flags register for PF assertion or by setting PIE so that INT goes active when the bq4842Y sets the periodic flag. Reading the flags register resets the PF bit and returns INT to the high-impedance state. Table 4 shows the periodic rates.

Alarm Interrupt

Registers 1FFF5-1FFF2 program the real-time clock alarm. During each update cycle, the bq48427 compares the date, hours, minutes, and seconds in the clock registers with the corresponding alarm registers. If a match between all the corresponding bytes is found, the alarm flag AF in the flags register is set. If the alarm interrupt is enabled with AIE, an interrupt request is generated on INT. The alarm condition is cleared by a read to the flags

Table 3. Watchdog Register Bits

MSB		Bits						
7	6	5	4	3	2	1	0	
WDS	BM4	BM3	BM2	BM1	BMO	WD1	WD0	

6/16 Sept. 1996 C

register. **ALM3-ALM0** puts the alarm **into** a periodic mode of operation. Table 5 **describes** the selectable ratee.

The alarm interrupt can be made active while the bq4842Y is in the battery-backup mode by setting ABE in the interrupts register. Normally, the INT pin tri-states during battery backup. With ABE set, however, INT is driven low if an alarm condition occurs and the AIE bit is set. Because the AIE bit is reset during power-on reset, an alarm generated during power-on reset updates only the flags register. The user can read the flags register during boot-up to determine if an alarm was generated during power-on reset.

Power-Fail Interrupt

When Vcc falls to the power-fail detect point, the power-fail flag PWRF is set. If the power-fail interrupt enable bit (PWRIE) is also set, then INT is asserted low. The power-fail interrupt occurs twpr before the bq4842Y generates a reset and deselects. The PWIE bit is cleared on power-up.

Battery-Low Warning

The **bq4842Y** checks the internal battery on power-up. If the battery voltage is below **2.2V**, the battery-low flag **BLF** in the **flags register is set** to a 1 indicating that clock and RAM data may be invalid.

Table 4. Periodic Rates

RS3	RS2	RS1	RS0	Interrupt Rate
0	0	0	0	None
0	0	0	1	10ms
0	0	1	0	100ms
0	0	1	1	122.07µs
0	1	0	0	244.14µs
0	1	0	1	488.281
0	1	1	0	976.5625
0	1	1	1	1.953125ms
1	0	0	0	3.90625ms
1	0	0	1	7.8125ms
1	0	1	0	15.625ms
1	0	1	1	31.25ms
1	1	0	0	62.5ms
1	1	0	1	125ms
1	1	1	0	250ms
1	1	1	1	500ms

Table 5. Alarm Frequency (Alarm Bits DQ7 of Alarm Registers)

ALM3	ALM2	ALM1	ALM0	Alarm Frequency
1	1	1	1	Once per second
1	1	1	0	Once per minute when seconds match
1	1	0	0	Once per hour when minutes, and seconds match
1	0	0	0	Once per day when hours, minutes, and seconds match
0	0	0	0	When date, hours, minutes, and seconds match

Sept. 1996 C 7/16

Absolute Maximum Ratings

Symbol	Parameter	Valw	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	v	
Vт	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 7.0	v	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	
Tstc	Storage temperature (Vcc off; oscillator off)	-40 to +70	°C	
TBIAS	Temperature under bias	-10to +70	°C	
TSOLDER	Solderingtemperature	+260	°C	For 10 seconds

Note:

Permanent device damage may cour if **Absolute Maximum Ratings** are exceeded. **Functional** operation should be limited to the Recommended DC **Operating Conditions** detailed in this data **sheet. Exposure** to **conditions** beyond the operational **limits** for extended periods of time **may** affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	V	
V_{SS}	Supply voltage	0	0	0	v	
V_{IL}	Input low voltage	-0.3	-	0.8	v	
V_{IH}	Input high voltage	2.2	•	Vcc + 0.3	v	

Note:

Typical values **indicate** operation at TA = **25°C**.

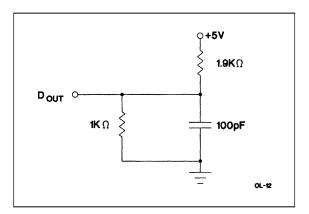
DC Electrical Characteristics (TA = TOPR, VCCmin < VCC < VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
Iti	Input leakage current			‡ 1	μА	$V_{\rm IN}$ = $V_{\rm SS}$ to $V_{\rm CC}$
Ito	Output leakage current			± 1	μА	$\frac{\overline{CE}}{WE} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or }$ $WE = V_{IL}$
Voh	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	$I_{OL} = 2.1 \text{ mA}$
IoD	RST, INT sink current	10			mA	V _{OL} = 0.4V
I _{SB1}	Standby supply current		3	6	mA	$\overline{CE} = V_{IH}$
I _{SB2}	Standby supply current		2	4	mA	CE ≥ V _{CC} · 0.2V, OV I; V _{IN} ≤ 0.2V, or V _{IN} ≥ V _{CC} · 0.2V
Icc	Operating supply current		75	105	mA	$\underline{\underline{\text{Min.}}}$ cycle, duty = 100%, $\overline{\text{CE}}$ = V_{IL} , I_{VO} = 0mA
VPFD	Power-fail-detectvoltage	4.30	4.37	4.50	V	
Vso	Supply switch-over voltage		3		V	

Notes: Typical values indicate operation at $TA = 25^{\circ}C$, $V_{CC} = 5V$.

RST and INT are open-drain outputs.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			10	рF	Output voltage = OV
Cin	Input capacitance			10	pF	Input voltage = OV

Note: These parameters are sampled and not 100% tested.

Sept. 1996 C 9/16

AC Test Conditions

Parameter	Test Condition8
Input pulse levels	0V to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load including scope and jig)	See Figures 4 and 5

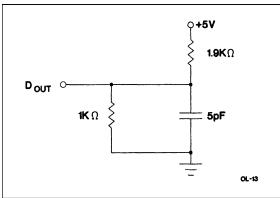
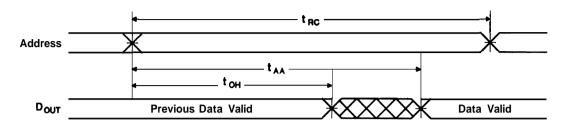
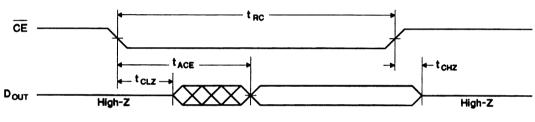


Figure 4. Output Load A

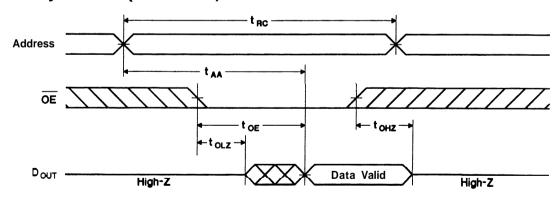

Figure 5. Output Load B

Read Cycle (TA = TOPR, VCCmin \leq VCC \leq VCCmax)


		-8	-85		
Symbol	Parameter	Min.	Max.	Unit	Conditions
trc	Read cycle time	85		ns	
taa	Address access time		85	ns	Output load A
tACE	Chip enable access time		85	ns	Outputload A
toE	Output enable to output valid		45	ns	Outputload A
tclz	Chip enable to output in low Z	5		ns	Output load B
tolz	Output enable to output in low Z	0		ns	Output load B
tchz	Chip disable to output in high Z	0	35	ns	Output load B
tonz	Output disable to output in high Z	0	25	ns	Outputload B
toH	Output hold from address change	10		ns	Output load A

10/16 Sept. 1996 C

Read Cycle No. 1 (Address Access) 1,2



Read Cycle No. 2 (CE Access) 1,3,4

C-2

Read Cycle No. 3 (OE Access) 1,5

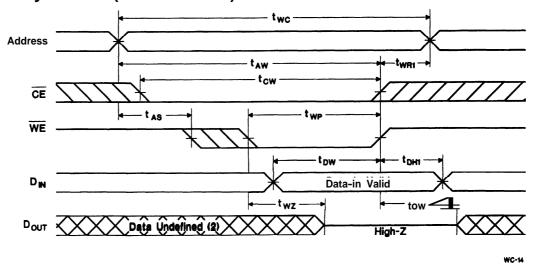
RC-3

Notes:

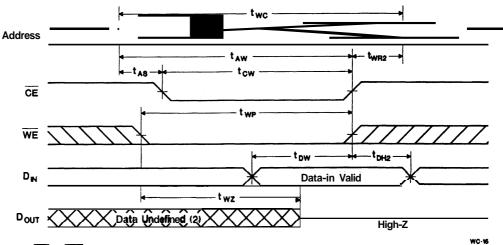
- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$

Sept. 1996 C

11/16


Write Cycle (TA =TOPR, VCCmin & VCC & VCCmax)

		-85			
Symbol	Parameter	in.	n . Max. Units		Conditions/Notes
twc	Write cycle time	85		ns	
tcw	Chip enable to end of write	75		ns	(1)
taw	Address valid to end of write	75		ns	(1)
tas	Address setup time	0		ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	65		ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5		ns	Measured from WE going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15		ns	Measured from $\overline{\bf CE}$ going high to end of write cycle. (3)
t _{DW}	Data valid to end of write	35		ns	Measured to first low-to-high transition of either CE or WE.
t _{DH1}	Data hold time (write cycle 1)	0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10		ns	Measured from \overline{CE} going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	30	ns	I/O pins are in output state. (5)
tow	Output active from end of write	0		ns	I/O pins are in output state. (5)


Notes:

- 1. A write ends at the earlier transition of $\overline{\mathbf{CE}}$ going high and $\overline{\mathbf{WE}}$ going high.
- 2. A <u>write occurs during the</u> overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write begins at the later transition of $\overline{\textbf{CE}}$ going low and $\overline{\textbf{WE}}$ going low.
- 3. Either twr1 or twr2 must be met.
- 4. Either tph1 or tph2 must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the outputs remain in high-impedance state.

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

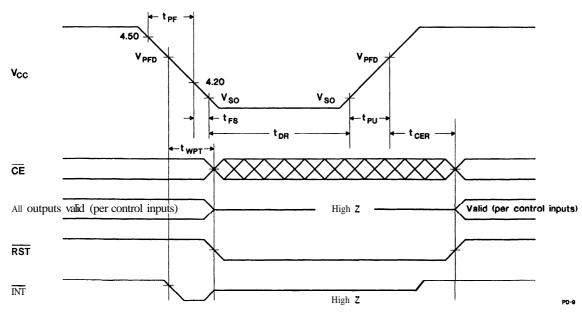
Notes:

- 1. \overline{CE} or \overline{WE} must be high during address transition.
- 2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twn1 or twn2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1996 C

13/16

Power-Down/Power-Up Cycle (TA = TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpf	Vcc slew, 4.50 to 4.20 V	300			μs	
tfs	Vcc slew, 4.20 to Vso	10			μв	
tpu	Vcc slew, Vso to VPFD (max.)	0			με	
tcer	Chip enable recovery time	40	100	200	ms	Time during which SRAM is write-protected after Vcc passes VFPD on power-up.
t _{DR}	Data-retention time in absence of V _{CC}	10			years	$T_A = 25^{\circ}C.(2)$
twpr	Write-protect time	40	100	160	με	Delay after Vcc slews down past VPFD before SRAM is write-protected.

Notes:

- 1. Typical values indicate operation at TA = 25°C, Vcc = 5V.
- 2. Battery is disconnected from circuit until after Vcc is applied for the first time. ton is the accumulated time in absence of power beginning when power is first applied to the device.

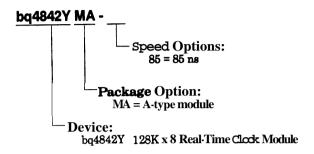
Caution: Negative undershoots below the absolute maximum rating of **-0.3V** in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

Notes:

- 1. PWRIE is set to 'I' to enable power fail interrupt.
- 2. **RST** and **INT** are open drain and require an external pull-up resistor.

14/16 Sept. 1996 C


Data Sheet Revision History

Change No.	Page No.	Description			
1	4	Corrected the locations of bits D6 and D4 of the Interrupts Register and the corresponding bits D5 and D3 of the Flaw Register (these were reversed).			
2	4	Corrected the alarm date register (7FF5) to allow for 01-31 days in a month instead of 01-07 days.			
2	9	Lowered I _{SB1} from 4 typ. and 7 mex. to 3, 6. Lowered I _{SB2} typ. from 2.5 to 2.			

Change 1 = Mar. 1996 B changes from Oct. 1995 A. Change 2 = Sept. 1996 C changes from Mar. 1996 B. **Notes:**

Sept. I OW C15/16

Ordering Information

16/16 Sept. 1996 C

bq4845/bq4845Y

Parallel RTC With CPU Supervisor

Features

- Real-Time Clock counts seconds through years in BCD fonnat
- On-chip battery-backup switchover circuit with nonvolatile control for external SRAM
- Less than 500nA of clock operation current in backup mode
- Microprocessor reset valid to Vcc = Vss
- Independent watchdog timer with a programmable time-out period
- Power-fail interrupt warning
- Programmableclock alarm interrupt active in batterybackup mode
- ➤ Programmable periodic interrupt
- Battery-lowwarning

General Description

The **bq4845** Real-Time Clock is a low-power microprocessor peripheral that integrates a time-of-day clock, a 100-year calendar, and a **CPU** supervisor in a 28-pin SOIC or **DIP**. The **bq4845** is ideal for fax machines, copiers, industrial control system, point-of-sale **terminals**, data **loggers**, and computers.

The bq4845 provides direct connections for a 32.768KHz quartz crystal and a 3V backup battery. Through the use of the conditional chip enable output (CEout) and battery voltage output (Vout) pins, the bq4845 can write-protect and make nonvolatile external SRAMs. The backup cell powers the real-time clock and maintains SRAM information in the absence of system voltage.

The **bq4845** contains a temperature compensated reference and **comparator** circuit that monitors the status of its voltage supply. When the bq4845 detects an out-of-tolerance condition, it generates an interrupt warning and

subsequently a microprocessor reset. The reset stays active for 200ms after Vcc rises within tolerance, to allow for power supply and processor stabilization.

The **bq4845** also has a built-in watchdog timer to monitor **processor** operation. If the **microprocessor** does not toggle the watchdog input (WDI) within the **programmed** time-out period, the bq4845 asserts WDO and RST. WDI unconnected disables the watchdog timer.

The bq4845 can generate other interrupta based on a clock alarm condition or a periodic setting. The alarm interrupt can be set to occur from once per second to once per month. The alarm can be made active in the battery-backup mode to serve as a system wake-up call. For interrupts at a rate beyond once per second, the periodic interrupt can be programmed with periods of 30.5µs to 500ms.

Pin Connections

b v_{cc} Vout 🗆 28 - WE X1 🗆 27 2 26 | CEIN X2 🗆 3 25 DE OUT WDO C INT d 5 24 b вс RST [23 D WDI 6 7 22 D OE A₃ [A₂ 8 21 D CS 20 | V_{SS} $A_1 \Box$ 9 A₀ \square 10 19 DQ7 DQ 0 11 18 DQ a b DQ 6 DQ 1 12 17 DQ 2 D DQ4 16 15 DQ3 V_{SS} 28-Pin DIP or SOIC

Pin Names

A0-A3	Clock/control address inputs	BC	Backup battery input
DQ ₀ -DQ ₇	Data inputs/outputs	Vout	Back-up battery output
WE	Write enable	ĪNT	Interrupt output
Œ	Output enable	RST	Microprocessor reset
CS	Chip select input	WDI	Watchdog input
CEIN	External RAM chip enable	$\overline{\text{WDO}}$	Watchdog output
CEOUT	Conditional RAM chip	V_{CC}	+5V supply
	enable	V_{SS}	Ground
X 1, X2	Crystal inputs		

Aug. 1995

1/18

Functional Description

Figure 1 is a block diagram of the bq4845. The following sections describe the bq4845 functional operation including clock interface, data-retention modes, power-

on reset timing, watchdog timer activation, and interrupt generation.

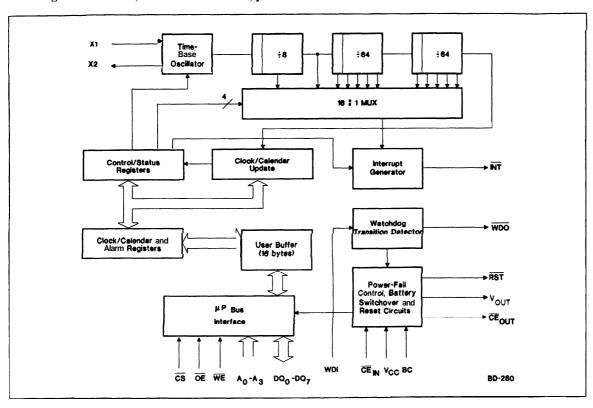


Figure 1. Block Diagram

Truth Table

Vcc	CS	ŌĒ	WE	CEout	Vouт	Mode	DQ	Power
< V _{CC} (max.)	VIH	X	х	<u>CE</u> IN	Vouti	Deselect	High Z	Standby
	VIL	Х	VIL	<u>CE</u> IN	Vouti	Write	Din	Active
> V _{CC} (min.)	VIL	V _{IL}	V _{IH}	CEIN	Vouri	Read	Dout	Active
	VIL	V_{IH}	VIH	CEIN	Vouti	Read	High Z	Active
< V _{PFD} (min.) > V _{SO}	Х	Х	Х	Vон	V _{OUT1}	Deselect	High Z	CMOS standby
≤ V _{SO}	X	X	Х	V _{OHB}	V _{OUT2}	Deselect	High Z	Battery-backup mode

2/18 Aug. 1995

Pin Descriptions

X1, X2 Crystal inputs

X1 and X2 are a direct connection for a 32.768kHZ, 6pF crystal.

RST Reset output

RST goes low whenever Vcc falls below the power fail threshold. RST will remain low for 200ms typical after Vcc crosses the threshold on power-up. RST also goes low whenever a watchdog timeout occurs. RST is an opendrain output.

INT Interrupt output

INT goes low when a **power** fail, periodic, or alarm condition *occurs*. INT is an open-drain output.

WDI Watchdog input

WDI is a three-level input. If WDI remains either high or low for longer than the watchdog time-out period (1.5 seconds default), WDO goes low. WDO remains low until the next transition at WDI. Leaving WDI unconnected disables the watchdog function. WDI connects to an internal voltage divider between Vour and Vss, which sets it to mid-supply when left unconnected.

WDO Watchdog output

WDO goes low if WDI remains either high or low longer than the watchdog time-out period. WDO e high on the next transition at WDI. WDO remains high if WDI is unconnected.

Ao-A₃ Clock address inputs

Ao-As allow **access** to the 16 bytes of realtime clock and control **registers**.

DQo-DQ7 Data input and output

DQo-DQ7 provide x8 data for real-time clock information. These pins connect to the memory data bus.

Vss Ground

Chip select

OE Output enable

OE provides the read control for the RTC memory locations.

CEour Chip enable output

CEOUT goes low only when CEIN is low and CEIN

will stay low for 100µs or until CEIN goes high, whichever occurs first.

CE_{IN} Chip enable input

CEIN is the input to the chip-enable gating circuit.

BC **Backup** battery input

BC should be **connected** to a **3V** backup cell. **A** voltage within the V_{BC} range on the BC pin should be present upon power up to provide proper oscillator start-up.

Vour Output supply voltage

Vout provides the higher of **Vcc** or **VBc**, switched internally, to supply external RAM.

WE Write enable

WE provides the write control for the RTC memory locations.

Vcc Input supply voltage

+5V input

Address Map

The **bq4845** provides 16 **bytes** of clock and control status registers. Table 1 is a map of the **bq4845** registers, and Table 2 describes the register bits.

Clock Memory Interface

The **bq4845** has the same interface for **clock/calendar** and control information as standard SRAM. To read and write to these locations, the user must put the **bq4845** in the proper mode and meet the timing requirements.

Read Mode

The bq4845 is in read mode whenever \overline{OE} (Output enable) is low and \overline{CS} (chip select) is low. The unique address, specified by the 4 address inputs, defines which one of the 16 clock/calendar bytes is to be accessed. The bq4845 makes valid data available at the data \overline{VO} pins within tAA (address access time). This occurs after the last address input signal is stable, and providing the \overline{CS} and \overline{OE} (output enable) access times are met. If the \overline{CS} and \overline{OE} access times are not met, valid data is available after the latter of chip select access time (tacs) or output enable access time (toe).

 $\overline{\text{CS}}$ and $\overline{\text{OE}}$ control the state of the eight three-state data VO signals. If the outputs are activated before t_{AA} , the

Table 1. bq4845 Clock and Control Register Map

Address (h)	D7	D6	D5	D4	D3	D2	D1	D0	12-Hour Range (h)	Register	
0	0	10-s	econd di	git		1-secon	d digit		00–59	Seconds	
	A 7 3 51	ALM0				1	4:س:ل <i>د</i> لد		00–59	Seconds alarm	
1	ALM1	10-s	econd di	git		1-secon	a aigit		00-09	Seconds aranin	
2	0	10-n	ninute d	igit		1-minut	te digit		00–59	Minutes	
	A T D 51	ALM0				1	المناها		00–59	Minutes alarm	
3	ALM1	10-n	ninute d	igit		1-minut	te digit		00-09	Williues alarm	
4	PM/AM	0	10-hou	ır digit		1-hour	digit		01-12 AM/81-92 PM	Hours	
5	ALM1 PM/AM	ALM0	10-hou	ır digit		1-hour digit		01-12 AM/ 81-92 PM	Hours alarm		
6	0	0	10-da	y digit		1-day	digit		01–31	Day	
7	ALM1	ALM0		y digit		1-day	digit		01–31	Day alarm	
8	0		0		0	Day-c	of-week di	git	01-07	Day-of-week	
9	0	0	0	10 mo.		1-mont	h digit		01–12	Month	
A		10-year	year digit 1-year digit 00-99		00-99	Year					
В	•	WD2	WD1	WD0	RS3	RS2	RS1	RS0		Programmable rates	
C	•		•	<u> </u>	AIE	PIE	PWRIE	ABE		Interrupt enables	
D	٠		•		AF	PF	PWRF	BVF		Flags	
E	•		•		UTI				Control		
F	•	•	•	•	•	•	•	•		Unused	

Notes:

Clock calendar data in BCD. Automatic leap year adjustment.

PM/AM = 1 for **PM**; **PM/AM** = 0 for AM.

DSE = 1 enables daylight savings adjustment.

24/12 = 1 enables 24-hour data representation; 24/12 = 0 enables 12-hour data representation.

Day-of-Weekcoded as Sunday = $\hat{1}$ through Saturday = 7.

BVF = 1 for valid battery.

STOP = 1 turns the RTC on; STOP = 0 stops the RTC in back-up mode.

Register C is cleared on power-up.

4/18 Aug. 1995

^{• =} Unused bits; unwritable and read as 0.

^{0 =} should be set to 0 for valid time/calendar range.

Table 2. Clock and Control Register Bits

Bits	<u>Description</u>					
24/12	24- or 12-hour representation					
ABE	Alarm interrupt enable in battery-backup mode					
AF	Alarm interrupt flag					
AIE	Alarm interrupt enable					
ALM0-ALM1	Alarm mask bits					
BVF	Battery-valid flag					
DSE	Daylightsavings time enable					
PF	Periodic interrupt flag					
PIE	Periodic interrupt enable					
PM/AM	PM or AM indication					
PWRF	Power-fail interrupt flag					
PWRIE	Power-fail interrupt enable					
RSO-RS3	Periodic interrupt rate					
STOP	Oscillator stop and start					
UTI	Update transfer inhibit					
WD0 - WD2	Watchdog time-out rate					

data lines are driven to an **indeterminate** state until taa. If the address inputs are changed while \overline{CS} and \overline{OE} remain low, output data remains valid for toH (output data hold time), but goes indeterminate until the next address access.

Write Mode

The bq4845 is in write mode whenever WE and CS are active. The start of a write is referenced from the latter-occurring falling edge of WE or CS. A write is terminated by the earlier rising edge of WE or CS. The addresses muet be held valid throughout the cycle. CS or WE must return high for a minimum of twn2 from CS or twn1 from WE prior to the initiation of another read or write cycle.

Data-in **must** be valid **tow** prior to the **end of** write and remain valid for **tdh1** or **tdh2 afterward.** \overline{OE} should be kept high during write cycles to avoid bus contention; **although, if the** output **bus has** been activated by a low on \overline{CS} and \overline{OE} , a low on \overline{WE} **disables** the outputs **twz after** \overline{WE} falls.

Reading the Clock

Once every second, the user-accessible clock/calendar locations are updated simultaneously from the internal real time counters. To prevent reading data in transition, updatee to the oq4845 clock registers should be halted. Updating is halted by setting the update transfer inhibit (UTI) bit D3 of the control register E. As long as the UTI bit is 1, updatee to user-accessible clock locations are inhibited. Once the frozen clock information b retrieved by reading the appropriate clock memory locations, the UTI bit should be reset to 0 in order to allow updatee to occur from the internal counters. Because the internal counters are not halted by setting the UTI bit, reading the clock locations has no effect on clock accuracy. Once the UTI bit is reset to 0, the internal **registers** update within one second the useraccessible registers with the correct time. A halt command **issued** during a clock update **allows** the update to occur before freezing the data.

Setting the Clock

The UTI bit must also be used to set the bq4845 clock. Once set, the locations can be written with the desired information in BCD format. Resetting the UTI bit to 0 causes the written values to be transferred to the internal clock counters and allows updates to the user-accessible registers to resume within one second.

Stopping and Starting the Clock Oscillator

The bq4845 clock can be programmed to turn off when the part goes into battery back-up mode by setting \$\overline{STOP}\$ to 0 prior to power down. If the board using the bq4845 is to spend a significant period of time in storage, the \$\overline{STOP}\$ bit can be used to preserve some battery capacity. \$\overline{STOP}\$ set to 1 keeps the clock running when Vcc drops below Vso. With Vcc greater than Vso, the bq4845 clock runs regardless of the state of \$\overline{STOP}\$.

Power-Down/Power-Up Cycle

The bq4845 continuously monitors V_{CC} for out-of-tolerance. During a power failure, when V_{CC} falls below V_{PPD}, the bq4845 write-protects the clock and storage registers. When V_{CC} is below V_{BC} (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When V_{CC} is above V_{BC}, the power source is V_{CC}. Write-protection continues for t_{CSR} time after V_{CC} rises above V_{PPD}.

An external CMOS static **RAM** is battery-backed using the **Vour** and chip enable output pins from the 24845. As the voltage input **Vcc slews down** during a power failure, the chip enable output, **CEOUT** is forced inactive independent of the chip enable input **CEIN**.

This activity unconditionally **write-protects** the **external** SRAM as **Vcc** falls below **VPFD**. If a memory **access is** in progress to the external **SRAM** during power-fail detection, that memory cycle **continues** to completion before the memory is write-protected. If the memory cycle is not terminated within time twpt, the chip enable output is unconditionally driven high, write-protecting the controlled SRAM.

As the supply **continues** to fall past **VPFD**, an internal switching **device forces Vow** to the external backup energy source. **CEOUT** is held high by the **VOUT** energy source.

During power-up, **Vout** is switched back to the **5V** supply as **V**_{CC} **rises** above the backup cell input voltage sourcing **V**_{OUT}. **CE**_{OUT} is held inactive for time tobe **after** the power supply has reached **V**_{PPD}, independent of the **CE**_{IN} input, to allow for processor stabilization.

During power-valid operation, the **CE**_{IN} input is passed through to the **CEom** output with a propagation delay of less than **12ns**.

Figure 2 shows the hardware. hookup for the external RAM, battery, and crystal.

A primary backup energy source input is provided on the **bq4845**. The **BC** input accepts a 3V primary battery, typically some type of lithium chemistry. Since the **bq4845** provides for reverse battery charging protection, no diode or current limiting resistor is needed in series with the cell. To prevent **battery drain** when there is no valid data to retain, **Vout** and **CEout** are **internally** isolated **from BC** by the initial connection of a battery. Following the **first** application of **VCC** above **VPFD**, this isolation is **broken**, and the backup cell provides power to **Vout** and **CEout** for the external SRAM.

The crystal should be located as close to X1 and X2 as **possible** and meet the specifications in the *Crystal* Specification Table. With the specified **crystal**, the **bq4845** RTC will be accurate to within one minute per month at room temperature. In the absence of a crystal, a 32.768 kHz waveform can be fed **into X1** with X2 grounded.

Power-On Reset

The bq4845 provides a power-on reset, which pulls the RST pin low on power-down and remains low on power-up for trst after Vcc passes VPFD. With valid battery voltage on BC, RST remains valid for Vcc= Vss.

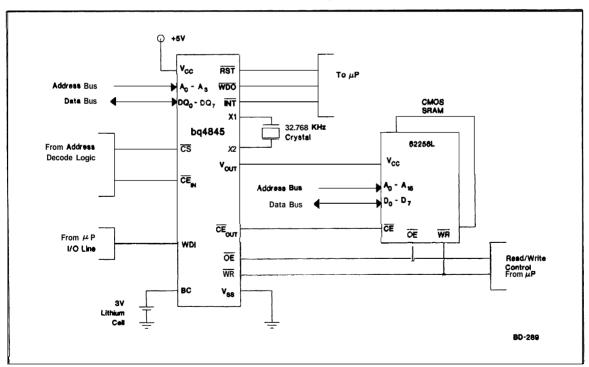


Figure 2. bq4845 Application Circuit

6/18 Aug. 1995

Watchdog Timer

The watchdog monitors microprocessor activity through the Watchdog input (WDI). To use the watchdog function, connect WDI to a bus line or a microprocessor I/O line. If WDI remains high or low for longer than the watchdog time-out period (1.5 seconds default), the bq4845 asserts WDO and RST.

Watchdog Input

The bq4845 resets the watchdog timer if a change of state (high to low, low to high, or a minimum 100ns pulse) occurs at the Watchdog time-out is set by WDO WD2 in register B. The bq4845 maintains the watchdog time-out programming through power cycles. The default state (no valid battery power) of WDO-WD2 is 000 or 1.5s on power-up. Table 3 shows the programmable watchdog time-out rates. The watchdog time-out period immediately after a reset is equal to the programmed watchdog time-out.

To disable the watchdog function, leave WDI floating. An internal resistor network (100kΩ equivalent impedance at WDI) biases WDI to approximately 1.6V, internal comparators detect this level and disable the watchdog biquesty when we have the power of all thresholds the

WDI from its internal resistor network, thus making it high impedance.

Watchdog Output

The Watchdog output (WDO) remains high if there is a transition or pulse at WDI during the watchdog time-out period. The bq4845 disables the watchdog function and WDO is a logic high when Vcc is below the power fail threshold, battery-backup mode is enabled, or WDI is an open circuit. In watchdog mode, if no transition occurs at WDI during the watchdog time-out period, the bq4845 asserts RST for the reset time-out period to the bq4845 asserts RST for the reset time-out period. The bq4845 asserts RST for the reset time-out period to the bq4845 asserts RST for the reset time-out period. If WDO goes low and remains low until the next transition at WDI. If WDI is the bq word in the pulses of the seconds will reserve shows the watchdog timing.

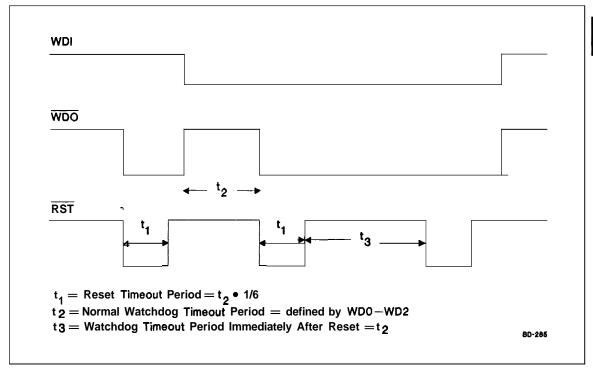


Figure 3. Watchdog Time-out Period and Reset Active Time

Aug. 1995 7/18

Interrupts

The **bq4845** allows three individually selected interrupt events to generate an interrupt request on the \overline{INT} pin. These **three** interrupt events are:

- The periodic interrupt, programmable to occur once every 30.5us to 500ms
- The alarm interrupt, programmable to occur once per second to once per month
- The power-fail interrupt, which can be enabled to be

The periodic, alarm, and power-fail interrupts are enabled by an individual interrupt-enable bit in register C, the interrupts register. When an event occurs, its event flag bit in the flags register, register D, is set. If the corresponding event enable bit is also set, then an interrupt request is generated. Reading the flags register clears all flag bits and makes INT high impedance. To reset the flag register, the bq4845 addresses must be held stable at register D for at least 50ns to avoid inadvertent resets.

Periodic Interrupt

Bits RS3–RS0 in the interrupts register program the rate for the periodic interrupt. The user can interpret the interrupt in two ways: either by polling the flags register for PF assertion or by setting PIE so that $\overline{\text{INT}}$ goes active when the bq4845 sets the periodic flag. Reading the flags register resets the PF bit and returns $\overline{\text{INT}}$ to the high-impedance state. Table 4 shows the periodic rates.

Alarm Interrupt

Registers 1, 3, 5, and 7 program the real-time clock alarm. During each update cycle, the **bq4845** compares the date,

hours, minutes, and seconds in the clock registers with the corresponding alarm registers. If a match between all the corresponding bytes is found, the alarm flag AF in the flags register is set. If the alarm interrupt is enabled with AIE, an interrupt request is generated on INT. The alarm condition is cleared by a read to the flags register. ALM1 - ALM0 in the alarm registers, mask each alarm compare byte. An alarm byte is masked by setting ALM1 (D7) and ALM0 (D6) to 1. Alarm byte masking can be used to select the frequency of the alarm interrupt, according to Table 5.

The alarm interrupt can be made active while the bq4845 is in the battery-backup mode by setting ABE in the interrupts register. Normally, the INT pin goes high-impedance during battery backup. With ABE set, however, INT is driven low if an alarm condition occurs and the AIE bit is set. Because the AIE bit is reset during power-on reset, an alarm generated during power-on register during boot-up to determine if an alarm was generated during power-on reset.

Power-Fail Interrupt

When **Vcc** falls to the power-fail-detect point, the power-fail flag PWRF **is** set. If the **power-fail** interrupt enable bit (PWRIE) **is also** set, then INT is asserted low. The power-fail interrupt occurs **twpt** before the **bq4845** generates a **reset** and deselects. The **PWRIE** bit is cleared on power-up.

Battery-Low Warning

The bq4845 **checks** the battery on power-up. When the battery voltage is **approximately 2.1V**, the battery-valid flag BVF in the flags register is set to a 0 indicating that clock and RAM data may be invalid.

WD2	WD1	WDO	Normal Watchdog time-out Period (t2, t3)	Reset time-out Period (ti)
0	0	0	1.5s	0.25s
0	0	1	23.4375ms	3.9063ms
0	1	0	46.875ms	7.8125ms
0	1	1	93.75ms	15.625ms
1	0	0	187.5ms	31.25ms
1	0	1	375ms	62.5ms
1	1	0	750ms	125ms
1	1	1	38	0.58

8/18 _______Aug. 1995

Table 4. Periodic Interrupt Rates

	Registe	Periodic Ir	nterrupt			
RS3	RS2	RS1	RS0	Period	Units	
0	0	0	0	None		
0	0	0	1	30.5175	us	
0	0	1	0	61.035	μв	
0	0	1	1	122.070	μв	
0	1	0	0	244.141	μв	
0	1	0	1	488.281	μв	
0	1	1	0	976.5625	με	
0	1	1	1	1.953125	ms	
1	0	0	0	3.90625	ms	
1	0	0	1	7.8125	ms	
1	0	1	0	15.625	ms	
1	0	1	1	31.25	ms	
1	1	0	0	62.5	ms	
1	1	0	1	125 ms		
1	1	1	0	250	ms	
1	1	1	1	500	ms	

Table 5. Alarm Frequency (Alarm Bits D6 and D7 of Alarm Registers)

1h	3h	5h	7h	
ALM1•ALM0	ALM1•ALM0	ALM1 • ALMO	ALM1• ALMO	Alarm Frequency
1	1	1	1	Once per second
0	1	1	1	Once per minute when seconds match
0	0	1	1	Once per hour when minutes, and seconds match
0	0	0	1	Once per day when hours, minutes, and seconds match
0	0	0	0	When date, hours, minutes, and seconds match

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	V _T ≤ V _{CC} + 0.3
T _{OPR} O _I	Operating temperature	0 to +70	°C	Commercial
	Operating temperature	-40 to +85	°C	Industrial
Tstg	Storage temperature	-55 to +125	"C	
TBIAS	Temperature under bias	-40 to +85	°C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may **occur** if Absolute **Maximum** Ratings **are** exceeded. Functional operation should be limited to the **Recommended** DC **Operating** Conditions detailed in this data **sheet.** Exposure to conditions beyond the operational **limits** for extended periods of time may **affect** device **reliability**.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
V	Cumply voltage	4.5	5.0	5.5	V	bq4845Y
V_{CC}	Supply voltage	4.75	5.0	5.5	v	bq4845
V_{SS}	Supply voltage	0	0	0	V	
V_{IL}	Input low voltage	-0.3		0.8	V	
v_{iH}	Input high voltage	2.2		Vcc + 0.3	V	
V _{BC}	Backup cell voltage	2.3		4.0	V	

Note:

Typical values indicate operation at $T_A = 25^{\circ}C$.

DC Electrical Characteristics (TA = TOPR. VCCmin VCC VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I _{LI}	Input leakage current	•	•	± 1	μA	V _{IN} = V _{SS} to V _{CC}
ILO	Output leakage current	-	-	± 1	μА	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE}$ $= V_{IL}$
V OH	Output high voltage	2.4	-	-	V	I _{OH} = -2.0 mA
Vонв	V _{OH} , BC Supply	V _{BC} - 0.3	-	-	V	$V_{BC} > V_{CC}$, $I_{OH} = -10\mu A$
V_{OL}	Output low voltage	-	-	0.4	v	$I_{OL} = 4.0 \text{ mA}$
Icc	Operating supply current	-	12	25	mA	$\frac{\text{Min. cycle, duty} = 100\%,}{\overline{\text{CS}} = V_{\text{IL}}, I_{\text{VO}} = 0\text{mA}}$
I _{SB1}	Standby supply current	-	3	-	mA	$\overline{CS} = V_{IH}$
$ar{ ext{I}}_{ ext{SB2}}$	Standby supply current	-	1.5	-	mA	$\overline{CS} \ge V_{CC} - 0.2V$, $0V \le V_{IN} \le 0.2V$, or $V_{IN} \ge V_{CC} - 0.2V$
V_{SO}	Supply switch-over voltage	-	V_{BC}	-	v	
Iccb	Battery operation current	-	0.3	0.5	μA	V_{BC} = 3V, T_A = 25°C, no load on V _{OUT} or \overline{CE}_{OUT}
V_{PFD}	Power-fail-detect voltage	4.55	4.62	4.75	v	bq4845
V PKD	Power-fail-detect voltage	4.30	4.37	4.5	V	bq4845Y
Vout1	V _{OUT} voltage	V _{CC} - 0.3V	•	-	V	$I_{OUT} = 100$ mA, $V_{CC} > V_{BC}$
Vout2	Vour voltage	V _{BC} - 0.3V	-	-	V	$I_{OUT} = 100 \mu A$, $V_{CC} < V_{BC}$
V _{RST}	RST output voltage	-	-	0.4V	-	I _{RST} = 4mA
V _{INT}	INT output voltage	-	-	0.4V	•	I _{INT} = 4mA
Vwpo	WDO costmost coalt and	-	•	0.4V	-	I _{SINK} = 4mA
v wdo	WDO output voltage	2.4	-	-	-	Isource = 2mA
Iwdil	Watchdog input low current	-50	-10	-	μА	0 < V _{WDI} < 0.8V
Iwdih	Watchdog input high current	•	20	50	μA	2.2 < V _{WDI} < V _{CC}

Notes: Typical values indicate operation at TA = 25°C, Vcc = 5V. RST and \overline{INT} are open-drain outputs.

Crystal Specifications (DT-26 or Equivalent)

Symbol	Parameter	Minimum	Typical	Maximum	Unit
$\mathbf{f}_{\mathbf{O}}$	Oscillation frequency		32.768		kHz
.CL	Load capacitance		6		pF
TP	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant			-0.042	ppm/°C
Q	Quality factor	40,000	70,000		
R ₁	Series resistance			45	ΚΩ
C ₀	Shunt capacitance		1.1	1.8	pF
C ₀ /C ₁	Capacitance ratio		430	600	
DL	Drive level			1	μW
Δf/f _O	Aging(first year at 25°C)		1		ppm

Aug. 1995

11/18

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			7	рF	Output voltage = OV
CIN	Input capacitance			5	τF	Input voltage = CV

Note: These parameters are sampled and not 100% tested.

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 4 and 5

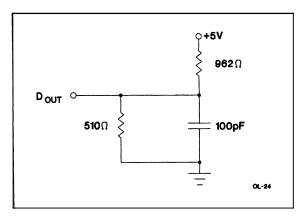


Figure 4. Output Load A

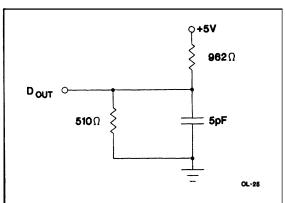
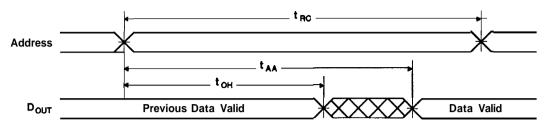


Figure 5. Output Load B

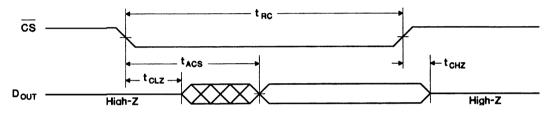
Read Cycle (TA - TOPR, VCCmin & VCC & VCCmax)

Symbol	Parameter	Min.	Max.	Unlt	Conditions
trc	Read cycle time	70		ns	
taa	Address access time		70	ns	Output load A
tacs	Chip select access time		70	ns	Output load A
toE	Output enable to output valid		35	ns	Output load A
tclz	Chip select to output in low Z	5		ns	Output load B
toLz	Output enable to output in low Z	0		ns	Output load B
tcHz	Chip deselect to output in high Z	0	25	ns	Output load B
tonz	Output disable to output in high Z	0	25	ns	Output load B
tон	Output hold from address change	10		ns	Output load A

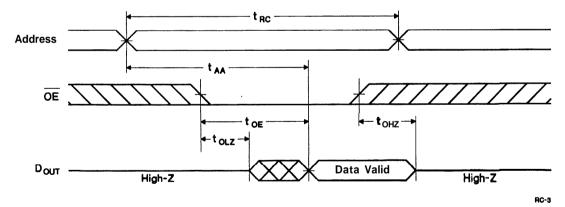

Write Cycle (TA =TOPR, VCCmin & VCC & VCCmax)

Symbol	Parameter	Min.	Max.	Unit	Conditions
twc	Write cycle time	70	-	ns	
tcw	Chip select to end of write	65	•	ns	(1)
taw	Address valid to end of write	65	•	ns	(1)
t as	Addrees setup time	0	•	ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	55	•	ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5	•	ns	Measured from WE going high to end of write cycle. (3)
tw _{R2}	Write recovery time (write cycle 2)	15	•	ns	Measured from $\overline{\textbf{CS}}$ going high to end of write
tow	Data valid to end of write	30	ŀ	ns	Measured to first low-to-high transition of either CS or WE.
t _{DH1}	Data hold time (write cycle 1)	0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10		ns	Measured from CS going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	25	ns	1/O pins are in output state. (5)
tow	Output active from end of write	0	-	ns	VO pins are in output state. (5)

Notes:


- 1. A write ends at the earlier transition of \overline{CS} going high and \overline{WE} going high.
- 2. A <u>write occurs during the overlap of a low \overline{CS} and a low \overline{WE} .</u> A write begins at the later transition of \overline{CS} going low and \overline{WE} going low.
- 3. Either twn1 or twn2 must be met.
- 4. Either **tpH1** or **tpH2** must be met.
- 5. If $\overline{\textbf{CS}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the outputs remain in high-impedance state.

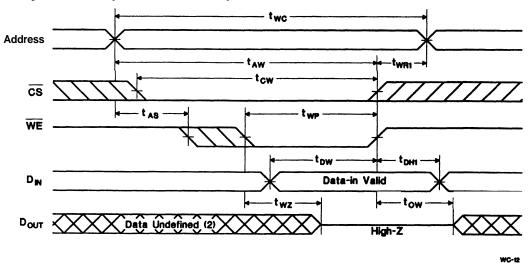
Read Cycle No. 1 (Address Access) 1,2


RC-1

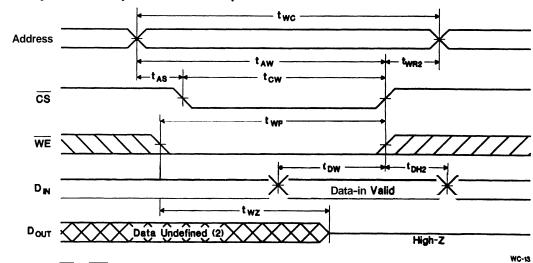
Read Cycle No. 2 (CS Access) 1,3,4

RC-36

Read Cycle No. 3 (OE Access) 1,5



Notes:


- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CS} = \overline{OE} = Vn$.
- 3. Address is valid prior to or coincident with \overline{CS} transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CS} = V_{IL}$

14/18

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (CS-Controlled) 1,2,3,4,5

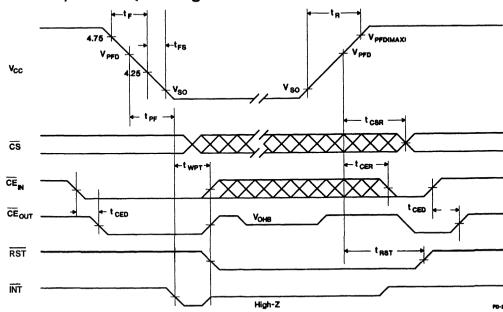
Notes:

- 1. $\overline{\text{CS}}$ or $\overline{\text{WE}}$ must be high during address transition.
- 2. Because I/O may be active $(\overline{OE}\ low)$ during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twR1 or twR2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Aug. 1995

15/18

Power-Down/Power-Up Timing (TA = TOPR)

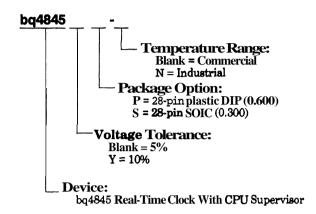

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tr	V _{CC} slew from 4.75 to 4.25V	300	•	•	μв	
trs	Vcc slew from 4.25 to Vso	10	-	-	μв	
tR	V _{CC} slew from V _{SO} to V _{PFD(MAX)}	100	-	•	μв	
tpr	Interrupt delay from VPFD	6	-	24	μв	
twpr	Write-protect time for external RAM	90	100	125	μв	Delay after Vcc slews down past Vpp before SRAM is write-protected and RST activated.
tcsr	CS at VIH after power-up	100	200	300	ms	Internal write-protection period after VCC passes VPFD on power-up.
trst	V _{PFD} to RST inactive	tcsr	-	tcsr	ms	Reset active time-out period
tcer	Chip enable recovery time	tesr		tcsr	ms	Time during which external SRAM is write-protected after Vcc passes VPFD on power-up.
tced	Chip enable propagation delay to external SRAM		9	12	ns	Output load A

 $Caution: \quad Negative \ undershoots \ below \ the \ absolute \ maximum \ rating \ of \ -0.3V \ in \ battery-backup \ mode$

may affect data integrity.

Note: Typical values indicate operation at TA = 25°C.

Power-Down/Power-Up Timing


Notes: PWRIE set to "1" to enable power fail interrupt.

RST and INT are open drain and require an external pull-up resistor.

16/18 Aug. 1995

17/18

Ordering Information

Notes

bq4847/bq4847Y

RTC Module With CPU Supervisor

Features

- Real-Time Clock counts seconds through years in BCD format
- Integrated battery and crystal
- On-chip battery-backup switchover circuit with nonvolatile control for an external SRAM
- 130mAh battery capacity
- ±1 minute per month clock accuracy
- Less than 500nA of clock operation current in backup mode
- Microprocessor reset valid to vcc = Vss
- Independent watchdog timer with a programmable time-out period
- Power-failinterrupt warning
- Programmableclock alarm interrupt active in batterybackup mode
- Programmable periodic interrupt
- Battery-low warning

General Description

The **bq4847** Real-Time Clock Module is a low-power microprocessor peripheral that **integrates** a time-of-day clock, a **100-year** calendar, a CPU supervisor, a battery, and a **crystal** in a **28-pin** DIP module. The part is **ideal** for fax **machines**, **copiers**, **industrial** control **systems**, point-of-eale terminals, data loggers, and computers.

The **bq4847 contains** an internal battery and crystal. Through the use of **the** conditional chip enable output (CEOUT) and battery voltage output (VOUT) pins, the **bq4847** can write-protect and make nonvolatile an external SRAM. The backup cell powers the real-time clock and maintains **SRAM** information in the absence of system voltage.

The **bq4847** contains a temperature-compensated reference and comparator circuit that monitors the status of its voltage supply. When an out-of-tolerance condition is detected, the **bq4847** generates an interrupt warning and subsequently a microprocessor

reset. The reset stays active for **200ms** after **Vcc rises** within tolerance to allow for power supply and processor stabilization.

The **bq4847** also has a built-in watchdog timer **to** monitor **processor** operation. If the **microprocessor** does not toggle the watchdog input (WDI) within the **programmed** time-out, the **bq4847** asserts WDO and RST. WDI unconnected disables the watchdog timer.

The bq4847 can generate other interrupts based on a clock alarm condition or a periodic setting. The alarm interrupt can be set to occur from once per second to once per month. The alarm can be made active in the battery-backup mode to serve as a system wake-up call. For interrupts at a rate beyond once per second, the periodic interrupt can be programmed with periods of 30.5µs to 500ms.

Caution:

Take care to avoid inadvertent discharge through Vout and CEout after battery isolation has been broken.

Pin Connections

Vout d 1 V_{CC} 27 NC ☐ 3 D CEN 26 □ CE_{OUT} WDO 4 25 NT 0 5 24 D NC RST C 6 23 b WDI A₃ [A₂ [22 DE 21 b CS A₁ 9 A₀ 10 DQ₀ 11 DQ₁ 12 20 □ NC DO DO 19 Ь 18 DQ 2 DQ₄ DQ₃ 16 28-Pin DIP Module

Pin Names

A ₀ -A ₃	Clock/Control address inputs	NC	No connect
DQ ₀ -DQ ₇	Data inputs/outputs	V_{OUT}	Back-up battery output
\overline{WE}	Write enable	INT	Interrupt output
ŌĒ	Output enable	RST	Microprocessor reset
CS	Chip select input	WDI	Watchdog input
	External RAM chip enable	$\overline{\text{WDO}}$	Watchdog output
CEOUT	Conditional RAM chip	Vcc	+SV supply
	enable	v_{ss}	Ground

Sept. 1996 1/4

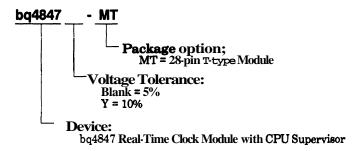
Functional Description

Figure 1 is a block diagram of the bq4847. The bq4847 is functionally equivalent to the bq4845 except that the battery (20, 24) and crystal (2, 3) pins are not accessible. The pins are connected internally to a coin cell and quartz crystal. The coin cell provides 130mAh of capacity. It is internally isolated from Vour and CEour until the initial application of Vcc. Once Vcc rises above Vpp, this isolation is broken, and the backup cell provides power to Vour and CEour for the external SRAM. The real-time

clock keeps time to within one minute per month at **room** temperature. For a complete description of features, operating conditions, electrical characteristics, bus timing, and pin descriptions, see the bq4845 data sheet. Valid part types for ordering are bq4847MT (5%) and bq4847YMT (10%).

Figure 2 illustrates the address map for the bq4847. Table 1 is a map of the bq4847 registers, and Table 2 describes the register bits.




Figure 1. Block Diagram

Truth Table

Vcc	<u>cs</u>	ŌĒ	WE	СЕоит	Vout	Mode	DQ	Power
< V _{CC} (max.)	V _{IH}	Х	Х	CEIN	Vouti	Deselect	High Z	Standby
	VIL	Х	VIL	CEIN	Vouri	Write	D _{IN}	Active
> V _{CC} (min.)	VIL	V _{IL}	VIH	CEIN	Vouti	Read	Dout	Active
	VIL	VIH	V _{IH}	CEIN	Vouti	Read	High Z	Active
< V _{PFD} (min.) > V _{SO}	х	х	х	Vон	Vouti	Deselect	High Z	CMOS standby
≤ V _{SO}	Х	х	х	Vонв	V _{OUT2}	Deselect	High Z	Battery-backup mode

2/4 Sept. 1996

Ordering Information

Sept. 1996

Notes

4/4 Sept. 1996

bq4850Y

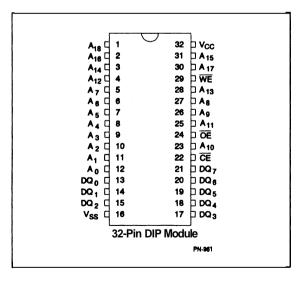
RTC Module With 512Kx8 NVSRAM

Features

- Integrated SRAM, real-time clock, crystal, power-fail control circuit, and battery
- ➤ Real-Time Clock counts seconds through years in BCD format
- ➤ RAM-like clock access
- ➤ Pin-compatible with industrystandard 512K x 8 SRAMs
- Unlimited write cycles
- ➤ 10-year minimum data retention and clock operation in the absence of power
- ➤ Automatic power-failchip **deselect** and write-protection
- Software clock calibration for greater than ±1 minute per month accuracy

General Description

The bq4850Y RTC Module is a non-volatile 4,194,304-bit SRAM organized as 524,288 words by 8 bits with an integral acceeeible real-time clock.


The device combines an internal lithium battery, quartz crystal, clock and power-fail chip, and a full CMOS SRAM in a plastic 32-pin DIP module. The RTC Module directly replaces industry-standard SRAMs and also finto many EPROM and EEPROM sockets without any requirement for special write timing or limitations on the number of write cycles.

Registers for the real-time clock, alarm and other special functions are located in registers 7FFF8h-7FFFFh of the memory array.

The clock and **alarm registers** are dual-port read/write SRAM locations that are updated once per **second** by a clock **control** circuit **from** the internal clock counters. The dual-port registers allow clock updates to occur without **interrupting normal access** to the rest of the SRAM array.

The bq4850Y also contains a power-fail-detect circuit. The circuit deselects the device whenever Vcc falls below tolerance, providing a high degree of data security. The battery is electrically isolated when shipped from the factory to provide maximum battery capacity. The battery remains disconnected until the first application of Vcc.

Pin Connections

Pin Names

A ₀ -A ₁₈	Address input
CE	Chip enable
WE	Write enable
ŌE	Output enable
DQo-DQ7	Data in/data out
Vcc	+5 volts
Vss	Ground

Aug. 1996 1/14

Functional Description

Figure 1 is a block diagram of the bq4850Y. The following sections describe the bq4850Y functional

operation, including memory and clock interface, and data-retention modes.

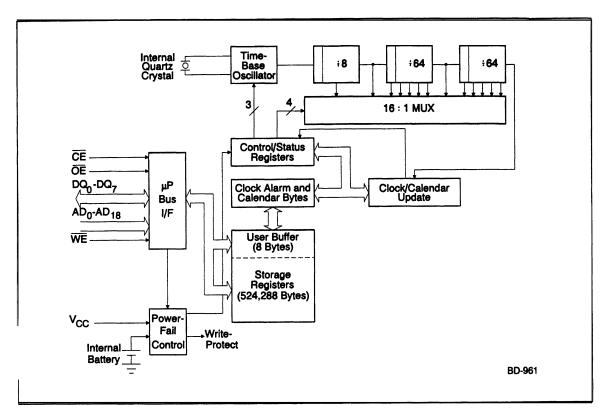


Figure 1. Block Diagram

Truth Table

Vcc	ĈĒ	ŌĒ	WE	Mode	DQ	Power
< VCC (max.)	V_{IH}	х	Х	Deselect	High Z	Standby
	V_{IL}	х	V_{IL}	Write	D _{IN}	Active
> Vcc (min.)	$V_{\rm IL}$	VIL	V _{IH}	Read	Dout	Active
	VIL	VIH	VIH	Read	High Z	Active
< V _{PFD} (min.) > V _{SO}	x	х	х	Deselect	High Z	CMOS standby
≤V _{SO}	Х	x	х	Deselect	High Z	Battery-backup mode

2/14 Aug. 1996

Address Map

Figure 2 illustrates the address map for the bq4850Y. Table 1 is a map of the bq4850Y registers.

The bq4850Y provides 8 bytes of clock and control status registers and 524,288 bytes of storage RAM.

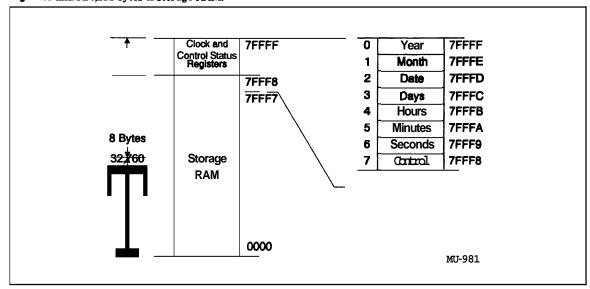


Figure 2. Address Map

Table 1. bq4850Y Clock and Control Register Map

Address	D7	D6	D5	D4	D3	D2	D1	D0	Range (h)	Register
7FFFF		10 Years		Year				00-99	Year	
7FFFE	X	х	х	10 Month	Month		01–12	Month		
7FFFD	X	х	10	Date	Date		01–31	Date		
7FFFC	x	FTE	х	x	X		Day		01-07	Days
7FFFB	X	х	10	Hours		Hou	rs		00-23	Hours
7FFFA	X		10 Minu	ites	es Mi		tes		00–59	Minutes
7FFF9	OSC		10 Secon	nds	s Seconds			00–59	Seconds	
7FFF8	w	R	s	Calibration			00-31	Control		

Note:

X = Unused bits; can be written and read. Clock/Calendar data in 24-hour BCD format.

OSC = 1 stops the clock oscillator.

Aug. 1996

Memory Interface

Read Mode

The bq4850Y is in read mode whenever \overline{OE} (output enable) is low and \overline{CE} (chip enable) is low. The device architecture allows ripple-through access of data from eight of 4,194,304 locations in the static storage array. Thus, the unique address specified by the 19 address inputs defines which one of the 524,288 bytes of data is to be accessed. Valid data is available at the data \$\mathbf{VO}\$ pins within taa (address access time) after the last address input signal is stable, providing that the \overline{CE} and \overline{OE} (output enable) access times are also satisfied. If the \overline{CE} and \overline{OE} access times are not met, valid data is available after the latter of chip enable access time (tae) or output enable access time (toe).

 $\overline{\textbf{CE}}$ and $\overline{\textbf{OE}}$ control the state of the eight three-state data L/O signals. If the outputs are activated before \textbf{t}_{AA} , the data lines are driven to an indeterminate state until \textbf{t}_{AA} . If the address inputs are changed while $\overline{\textbf{CE}}$ and $\overline{\textbf{OE}}$ remain low, output data remains valid for \textbf{t}_{OH} (output data hold time), but goes indeterminate until the next address access.

Write Mode

The **bq4850Y** is in write mode whenever \overline{WE} and \overline{CE} are active. The start of a write is referenced from the latter-occurring falling edge of \overline{WE} or \overline{CE} . A write is terminated by the earlier rising edge of \overline{WE} or \overline{CE} . The addresses must be held valid throughout the cycle. \overline{CE} or \overline{WE} must return high for a minimum of tw_{R2} from \overline{CE} or tw_{R1} from \overline{WE} prior to the initiation of another read or write cycle.

Data-in must be valid tow prior to the end of write and remain valid for tohi or tohi afterward. OE should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on CE and OE, a low on WE disables the outputs twz after WE falls.

Data-Retention Mode

With valid V_{CC} applied, the bq4850Y operates as a conventional static RAM. Should the supply voltage decay, the RAM automatically power-fail deselects, write-protecting itself twpr after VCC falls below V_{PFD}. All outputs become high impedance, and all inputa are treated as don't care."

If power-fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpt, write-protection takes place. When Vcc drops below Vso, the control circuit switches power to the internal energy source, which preserves data.

The internal coin cell maintains data in the bq4850Y after the initial application of VCC for an accumulated period of at least 10 years when VCC is leas than Vso. As system power returns and Vcc rises above Vso, the battery is disconnected, and the power supply is switched to external Vcc. Write-protection continues for togs after Vcc reaches Vpp to allow for processor stabilization. After togs, normal RAM operation can resume.

Clock Interface

Reading the Clock

The interface to the clock and control registers of the **bq4850Y** is the same as that for the general-purpose storage memory. Once every second, the user-accessible clock/calendar locations are updated simultaneously from the internal real time counters. To prevent reading data in transition, updates to the bq4850Y clock registers should be halted. Updating is halted by setting the read bit D6 of the control register to 1. As long as the read bit is 1, updates to user-accessible clock locations are inhibited. Once the frozen clock information is retrieved by **reading** the appropriate clock memory locations, the read bit should be reset to **0** in order to allow updates to occur from the internal counters. Because the internal counters are not halted by setting the read bit, reading the clock locations has no effect on clock accuracy. Once the read bit is reset to **0.** within one second the internal registers update the user-accessible registers with the correct time. A halt command issued during a clock update allows the update to occur before freezing the data.

Setting the Clock

Bit D7 of the control register is the write bit. Like the read bit, the write bit when set to a 1 halts **updates** to the **clock/calendar** memory locations. Once frozen, the locations can be written with the desired information in 24-hour BCD format. Resetting the write bit to 0 causes the written values to be transferred to the internal clock counters and allows updates to the user-accessible registers to resume within one second. Use the write bit, D7, only when updating the time **registers** (7FFFF-7FFF9).

Stopping and Starting the Clock Oscillator

The OSC bit in the seconds register turns the clock on or off. If the **bq4850Y** is to spend a significant period of time in storage, the clock oscillator can be turned off to preserve battery capacity. OSC set to 1 stops the clock oscillator. When OSC is reset to 0, the clock oscillator is turned on and clock updates to user-accessible memory locations occur within one second.

The OSC bit is set to 1 when shipped from the **Benchmarq** factory.

4/14 Aug. 1996

Calibrating the Clock

The bq4850Y real-time clock is driven by a quartz controlled oscillator with a nominal frequency of 32,768 Hz. The quartz crystal is contained within the bq4850Y package along with the battery. The clock accuracy of the bq4850Y module is tested to be within 20ppm or about 1 minute per month at 25°C. The oscillation rates of crystals change with temperature as Figure 3 shows. To compensate for the frequency shift, the bq4850Y offers onboard software clock calibration. The user can adjust the calibration based on the typical operating temperature of individual applications.

The software calibration bits are located in the control register. Bits D0-D4 control the magnitude of correction, and bit D5 the direction (positive or negative) of correction. Assuming that the oscillator is running at exactly 32,786 Hz, each calibration step of D0-D4 adjusts the clock rate by +4.068 ppm (+10.7 seconds per month) or -2.034 ppm (-6.35 seconds per month) depending on the value of the sign bit D5. When the sign bit is 1, positive adjustment occurs; a 0 activates negative adjustment. The total range of clock calibration is +5.5 or -2.75 minutes per month.

Two methods can be used to ascertain how much calibration a given **bq4850Y** may require in a **system**. The first involves simply setting the clock, letting it run for a month, and then comparing the time to an accurate **known** reference like WWV radio broadcasts. Based on the variation to the standard, the end user can adjust the clock to match the system's environment even after the product is packaged in a non-serviceableenclosure. The only requirement is a utility that allows the end user to access the calibration bits in the control register.

The second approach uses a **bq4850Y** test mode. When the frequency test mode enable bit FTE in the days

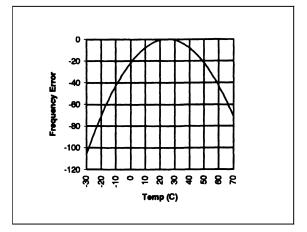


Figure 3. Frequency Error

register is set to a 1, and the oscillator is running at exactly 32,768 Hz, the LSB of the seconds register toggles at 512 Hz. Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. For example, a reading of 512.01024 Hz indicates a (1E6+0.01024)512 or +20 ppm oscillator frequency error, requiring ten steps of negative calibration (10+2.034 or -20.34) or 001010 to be loaded into the calibration byte for correction. To read the test frequency, the bq4850Y must be selected and held in an extended read of the seconds register, location 7FFF9, without having the read bit set. The frequency appears on DQ0. The FTE bit must be set using the write bit control. The FTE bit must be reset to 0 for normal clock operation to resume.

Aug. 1998 5/14

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Condition,
Vcc	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	v	
Vт	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 7.0 V V _T ≤ V _{CC} + 0		V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	
T_{STG}	Storage temperature (Vcc off; oscillator off)	-40 to +70	"C	
TBIAS	Temperature under bias	-10to +70	°C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may cccur if **Absolute Maximum** Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	v	
Vss	Supply voltage	0	0	0	V	
VIL	Input low voltage	-0.3	-	0.8	V	
V _{IH}	Input high voltage	2.2	•	V _{CC} + 0.3	V	

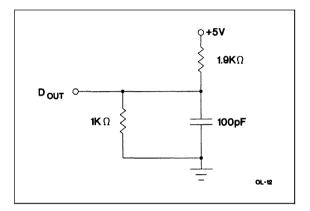
Note:

Typical values indicate operation at $T_A = 25$ °C.

DC Electrical Characteristics (TA = TOPR, VCCmin ≤ VCC ≤ VCCmax)

Symbol	Parameter	Minimum	Typicai	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			±1	μА	$V_{\rm IN} = V_{\rm SS}$ to $V_{\rm CC}$
Ito	Output leakage current			±1	μA	$\frac{\overline{CE}}{\overline{WE}} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{VE} = V_$
VOH	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current		3	5	mA	$\overline{CE} = V_{IH}$
I _{SB2}	Standby supply current		0.1	1	mA	$\overline{CE} \ge V_{CC} \cdot 0.2V$, $OV 5 V_{IN} 5 0.2V$, or $V_{IN} \ge V_{CC} \cdot 0.2V$
Icc	Operating supply current			90	mA	Min. cycle, duty = 100%, CE = VIL, IVO = 0mA
V _{PFD}	Power-fail-detectvoltage	4.30	4.37	4.50	V	
Vso	Supply switch-over voltage		3		V	

Notes: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.


Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Condition8
Civo	Input/output capacitance			10	рF	Output voltage = OV
CIN	Input capacitance			10	pF	Input voltage = 0V

Note: These parameters are sampled and not 100% tested.

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 4 and 5

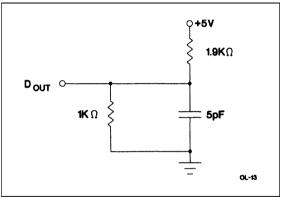
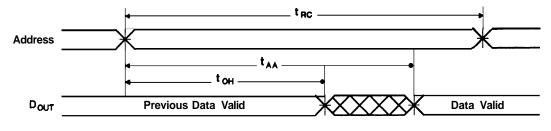


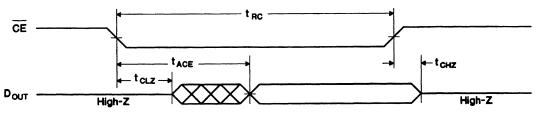
Figure 4. Output Load A

Figure 5. Output Load B

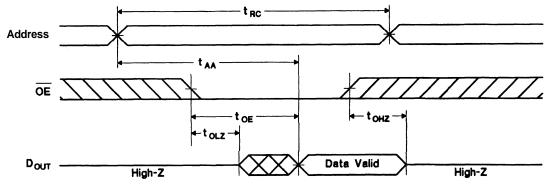

Read Cycle (TA = TOPR, VCCmin ≤ VCC ≤ VCCmax)

		-8	-85		
Symbol	Parameter	Min.	Max.	Unit	Conditions
trc	Read cycle time	85		ns	
taa	Address access time		85	ns	Output load A
tace	Chip enable access time		85	ns	Output load A
toE	Output enable to output valid		45	ns	Output load A
tclz	Chip enable to output in low Z	5		ns	Output load B
toLz	Output enable to output in low Z	0		ns	Output load B
tchz	Chip disable to output in high Z	0	35	ns	Output load B
tonz	Output disable to output in high Z	0	25	ns	Output load B
tow	Output hold from address change	10	•	ns	Output load A

8/14 Aug. 1996


5

Read Cycle No. 1 (Address Access) 1,2


RC-1

Read Cycle No. 2 (CE Access) 1,3,4

C-2

Read Cycle No. 3 (OE Access) 1,5

RC-3

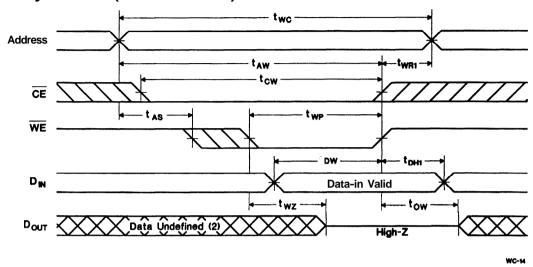
Notes:

- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{1L}$
- 3. Address is valid prior to or coincident with \overline{CE} transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$.

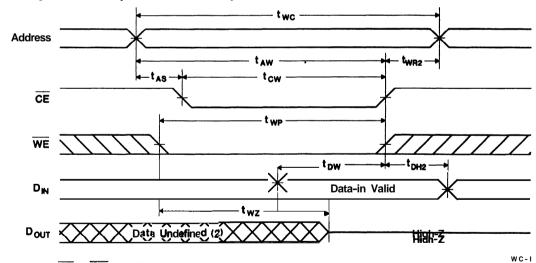
Aug. 1996

9/14

Write Cycle (TA =TOPR, VCCmin \(\text{VCC} \(\text{VCCmax} \))


		-85			
Symbd	Parameter	Min.	Min. Max.		Conditions/Notes
twc	Write cycle time	85		ns	
tcw	Chip enable to end of write	75		ns	(1)
taw	Address valid to end of write	75		ns	(1)
tas	Address setup time	0		ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	65		ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5 .	-	ns	Measured from WE going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15		ns	Measured from $\overline{\bf CE}$ going high to end of write cycle. (3)
tow	Data valid to end of write	35		ns	Measured to first low-to-high transition of either CE or WE.
t _{DH1}	Data hold time (write cycle 1)	0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10		ns	Measured from $\overline{\mathbf{CE}}$ going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	30	ns	1/O pins are in output state. (5)
tow	Output active from end of write	0		ns	L/O pins are in output state. (5)

Notes:


- 1. A write ends at the earlier transition of $\overline{\mathbf{CE}}$ going high and $\overline{\mathbf{WE}}$ going high.
- 2. A <u>write occurs during the overlap of a low \overline{CE} and a low \overline{WE} .</u> A write begins at the later transition of \overline{CE} going low and \overline{WE} going low.
- 3. Either twn1 or twn2 must be met.
- 4. Either tDH1 or tDH2 must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the outputs remain in high-impedance state.

10/14 Aug. 1996

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. $\overline{\textbf{CE}}$ or $\overline{\textbf{WE}}$ must be high during address transition.
- 2. Because I/O may be active $(\overline{OE}\ low)$ during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If OE is high, the I/O pins remain in a state of high impedance.
- 4. Either twn1 or twn2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Aug. 1996 11/14

14/14 Aug. 1996

RTC Module With 512Kx8 NVSRAM

Features

- Integrated SRAM, real-time clock, CPU supervisor, crystal, power-fail control circuit, and battery
- Real-Time Clock counts hundredths of seconds through years in BCD format
- RAM-like clock access
- Compatible with industrystandard 512K x 8 SRAMs
- Unlimited write cycles
- 10-year minimum data retention and clock operation in the absence of power
- Automatic power-failchip deselect and write-protection
- Watchdog timer, power-on reset, alarm/periodic interrupt, powerfail and battery-low warning
- Software clock calibration for greater than ±1 minute per month accuracy

General Description

The **bq4852Y** RTC Module is a non-volatile 4,194,304-bit SRAM organized **as** 524,288 **words** by 8 bite with an integral **accessible** real-time clock and **CPU** supervisor. The **CPU** supervisor provides a programmable watchdog timer and a **microprocessor reset**. Other **features** include an **alarm**, power-fail, and periodic interrupt and a battery low warning.

The device combines an internal lithium battery, quartz crystal, clock and power-fail chip, and a full CMOS SRAM in a plastic 36-pin DIP module. The RTC Module directly replaces in dustry-standard SRAMs and also fits into many EPROM and EEPROM sockets without any requirement for special write timing or limitations on the number of write cycles.

Registers for the real-time clock, alarm and other special functions are located in registers **7FFF0h**–**7FFFFh** of the memory array.

The clock and alarm registers are dual-port read/write SRAM locations that are updated once per second by a clock control circuit from the internal clock counters. The dual-port registers allow clock updates to occur without interrupting normal access to the rest of the SRAM array.

The **bq4852Y** also **contains** a **power**-fail-detect circuit. The circuit **deselects** the device whenever **V**_{CC} falls below tolerance, providing a high degree of data **security**. The battery is electrically isolated when shipped **from** the factory to provide maximum battery capacity. The battery remains **disconnected** until the **f** i i application of **V**_{CC}.

Pin Connections

Þ vcc NC D 35 D NC A₁₈ C A₁₆ C A₁₄ C D INT 34 A15 33 32 1 A17 31 D WE □ A₁₃ 30 29 □ A₈ 28 D Ag Ď A11 10 27 26 DOE 11 12 25 Þ ▲ 10 13 24 CE 007 14 23 15 22 DO 16 21 DQ₅ 17 20 003 18 19 36-Pin DIP Module

Pin Names

A ₀ -A ₁₈	Address input
CE	Chip enable
RST	Microprocessorreset
\overline{WE}	Write enable
ŌĒ	Output enable
DQ ₀ -DQ ₇	Data in/data out
ĪNT	Programmable interrup
Vcc	+5 volts
v_{ss}	Ground

Aug. 1996

1/16

Functional Description

Figure 1 is a block diagram of the bq4852Y. The following sections describe the bq4852Y functional

operation, including memory and clock interface, data-retention modes, nower-on reset timing, watchdog timer activation, and interrupt generation.

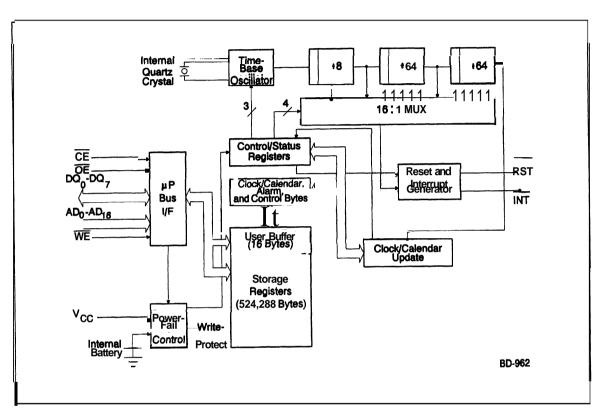


Figure 1. Block Diagram

Truth Table

Vcc	CE	ŌĒ	WE	Mode	DQ	Power
< V _{CC} (max.)	V _{IH}	Х	X	Deselect	High Z	Standby
	V_{IL}	Х	V_{1L}	White	Dm	Active
>VCC (min.)	VIL	V n	V _{IH}	Read	Dour	Active
	VIL	$v_{\rm IH}$	V _{IH}	Read	High Z	Active
< V _{PFD} (min.) > V _{SO}	Х	X	X	Deselect	High Z	CMOS standby
≤V _{SO}	X	X	X	Deselect	High Z	Battery-backupmode

2/16 Aug. 1996

Address Map

The bq4852Y provides 16 bytes of clock and control status registers and 524,272 bytes of storage RAM.

Figure 2 illustrates the address map for the bq4852Y. Table 1 is a map of the bq4852Y registers, and Table 2 describes the register bits.

Memory Interface

Read Mode

The bq4852Y is in read mode whenever \overline{OE} (output enable) is low and \overline{CE} (chip enable) is low. The device architecture allows ripple-through access of data from eight of 4,194,304 locations in the static storage array. Thus, the unique address specified by the 19 address inputs defines which one of the 524,288 bytes of data is to be accessed. Valid data is available at the data I/O pins within tAA (address access time) after—he last address input signal is stable, providing that the \overline{CE} and \overline{OE} (output enable) access times are also satisfied. If the \overline{CE} and \overline{OE} access times are not met, valid data is available after the latter of chip enable access time (tage) or output enable access time (tage) or output enable access time (tage) or output enable access time (tage)

CE and **OE** control the state **atthe** eight three-state data **VO** signals. If the outputs are activated before tan, the data lines

are driven to an indeterminate state until taa. If the address inputs are changed while CE and OE remain low, output data remains valid for toh(output data hold time), but goes indeterminate until the next address access.

Write Mode

The bq4852Y is in write mode whenever WE and CE are active. The start of a write is referenced from the latter-occurring falling edge of WE or CE. A write is terminated by the earlier rising edge of WE or CE. The addresses must be held valid throughout the cycle. CE or WE must return high for a minimum of two from CE or twa from WE prior to the initiation of another read or write cycle.

Data-in must be valid tow prior to the end of write and remain valid for tohi or tohi afterward. OE should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on CE and OE, a low on WE disables the outputs two after WE falls.

Data-Retention Mode

With valid VCC applied, the **bq4852Y** operates as a conventional **static** RAM. Should the **supply** voltage decay, the RAM automatically power-fail deselects, write-protecting **itself twpr** after Vcc falls below VPPD. All outputs become high impedance, and all inputs are treated **as** don't care.'

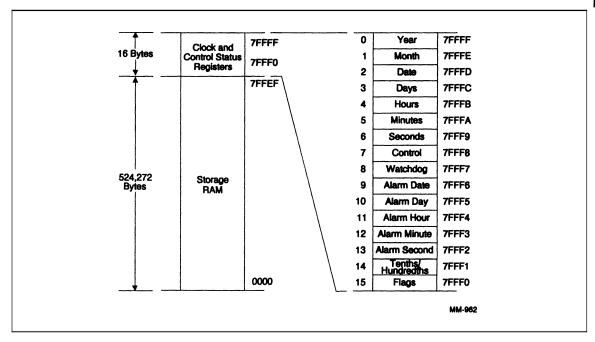


Figure 2. Address Map

Aug. 1996 3/16

If power-fail detection occurs during a valid access, the memory cycle continues to completion If the memory cycle fails to terminate within time twp, write-protection takes place. When Voc drops below Vso, the control circuit switches power to the internal energy source, which preserves data.

The internal coin cell maintains data in the bq4852Y after the initial application of Vcc for an accumulated period of at least 10 years when Vcc is less than Vso. As system power returns and Vcc rises above Vso, the battery is disconnected, and the power supply is switched to external Vcc. Write-protection continues for tcer after Vcc reaches Vpp to allow for processor stabilization. After tcer, normal RAM operation can resume.

Clock Interface

Reading the Clock

The interface to the clock and control registers of the bq4852Y is the same as that for the general-purpose storage memory. Once every second, the user-accessible clock/calendar locations are updated simultaneously from the internal real time countera. To prevent reading data in transition, updates to the bq4852Y clock registers

should be halted. Updating is halted by setting the read bit D6 of the control **register** to 1. As long as the read bit is 1, updates to **user-accessible** clock **locations** are inhibited. **Once** the frozen clock information is retrieved by reading the appropriate clock memory **locations**, the read bit should be reset to 0 in order to allow updates to cour from the internal counters. Because the internal countera are not halted by setting the read bit, reading the clock locations has no effect on clock accuracy. **Once** the read bit is **reset** to **0**, within one **second** the internal registera update the **user-accessible** registers with the correct time. A halt **command** issued **during** a clock update allows the update to occur before **freezing** the data.

Setting the Clock

Bit D7 of the control register is the write bit. Like the read bit, the write bit when set to a 1 halts updates to the clock/calendar memory locations. Once frozen, the locations can be written with the desired information in 24-hour BCD format. Resetting the write bit to 0 causes the written values to be transferred to the internal clock counters and allows updates to the user-accessible registera to resume within one second. Use the write bit, D7, only when updating the time registers (7FFFF).

Table 1. bq4842 Clock and Control Register Map

Address	D7	D6	D5	D4	D3_	D2	D1	D0	Range (h)	Register
7FFFF		10 Years			Year				00-99	Year
7FFFF	X	X	X	10 Month		Mon	th		01–12	Month
7FFFD	Х	Х	10	Date		Dat	æ		01–31	Date
7FFFC	Х	FTE	X	Х	X		Day		01–07	Days
7FFFB	X	Х	101	Tours	Hours				00-23	Hours
7FFFA	Х		10 Minut	es		Minu	ites		00–59	Minutes
7FFF9	OSC	10 Seconds							00-59	Seconds
7FFF8	w	R	S		Cal	libration			00–31	Control
7FFF7	WDS	BM4	ВМЗ	BM2	BM1	ВМО	WD1	WD0		Watchdog
7FFF6	AIE	PWRIE	ABE	PIE	RS3	RS2	RS1	RS0		Interrupts
7FFF5	ALM3	X	10-dat	te alarm		Alarm	date		01–31	Alarm date
7FFF4	ALM2	х	10-hou	ır alarm		Alarm	hours		00-23	Alarm hours
7FFF3	ALM1	Ala	rm 10 mi	nutes		Alarm n	inutes		00–59	Alarm minutes
7FFF2	ALM0	Ala	rm 10 se	conds				00–59	Alarm seconds	
7FFF1		0.1 s	econds			0.01 se	conds		00-99	0.1/0.01 seconds
7FFF0	WDF	AF	PWRF	BLF	PF	X	X	X		Flags

Note:

X = Unused bits; can be written and read. Clock/Calendar data in 24-hour BCD format.

BLF = 1 for valid battery.

OSC = 1 stops the clock oscillator.

Interrupt enables are cleared on power-up.

Aug. 1996

Table 2 Clock and Control Register Bits

Bits	Description
ABE	Alarm interrupt enable in battery-backup mode
AF	Alarm interrupt flag
AIE	Alarm interrupt enable
ALM0-ALM3	Alarm repeat rate
BLF	Battery-lowflag
BM0-BM4	Watchdog multiplier
FTE	Frequency test mode enable
OSC	Oscillator stop
PF	Periodic interrupt flag
PIE	Periodic interrupt enable
PWRF	Power-failinterrupt flag
PWRIE	Power-fail interrupt enable
R	Read clock enable
RS0-RS3	Periodic interrupt rate
S	Calibrationsign
W	Write clock enable
WD0-WD1	Watchdog resolution
WDF	Watchdogtlag
WDS	Watchdog steering

Stopping and Starting the Clock Oscillator

The OSC bit in the seconds register turns the clock on or off. If the bq4852Y is to spend a significant period of time in storage, the clock oecillator can be turned off to preserve battery capacity. OSC set to 1 stops the clock oecillator. When OSC is reset to 0, the clock oscillator is turned on and clock updates to user-accessible memory locations occur within one second.

The OSC bit ie eet to 1 when ehipped from the **Benchmarq** factory.

Calibrating the Clock

The **bq4852Y** real-time clock is driven by a quartz controlled oecillator with a nominal frequency of 32,768 Hz. The quartz **crystal** is contained within the **bq4852Y** package along with the battery. The clock accuracy of the **bq4852Y** module is **tested** to be within **20ppm** or about 1 minute per month at **25°C**. The **oscillation rates** of **crystals** change with temperature as **Figure 3 shows**. To **compensate** for the **frequency shift**, the **bq4852Y** offers **onboard** software clock calibration. The user can adjust

the calibration kand on the typical operating temperature of individual applications.

The software calibration bits are located in the control register. Bits DO-D4 control the magnitude of correction, and bit D5 the direction (positive or negative) of correction. Assuming that the oscillator is running at exactly 32,786 Hz, each caliion step of DO-D4 adjusts the clock rate by +4.068 ppm (+10.7 seconds per month) or -2034 ppm (-5.35 seconds per month) depending on the value of the sign bit DS. When the sign bit is 1, positive adjustment occurs; a 0 activates negative adjustment. The total range of clock calibration is +5.5 or -2.75 minutes per month.

Two methods can be used to ascertain how much calibration a given bq4852Y may require in a system. The first involves simply setting the clock, letting it run for a month, and then comparing the time to an accurate known reference like WWV radio broadcasts. Based on the variation to the standard, the end user can adjust the clock to match the system's environment even after the product is packaged in a non-serviceable enclosure. The only requirement is a utility that allows the end user to access the calibration bite in the control register.

The second approach uses a bq4852Y test mode. When the frequency test mode enable bit FTE in the days register is set to a 1, and the oscillator is running at exactly 32,768 Hz, the LSB of the seconds register toggles at 512 Hz. Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. Fa example, a reading of 512.01024 Hz indicates a (1E6+0.01024)/512 a +20 ppm oscillator frequency error, requiring ten steps of negative calibration (10+2.034 or -20.34) or 001010 to be loaded into the calibration byte for correction. To mad the test frequency, the bq4852Y must be selected and held in an extended read of the seconds register, location 7FFF9, without having the mad

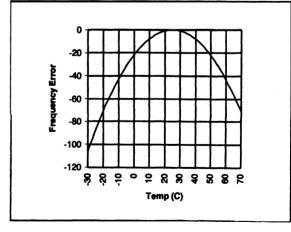


Figure 3. Frequency Error

Aug. 1996 5/16

bit set. The frequency appears on DQO. The FTE bit must be set using the write bit control. The FTE bit must be reset to 0 for normal clock operation to resume.

Power-On Reset

The **bq4852Y** provides a power-on **reset**, **which pulls the** RST pin low on power-down and remains low on power-up for togg after VCC **passes** VPFD.

Watchdog Timer

The watchdog circuit monitors the microprocessor's activity. If the **processor** does not reset the watchdog timer **within the** po $\frac{\text{mat}}{\text{mat}}$ time-out period, the circuit asserts the $\overline{\text{INT}}$ or RST pin. The watchdog timer is activated by writing the desired time-out period into the eight-bit watchdog register described in Table 3 (device address 7FFF7). The five **bits** (**BM4–BM0**) store a binary multiplier, and the two lower-order bita (**WD1–WD0**) select the resolution, where $00 = \frac{1}{16}$ second, $01 = \frac{1}{4}$ second, 10 = 1 second, and 11 = 4 seconds.

The time-out period is the multiplication of the five-bit multiplier with the two-bit resolution. For example, writing 00011 in BM4-BMO and 10 in WD1-WD0 results in a total time-out setting of 3 x 1 or 3 seconds. A multiplier of zero disables the watchdog circuit. Bit 7 of the watchdog register (WDS) is the watchdog steering bit. When WDS is act to a 1 and a time-out occurs, the watchdog asserts a reset pulse for toer on the RST pin. During the reset pulse, the watchdog register is cleared to all zeros disabling the watchdog. When WDS is set to a 0, the watchdog asserts the $\overline{\text{IMT}}$ pin on a time-out. The $\overline{\text{IMT}}$ pin remains low util the watchdog is reset by the microprocessor or a power failure occurs. Additionally, when the watchdog times out, the watchdog flag bit (WDF) in the flags register, location 7FFFO, is set.

To reset the watchdog timer, the microprocessor must write to the watchdog register. After being reset by a write, the watchdog time-out period starts over. As a precaution, the watchdog circuit is disabled on a power failure. The user must, therefore, set the watchdog at boot-up for activation.

Interrupts

The **bq4852Y** allows four individually selected **interrupt** eventa to generate an interrupt request on the **INT** pin. These four interrupt eventa are:

- The watchdog timer interrupt, programmable to occur according to the time-out period and conditions described in the watchdog timer section
- The periodic interrupt, programmable to occur once every 122µs to 500ms.
- The alarm interrupt, programmable to occur once per second to once per month
- The power-fail interrupt, which can be enabled to be asserted when the **bq4852Y** detects a power failure

The periodic, alarm, and power-fail interrupts are enabled by an individual interrupt-enable bit in register 7FFF6, the interrupts register. When an event occurs, its event flag bit in the flags register, location 7FFF0, is set. If the corresponding event enable bit is also set, then an interrupt request is generated. Reading the flags register clears all flag bits and makes 1NT high impedance. To reset the flag register, the bq4852Y addresses must be held stable at location 7FFF0 for at least 50ns to avoid inadvertent resets.

Periodic Interrupt

Bits RS3-RS0 in the interrupts register program the rate for the periodic interrupt. The user can interpret the interrupt in two ways: either by polling the flags register for **F** assertion or by setting PIE so that INT goes active when the bq4852Y sets the periodic flag. Reading the flags register resets the PF bit and returns INT to the high-impedance state. Table 4 shows the periodic rates.

Alarm Interrupt

Registers 7FFF5-7FFF2 program the real-time clock alarm. During each update cycle, the bq4852Y compares the date, hours, minutes, and seconds in the clock registers with the corresponding alarm registers. If a match between all the corresponding bytes is found, the alarm flag AF in the flags register is set. If the alarm interrupt is enabled with AIE, an interrupt request is generated on INT. The alarm condition is cleared by a read to the flags

Table 3. Watchdog Register Bits

MSB		Bits					
7	6	5	4	3	2	1	0
WDS	BM4	BM3	BM2	BM1	BMO	WD1	WD0

6/16 Aug. 1996

register. ALM3-ALM0 puts the alarm **into** a periodic mode of operation. Table 5 describes the selectable rates.

The alarm interrupt can be made active while the bq4852Y is in the battery-backup mode by setting ABE in the interrupts register. Normally, the INT pin tri-states during battery backup. With ABE set, however, INT is driven low if an alarm condition occurs and the AIE bit is set. Because the AIE bit is reset during power-on reset, an alarm generated during power-on reset updates only the flags register. The user can mad the flags register during boot-up to determine if an alarm was generated during power-on reset.

Power-Fail Interrupt

When Vcc falls to the power-fail detect point, the power-fail flag PWRF is set. If the power-fail interrupt enable bit (PWRIE) is also set, then INT is asserted low. The power-fail interrupt occurs twpr before the bq4852Y generates a reset and deselects. The PWIE bit is cleared on power-up.

Battery-Low Warning

The **bq4852Y** checks the internal battery on power-up. If the battery voltage is below **2.2V**, the battery-low flag BLF in the flags register is set to a 1 indicating that clock and RAM data may be invalid.

Table 4. Periodic Rates

RS3	RS2	RS1	RS0	Interrupt Rate
0	0	0	0	None
0	0	0	1	10ms
0	0	1	0	100ms
0	0	1	1	122.07µs
0	1	0	0	244.14µs
0	1	0	1	488.281
0	1	1	0	976.5625
0	1	1	1	1.953125ms
1	0	0	0	3.90625ms
1	0	0	1	7.8125ms
1	0	1	0	15.625ms
1	0	1	1	31.25ms
1	1	0	0	62.5ms
1	1	0	1	125ms
1	1	1	0	250ms
1	1	1	1	500ms

Table 5. Alarm Frequency (Alarm Bits DQ7 of Alarm Registers)

ALM3	ALM2	ALM1	ALMO	Alarm Frequency	
1	1	1	1	Once per second	
1	1	1	0	Once per minute when seconds match	
1	1	0	0	Once per hour when minutes, and seconds match	
1	0	0	0	Once per day when hours, minutes, and seconds match	
0	0	0	0	When date, hours, minutes, and seconds match	

Aug. 1996 7/16

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
VT	DC voltage applied on any pin excluding $V\infty$ relative to Vss	-0.3 to 7.0	V	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	°C	
TSTG	Storage temperature (Vcc oft; oscillator off)	-40 to +70	°C	
TBIAS	Temperature under bias	-10 to +70	°C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation sl lid be limited to the R led DC Operating Conditions detailed in this die led limited to the R led DC Operating Conditions detailed in this die led limits for extended periods of time may affect device reliability.

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc	Supply voltage	4.5	5.0	5.5	V	
Vss	Supply voltage	0	0	0	v	
VIL	Input low voltage	-0.3	•	0.8	V	
V_{IH}	Input high voltage	2.2	•	V _{CC} + 0.3	V	

Note:

Typical values indicate operation at $T_A = 25^{\circ}C$.

DC Electrical Characteristics (TA = TOPR, VCCmin 5 VCC < VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I _{LI}	Input leakage current			± 1	μA	$V_{\rm IN}$ = $V_{\rm SS}$ to $V_{\rm CC}$
I _{LO}	Output leakage current			± 1	μA	$\frac{\overline{CE}}{\overline{WE}} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$
Voh	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	$I_{OL} = 2.1 \text{ mA}$
I _{OD}	RST, INT sink current	10			m A	$V_{OL} = 0.4V$
I _{SB1}	Standby supply current		3	6	mA	CE = V _{IH}
I _{SB2}	Standby supply current		2	4	mA	$\overline{CE} \ge V_{CC} \cdot 0.2V$, $CV \le V_{IN} \le 0.2V$, or $V_{IN} \ge V_{CC} \cdot 0.2V$
Icc	Operating supply current			90	mA	<u>Min</u> .cycle, duty = 100%, CE = V _{IL} , I _{VO} = 0mA
V_{PFD}	Power-fail-detectvoltage	4.30	4.37	4.50	V	
V_{SO}	Supply switch-over voltage	-	3	-	V	

Notes: Typical values indicate operation at TA = 25°C, Vcc = 5V.

RST and INT are open-drain outputs.

Capacitance(TA = 25℃, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			10	рF	Output voltage = OV
Cin	Input capacitance			10	рF	Input voltage = OV

Note: These **parameters** are sampled and not 100% **tested**.

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 4 and 5

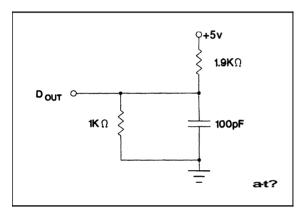
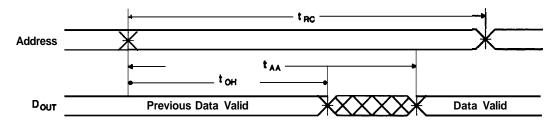
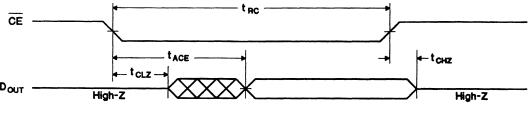


Figure 4. Output Load A

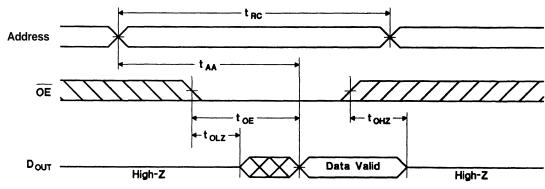

Figure 5. Output Load B

Read Cycle (TA = TOPR, VCCmin ≤ VCC 5 VCCmax)

		-85			
Symbol	Parameter	Min.	Max.	Unit	Conditions
trc	Read cycle time	85		ns	
tAA	Address access time		85	ns	Output load A
tace	Chip enable access time		85	ns	Output load A
toe	Output enable to output valid		45	ns	Output load A
tclz	Chip enable to output in low Z	5		ns	Output load B
tolz	Output enable to output in low Z	0		ns	Outputload B
tchz	Chip disable to output in high Z	0	35	ns	Output load B
tonz	Output disable to output in high 2	0	25	ns	Output load B
ton	Output hold from address change	10		ns	Output load A


10/16 Aug. 1996

Read Cycle No. 1 (Address Access) 1,2


RC-1

Read Cycle No. 2 (CE Access) 1,3,4

C-2

Read Cycle No. 3 (OE Access) 1,5

RC-S

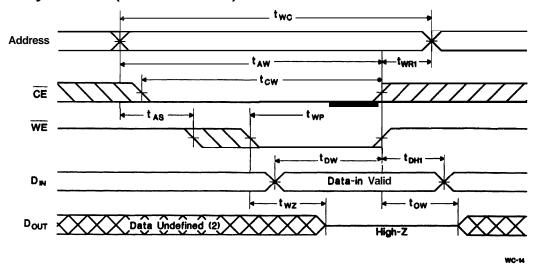
Notes:

- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$
- 3. Address is valid prior to or coincident with \overline{CE} transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$

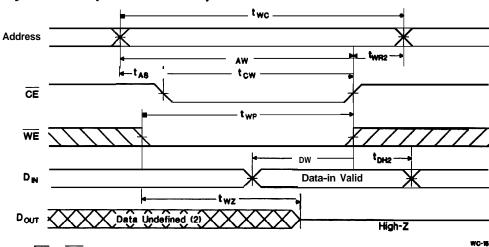
Aug. 1996

11/16

Write Cycle (TA =TOPR, VCCmin & VCC & VCCmax)


		-{	35		
Symbol	Parameter	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	85		ns	
tcw	Chip enable to end of write	75		ns	(1)
taw	Address valid to end of write	75		ns	(1)
tas	Address setup time	0		'ls	Measured from address valid to beginning of write. (2)
twp	Write pulse width	65		_l s	Measured from beginning of write to end of write.(1)
twn1	Write recovery time (write cycle 1)	5		'ls	Measured from WE going high to end of write cycle.(3)
twr2	Write recovery time (write cycle 2)	15		ns	Measured from \overline{CE} going high to end of write cycle. (3)
tow	Data valid to end of write	35		ns	Measured* first low-to-high transition of either CE or WE.
t _{DH1}	Data hold time(write cycle 1)	0		ns	Measured from WE going high to end of write cycle.(4)
t _{DH2}	Data hold time (write cycle 2)	10		ns	Measured from \overline{CE} going high to end of write cycle.(4)
twz	Write enabled to output in high Z	0	30	ns	I/O pins are in output state. (5)
tow	Output active from end of write	0		ns	I/O pins are in output state.(5)

Notes:


- 1. A write ends at the earlier transition of $\overline{\textbf{CE}}$ going high and $\overline{\textbf{WE}}$ going high.
- 2. A write occurs during the overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write begins at the later transition of $\overline{\textbf{CE}}$ going low and $\overline{\textbf{WE}}$ going low.
- 3. Either twr1 or twr2 must be met.
- 4. Either tDH1 or tDH2 must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the **outputs** remain in high-impedance state.

12/16 Aug. 1996

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

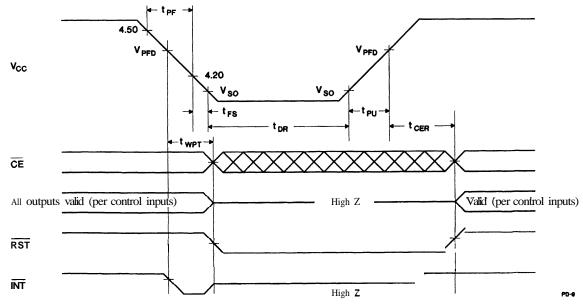
Notes:

- 1. $\overline{\textbf{CE}}$ or $\overline{\textbf{WE}}$ must be high during address transition.
- 2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twn1 or twn2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Aug. 1996

13/16

Power-Down/Power-Up Cycle (TA = TOPR)

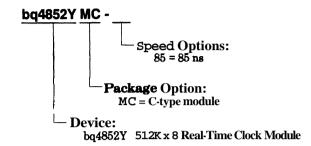

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpr	Vcc slew, 4.50 to 4.20 V	300			μв	
tFS	Vcc slew, 4.20 to Vso	10			με	
tpu	Vcc slew, Vso to VPFD (max.)	0			μs	
tcer	Chip enable recovery time	40	100	200	me	Time during which SRAM is write-protected after Vcc passes VFPD on power-up.
tDR	Data-retention time in absence of V _{CC}	10			years	T _A = 25° C. (2)
twpr	Write-protect time	40	100	160	μв	Delay after Vcc slews down past VPFD before SRAM is write-protected.

Notes:

- 1. Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.
- 2. **Battery** is disconnected from circuit until **after Vcc** is applied for the **first** time. **tDR** is the accumulated time in absence of power beginning when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of **-0.3V** in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing



Notes:

- 1. PWRIE is set to "1" to enable power fail interrupt.
- 2. \overline{RST} and \overline{INT} are open drain and require an external pull-up resistor.

14/16 Aug. 1996

Ordering Information

Aug. 1996 15/16

16/16 Aug. lees

Using the bq4845 for a Low-

Cost RTC/NVSRAM Subsystem

Introduction

The **bq4845** combinea a low-power **real-time** dock (RTC), a **microcontroller supervisor**, and a nonvolatile control circuit for static RAM on one IC. The part forms the basis of a low-cost, reliable RTC plus nonvolatile SRAM **subsystem** for many different embedded applications. By providing direct connections for a quartz crystal, an SRAM, and a backup source, the **bq4845 eliminates** as many as 15–20 **discrete** components.

The bq4845 contains 16 memory registers for clock, calendar, and control information as shown in Figure 1. The clock tracks seconds through years in binary coded decimal 12– or 24–hour format. The control information monitors and programs the onboard microcontroller supervisor and interrupts. The memory registers have the same interface as a standard byte-wide SRAM and can be mapped within the memory address space.

Figures 2A and 2B show how a typical battery backed-up RTC plus SRAM discrete solution compares with the

0	Seconds	00
1	Seconds alarm	01
2	Minutes	02
3	Minutes alarm	03
4	Hours	04
5	Hours alarm	05
6	Day	06
7	Day alarm	07
8	Day-of-week	08
9	Month	09
10	Year	OA
11	Programmable rates	ов
12	Interrupt rates	oc
13	Flags	OD
14	Control	OE
15	Unused	OF
1		MM-13

Figure 1. Address Map

bq4845 approach. The highly integrated **bq4845** eliminates the discrete **components** needed in the power control, write protection, and **reset** circuits. It also **features**:

- Ultra-low backup current (< 500nA)
- Power-on reset
- Programmable watchdog timer with a separate output
- x8 real-time clock data
- Power-fail and periodic interrupt
- Low backup battery warning

Contents

This application note discusses the key aspects of bq4845 operation.

Component Selection

Board Layout

Calibrating the Clock

System Supervision

Backing Up Multiple **SRAMs**

Additional Integration

Component Selection

SRAM

The bq4845 is designed to work with a low-power slow CMOS SRAM directly connected to Vour and CEour. Through these pins, the bq4845 provides power and a conditional chip enable to the memory. With valid system power, the output of the bq4845 supplies up to 100mA with Vour = Vcc - 0.3V, and the chip enable control passes through with a propagation delay of less than 12ns. With no system power, the bq4845 switches over to the backup source and holds the chip enable inactive. In this mode, the bq4845 supplies up to 100µA with Vow = VBACKUP - 0.3V.

Monolithic CMOS **SRAMs** are available in byte-wide densities of **16kbits** to **4Mbits**. The section entitled 'Backing Up Multiple **SRAMs**" describes how to use multiple **SRAMs** with the **bq4845** for word-wide or odd memory configurations.

1/12

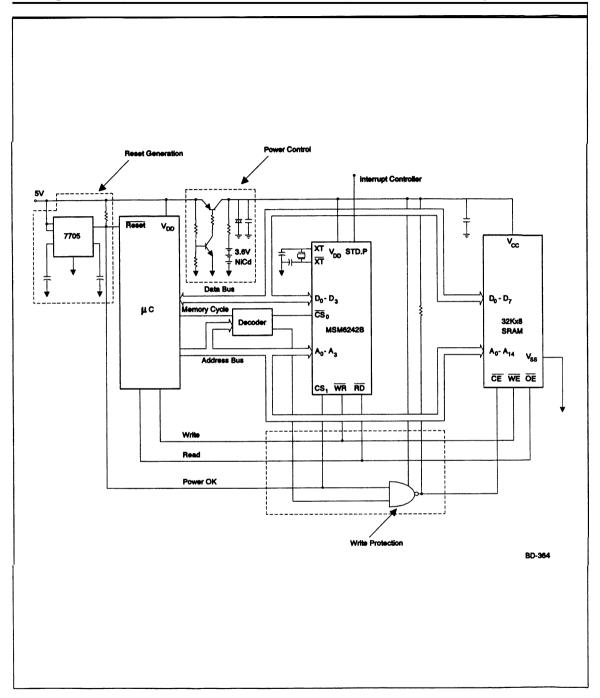


Figure 2A. Discrete Solution

2/12 Nov. 1995

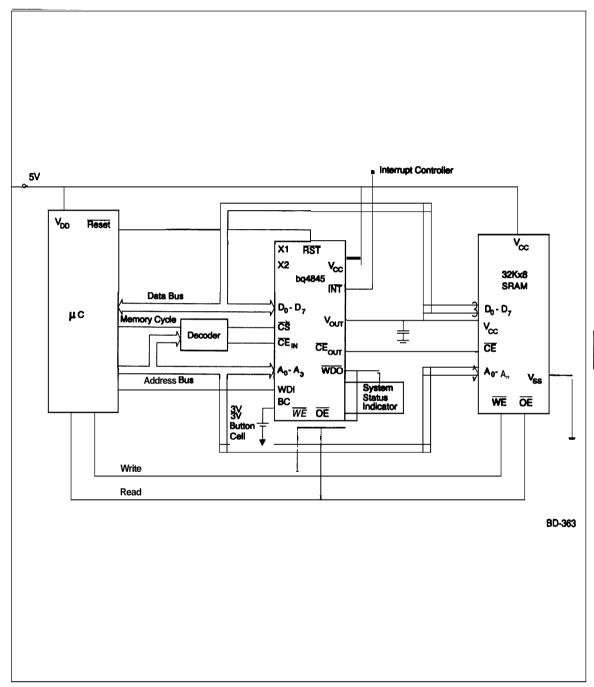


Figure 2B. bq4845 Approach

To minimize power consumption in active and backup mode, follow these recommendations:

- Use an L-L power rated SRAM. They typically consume less than 70mA in active mode and leas than 1μA at 3V and 25°C in standby mode with a minimum data-retention voltage of 2V.
- Use low-leakage ceramic bypass capacitors of 0.1μF across the SRAM and RTC.
- Connect active high second chip enables (CE2) to Vour of the bq4845, not to Vcc.

Crystal

The bq4845 oscillator is designed to work with a 32.768kHz tuning fork type crystal connected directly to X1 and X2 with no external components required. The crystal should have the characteristics described in Table 1.

With the properly selected crystal, the bq4845 real-time clock should be accurate to ±1 minute per month at room temperature with m trim capacitors. If greater accuracy is desired, a small trim capacitor of no more than 10pF can be connected from to GND. The section entitled "Calibrating the Clock" describes how to adjust the bq4845 clock

Backup Source

The backup source on the BC input provides power to the real-time clock and the external SRAM when main system power is not applied. The backup source can be a primary (non-rechargeable) lithium cell, a secondary (rechargeable) NiCd pack, or a super capacitor. The choice of technology and capacity depends on the total data-retention load current and the anticipated amount of time the application is without power.

The total data-retention load of an **RTC/NVSRAM** subsystem consists of the current required to power the clock and maintain data in the **SRAM**, or **IDR** = IRTC + ISRAM. **IDR** varies with temperature and voltage. Therefore, the backup conditions of the application must be considered to determine the typical IDR.

Figures 3 and 4 show how the data-retention currents of the **bq4845** and an L-L rated SRAM vary over temperature. For most applications, the majority of the backup time is **close** to 3V and **25°C**. Under these conditions, the typical data-retention current for a **bq4845** application with a single L L rated SRAM is $IDR = 0.5\mu A + 1\mu A$ or **1.5µA**.

The bq4845 works with a primary or secondary cell. If the application spends the majority of its useful life powered-up, a super capacitor may be sufficient to meet the data-retention requirements of short intermittent power outage.. For applications with long potential system-off periods, a primary lithium cell or secondary NiCd pack should be used.

The ba4845 requires the backup source to be within 2.3V to 4.0V. The potential of the source is checked on powerup. When it is approximately 2.1V, the battery low flag is set, indicating that clock and RAM data may be invalid.

If the backup source **does** not make a connection to the **BC** pin and the BC pin is floating, then upon power-up, RST will remain low.

Table 1. Crystal Specifications

Symbol	Parameter	Minimum	Typical	Maximum	Unit
f_{O}	Oscillation frequency		32.768		kHz
$C_{\rm L}$	Load capacitance		6		рF
T _P	Temperature turnover point	20	25	30	°C
k	Parabolic curvature constant			-0.042	ppm/°C
Q	Quality factor	40,000	70,000		
R ₁	Series resistance			45	ΚΩ
\mathbf{C}_0	Shunt capacitance		1.1	1.8	pF
C ₀ /C ₁	Capacitance ratio		430	600	
DL	Drive level			1	μW

4/12 Nov. 1W5

Lithium

The **bq4845** is best suited for use with a primary lithium cell having a nominal voltage of **3V**. The long **shelf** life, flat **discharge** curve, and high energy density allow a **small** lithium win cell to backup a **bq4845/SRAM subsys**tem for greater than **10** years. The **minimum** required capacity is given by:

Equation 1

$$C(Ah) = L * (1 - \frac{T_{ON}}{100}) * I_{DR} * 8760$$

where:

- L = useful lifetime of the equipment (years)
- Ton=% of time system power is on
- IDR = total data-retention current (A).

Ton can be **factored into** the equation **because** capacity **of the** lithium **cell is** not **consumed** when **system** power is applied.

An inexpensive lithium coin cell meets the data-retention requirements of most single SRAM applications. These cells range in capacity from 30mAh to 300mAh. Cylindrical lithium cells offer greater than 1000mAh. The two chemistry types are: BR and CR. BR has better shelf life characteristics at elevated temperatures and should be used in industrial temperature operating environments to ensure that storage life wearout does not limit the backup time below the calculated value. The cells are available with solder tab connections for PCB mounting, or can be socketed for user replaceability.

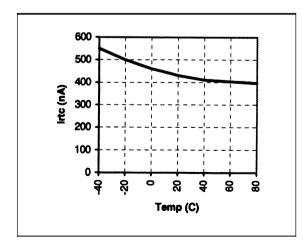


Figure 3. bq4845 Data-Retention Current

at $V_{BC} = 3V$

NiCd

A small NiCd pack can be trickle-charged from the system voltage supply using a resistor. The value of the resistor depends on the recommended trickle charge rate of the battery manufacturer. The optimum series configuration is 3 cells, since this gives a rominal voltage of 3.6V. The capacity can be sized using equation 1 with Ton = 0, and L equal to the longest anticipated time the system will be without power. A small 3.6V NiCd pack can provide years of clock operation and data retention using the bq4845 and an L L rated SRAM. Like the lithium cells, the 3-cell NiCd padre are available with solder tabs.

Super Capacitor

A low-leakage super capacitor can be used to back up the bq4845 plue an external LL SRAM. The caner diode across the capacitor keeps the voltage from exceeding the 4.0V limit on the BC input. The series charge resistor depends on the size and type of capacitor. The approximate backup time is given by the equation:

Equation 2

$$T(days) = \frac{(C * \Delta V)}{(86400 * I_{DR})}$$

where:

- C = capacitor value (F)
- **ΔV** = valid voltage back-uprange (V)
- IDR = total data-retention current (A)

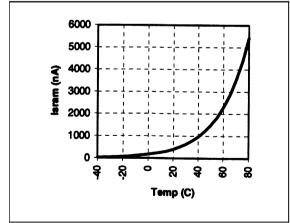


Figure 4. Typical L-LSRAM Data-Retention

Current at $V_{CC} = 3V$

ΔV = 4.0 - 2.3 or 1.7V for a **bq4845** application. **Thus,** a **1F** or 2F super capacitor can provide weeks of backup time for the **bq4845** RTC and a single L-L SRAM.

Figure 5 shows the three different backup configurations.

Board Layout

Crystal Connection

The quartz crystal should be connected directly to **X1** and **X2**. **A** small trim capacitor can be placed on **X2** for higher clock accuracy. To minimize the risk of noise coupling into the **bq4845** RTC oscillator, follow **these recommendations**:

- 1. The crystal should be located as close **as** possible to the pin connections on the bq4845.
- The pins should be surrounded by a ground guard ring.
- No signals should run directly below the crystals or below the traces to the X1 and X2 pins.

Figure 6 shows an example configuration.

Backup Source Connection

The backup source placement is not as critical **as** it is for the crystal. Still, it should be placed **as** close to the **bq4845 as** possible, although the designer should also consider accessibility if the battery is to be easily replaced. The backup source should be connected directly to the BC input (+) and Vss (-).

Lithium primary cells in electronic equipment require protection against reverse charging from V_{CC} when system power is on. The **bq4845** battery input circuit includes two protection diodes in **series** between BC and **Vcc**. The protection diodes meet the UL requirements for the use of a lithium cell as a backup source in electronic circuits. **Therefore**, no external reverse charging circuit is required or **recommended**. The **bq4845** is listed under UL file number E134016.

Calibrating the Clock

Accuracy Measurement

With a properly selected quartz crystal connected directly to X1 and X2, the bq4845 should be accurate to ±1 minute per month at room temperature with no trim capacitor. The accuracy of the clock changes with temperature as seen in Figure 7. If higher accuracy is required at room temperature, or the system operates at the temperature extremes, a small trim capacitor can be placed between X2 and ground. A simple calibration routine can be used to measure the frequency and trim the capacitor for optimum clock accuracy at the use temperature.

The calibration software routine uses the periodic interrupt to measure the frequency variance of the real-time clock. The interrupt rate is monitored on the INT pin. In this test setup, the INT pin is connected to a frequency meter, and should not interrupt the microcontroller. It may be beneficial to provide a jumper for the INT pin on the board design in order to disconnect it from the interrupt controller when the calibration routine is n.n. No test equipment should be connected directly to either crystal pin, as the added loading alters the characteristics of the oscillator and can make tuning impossible.

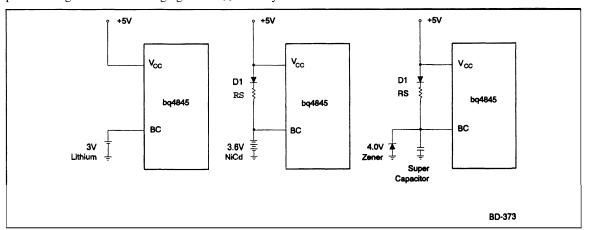


Figure 5. Backup Configurations

6/12 Nov. 1995

The calibration **routine** should be performed at the temperature at which the system spends the majority of its operating time. The calibration routine consists of the following **sequence** of operations:

- Control Register: Write [XXXX01XX]_b. Turns on the RTC.
- Programmable Rates Register: Write [XXXX0011]_b.
 Sets the periodic interrupt rate to 8.192kHz.
- 3. **Interrupts** Enable Register: Write [00000100]_b. Enables only the periodic interrupt.
- 4. Flags Register: The program should now loop on reading this register. Reading the register resets the interrupt flag PF and returns INT high. The next interrupt will re-assert PF and INT. Reading the register must cocur at a rate which exceeds the periodic rate in order to catch all the transitions. The periodic rate can be adjusted by programming register B.

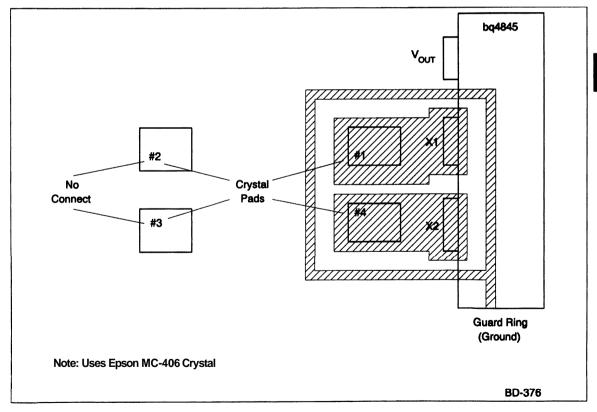



Figure 7. Frequency Error

Figure 6. Crystal Connection

- Monitor the frequency on the INT pin with a highresolution meter. The INT pin is active low so the meter should trigger on a negative transition. Any deviation from the set periodic rate indicates clock error.
- Adjust the trim capacitor to provide a frequency as close to the set periodic rate as possible.

Adjustment Considerations

The **bq4845** uses a very low-current **oscillator** and is sensitive to capacitance on the crystal **inputs**. To **ensure** the real-time clock **does** not stop in the low-voltage battery-back-up mode, the total capacitance on X2 should be no more than **15pF**, including the trace capacitance. With short lead traces, the **maximum** recommended trim capacitor is **10pF**. As a rule of thumb, each additional **1.54pF** of capacitance on X2 results in a decrease of 0.8Hz or 64 seconds per month.

System Supervision

The **bq4845** includes three system **supervisory** functions: Power-fail monitoring, μP monitoring, and μP reset generation. The three functions work together to provide orderly power-down and restart procedures.

Power-fail Warning

The **bq4845** can be programmed to generate a power-fail warning. The warning can be used to alert the **microcon**-

troller to save **critical** data in the **SRAM** prior to μP reset generation.

To program the power-fail warning, set the PWRIE bit of register C to 1. When the 5V system supply on Vcc drops below Vppd as seen in Figure 9, the interrupt output INT goes low. Since other sources(clock alarm and periodic interrupt) can activate the INT output, register D can be read to see if the power-fail warning flag is set to 1. If PWRF is 1, a power-fail condition has occurred and the microcontroller has 100μs to etore data prior to assertion of the μPreset by the bq4845.

The power-fail thresholds (Vppp) are **set** at 4.62V (**typi**cal) for the bq4845 and 4.37V (typical) for the bq4845Y. The INT pin **is** open drain, and requires a pull-up **resis**tor.

Power-on Reset

The active-low powers is asserted 100µs after power-fail detection as seen in Figure 9. The reset remain asserted for after valid power returns to provide for system stabilization. The output is open drain, and requires an external pull-up resistor.

Watchdog Timer

The watchdog timer **is** used to supervise **processor** operation. The watchdog monitors the WDI input. This input can be **connected** to a **bus** line or an I/O port. If WDI is not toggled **within the programmed** time-out period, the **bq4845** asserts WDO and RST. The **timeout** is pro-

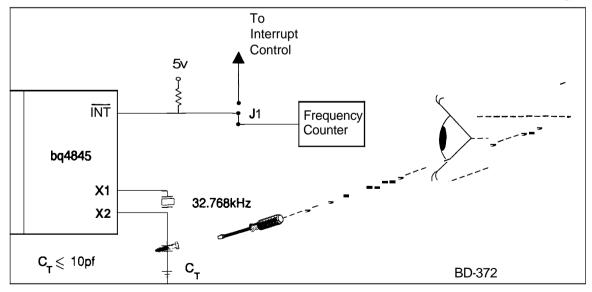


Figure 8. Frequency Adjustment

grammed in register B according to Table 2. The bq4845 retains this time-out period through power cycles as long as battery power is valid. If the bq4845 loses backup power in data-retention mode, the default time-out period is 1.5s. The watchdog timer is disabled only if WDI is left floating.

If a watchdog time-out occurs, the run time of the subsequent initialization routine must be **less** then the programmed time-out period or the **system** may never recover.

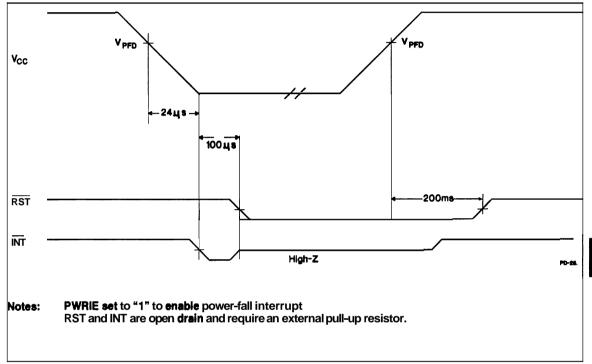


Figure 9. Power-Down/Power-Up Timing

Table 2. Watchdog Time-Out Rates

WD2	WD1	WD0	Watchdog Time-out Period
0	0	0	1.5s
0	0	1	23.4375ms
0	1	0	46.875ms
0	1	1	93.75ms
1	0	0	187.5ms
1	0	1	375ms
1	1	0	750ms
1	1	1	3s

WDO can be **used** to indicate to the system that the **reset** was caused by a watchdog fault and not a power failure. WDO is reset after a watchdog fault by a transition on WDI. WDO can be connected to an audible alarm or a controller input I/O pin. WDO is held high when Vcc is below the power-fail threshold, battery-backup mode is enabled, or WDI is left floating.

Backing Up Multiple SRAMs

While monolithic **SRAMs** come in a wide variety of densities, some memory **configurations** may require the use of two external memory chips.

Word-Wide Configurations

For a word-wide or **x16** configuration, two **L-L** rated SRAMs can be put in parallel as shown in Figure 10. The combined active current of the memory at the operating cycle must be less than **100mA**. The total data-retention current is IDR TRTC + 2 * ISRAM.

Odd Configurations

To build an odd memory configuration like a **2Mbit RTC/NVSRAM** subsystem, additional logic may be needed. One 7400 CMOS NAND gate provides the chip select decoding for the **256Kx8 NVSRAM** configuration shown in Figure 11.

Additional Integration—bq4847

The bq4847 combines the bq4845 with a crystal and lithium coin cell in a 600-mil dual-in-line package to offer an additional level of integration. The only component required for the RTC/NVSRAM subsystem is the static RAM connected directly to the bq4847. The internal battery has over 130mAh of capacity to provide greater than 10 years of data retention in most applications. To prevent inadvertent battery discharge during handling, the bq4847 battery is isolated from the Vour and Œour pine until the initial application of Vcc. After Vcc is applied, the battery connects to Vour whenever Vcc drops below Vso (typically 3V).

The internal crystal meets the **specifications described** in Table 1. The bq4847 is callited at the factory to provide clock **accuracy better** than one **minute** per month at **25°C**.

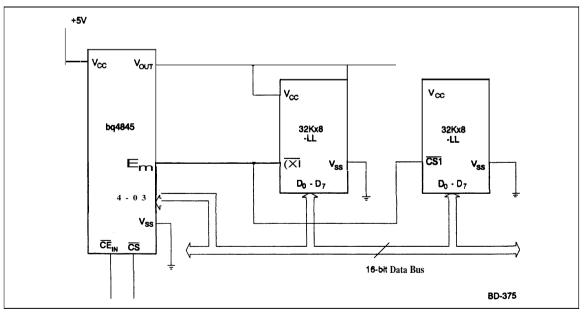


Figure 10. 32Kx16 Memory Configuration

10/12 Nov. 1995

Using the **bq4845** for a **Low-Cost** RTC/NVSRAM Subsystem

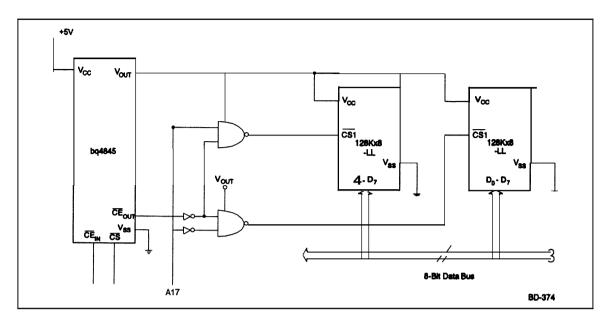


Figure 11. 256Kx8 Memory Configuration

Nov. 1995

12/12 Nov. 1995

Typical PC Hookups For Real-Time Clocks

Introduction

The following pages contain diagrams showing how **Benchmarq's** Real-Time Clocks are **used** in **existing circuits** with minor or no redesign. **Parts** lists are included for each diagram.

The circuits shown are actual PC implementations of Motorola RTCs. The proposed Benchmarq replacementa save numerous components and reduce the cost of the motherboard. Pin conversions from the MC146818A to the bq3285 and bq3287/A are shown in Tables 1 and 2.

All of Benchmarq module products are U.L. recognized under U.L. file number E1340146.

Remember that the **bq3285/87/87A** are socket replacements for the **DS1285/87/87A/885/887/887A** and **MK48T85/87/87A**. See Chapter 1 for the RTC cross-reference table.

Examples are included for ISA and EISA PC systems.

ISA (PC/AT) systems:

- Example MC146818A PC/AT design (Figure 1, Table 3)
- Equivalent **bq3285** design (Figure 2, Table 4)
- **MC146818A/bq3285** design (Figure 3, Table 4)
- Equivalent **bq3287** design (Figure 4, Table 5)

■ EISA or MCA systems:

- Example MC146818A plus external 8Kx8 SRAM design (Figure 5, Table 6)
- Example DS1287 plus external 8Kx8 NVSRAM design (Figure 6, Table 7)
- Equivalent **bq4285** design (Figure 7, Table 8)
- Equivalent **bq4287** design (Figure 8, Table 9)

Table 1. Converting MC146818A to bq3285/87/87A

		DIP and SOIC Packages		
MC146818 Pin No.		bq3285P/S Pin No.	bq3287MT Pin No.	bq3287AMT Pin No.
1-15	→	No change	No change	Nochange
16	→	No ∞nnect	No change	Nochange
17-19	→	No change	No change	No change
20	→	<4.0V	No change	No change
21	→	Tie to Vcc	No change	Tie to Vcc
22-24	→	No change	No change	No change

Table 2. Converting MC146818A to bq4285/87

		DIP and SOIC Packager			
MC146818 Pin No.		bq4285P/S Pin No.	bq4287MT Pin No.		
1	→	VOW	Vour		
2-20	→	No change	No change		
21	→	CE _{IN} : Tied to Vss	CEIN: Tied to Vss		
22	→	CEOUT	CEour		
23–24	→	No change	No change		

Oct 1993

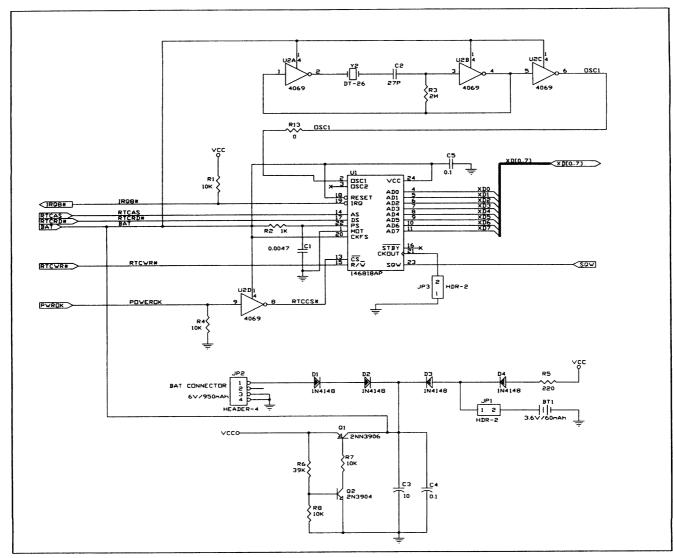


Figure 1. MC146818A ISA (PC/AT) Example

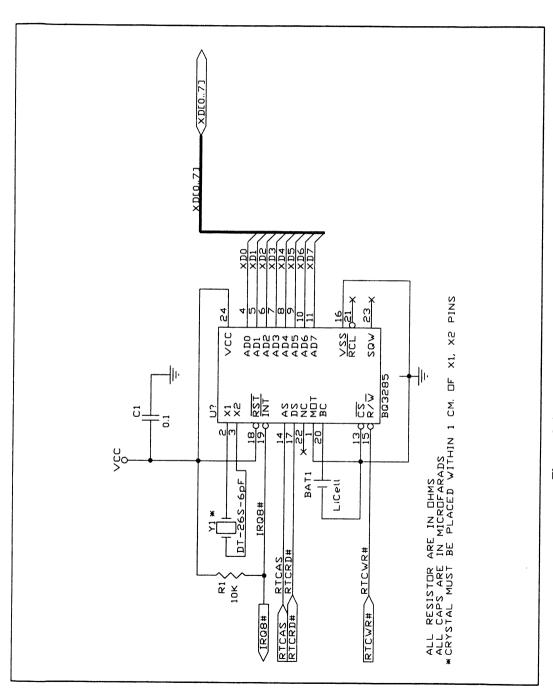


Figure 2. bq3285 ISA (PC/AT) Example

Oct. 1993

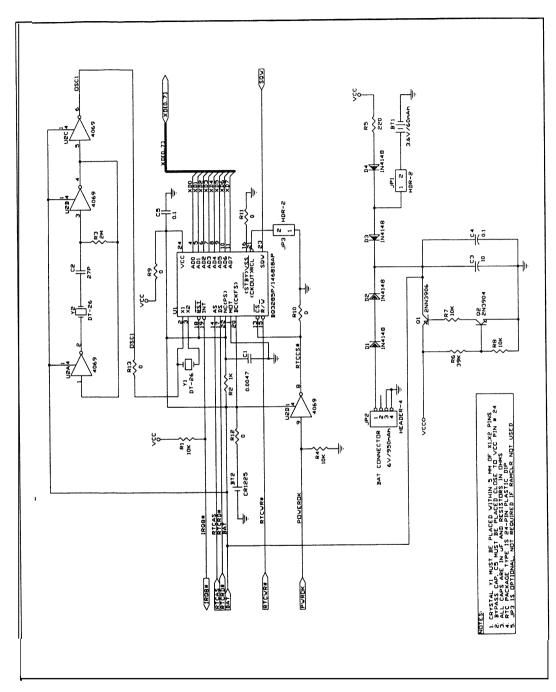


Figure 3. bq3285 or MC146818A ISA (PC/AT) Example

4/12 Oct. 1993

Table 3. MC146818A ISA (PC/AT) Parts List (Figures 1 and 3)

Item	Quantity	Reference	Put
1	1	BT1	3.6V/60mAh
2	1	C1	0.0047
3	1	C2	27P
4	1	C3	10
5	1	C4	0.1
6	4	D1, D2, D3, D4	1N4148
7	1	JP1	HEADER2
8	1	JP2	HEADER-4
9	1	Q1	2NN3906
10	1	$\mathbf{q_2}$	2N3904
11	4	R1, R4, R7, R8	10K
12	1	R2	1K
13	1	R3	2M
14	1	R5	220
15	1	R6	39K
16	1	U1	MC146818A
17	1	U2	4069

Table 4. bq3285 ISA (PC/AT) Parts List (Figures 2 and 3)

item	Quantity	Reference	Put
1	1	R1	10K
2	1	U1	bq3285
3	1	BT1	Li cell
4	1	Y1	D T-2 6
5	1	C1	0.0047

Notes: Possible crystal/battery suppliers include:

- Daiwa DT-26 or equivalent crystal
- Rayovac/Panasonic lithium coin cells:

BR1225 38-39mAh BR2032 180-200mAh BR2325 165-180mAh

These cells and cells of other sizes are available =tabbed for soldering directly **into** boards. These types of lithium coin cells are safe for all modes of transportation per U.S. Department of Transportation records.

- Rayovac U.L. #MH12542
- Panasonic U.L. #MH12210

Oct. 1993 5/12

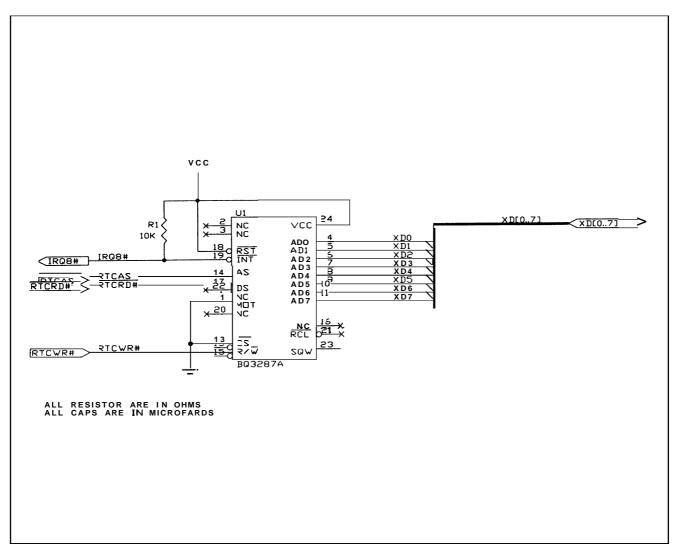


Figure 4. bq3287 ISA (PC/AT) Example

Oct. 1983

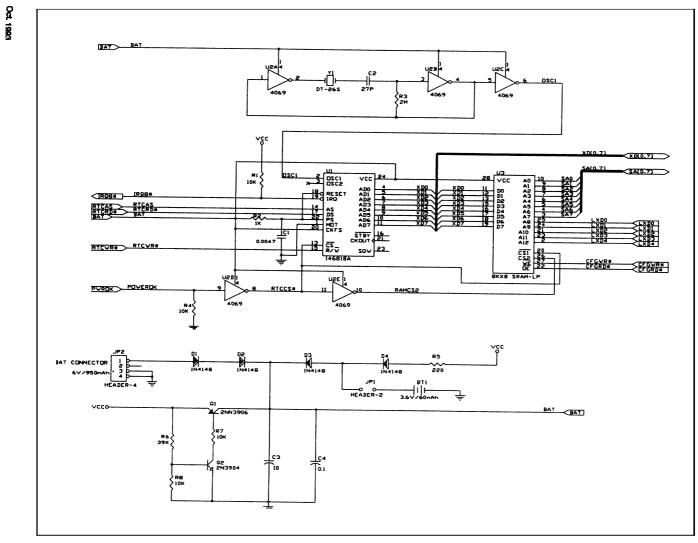


Figure 5. MC146818A w/ External SRAM EISA or MCA Example

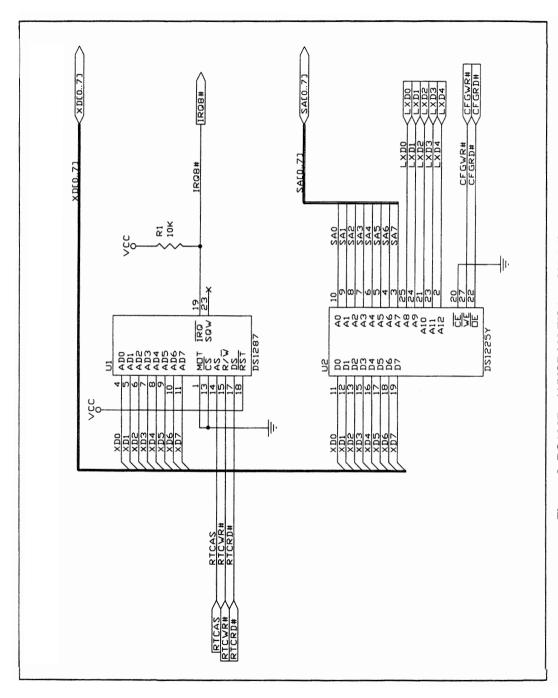


Figure 6. DS1287 w/ NVSRAM EISA or MCA Example

8/12 Oct. 1993

Table 5. bq3287 ISA (PC/AT) Parts List (Figure 4)

Item	Quantity Reference		Part
1	1	R1	10K
2	1	U1	bq3287

Table 6. MC146818A w/ External SRAM Parts List (Figure 5)

Item	Quantity	Reference	Part
1	1	BT1	3.6V/60mAh
2	1	C1	0.0047
3	1	C2	27P
4	1	C3	10
5	1	C4	0.1
6	4	D1, D2, D3, D4	1N4148
7	1	JP1	HEADER-2
8	1	JP2	HEADER-4
9	1	Q1	2NN3906
10	1	Q2	2N3904
11	4	R1, R4, R7, R8	10K
12	1	R2	1K
13	1	R3	2M
14	1	R5	220
15	1	R6	39K
16	1	U1	MC146818A
17	1	U2	4069
18	1	U3	8Kx8 SRAM-LP
19	1	Y1	DT-26

Table 7. DS1287 w/ NVSRAM EISA or MCA Parts List (Figure 6)

item	Quantity	Reference	Part
1	1	R1	10K
2	1	U1	DS1287 or bq3287
3	1	U2	DS1225Y or ba4010Y

Oct. 1993

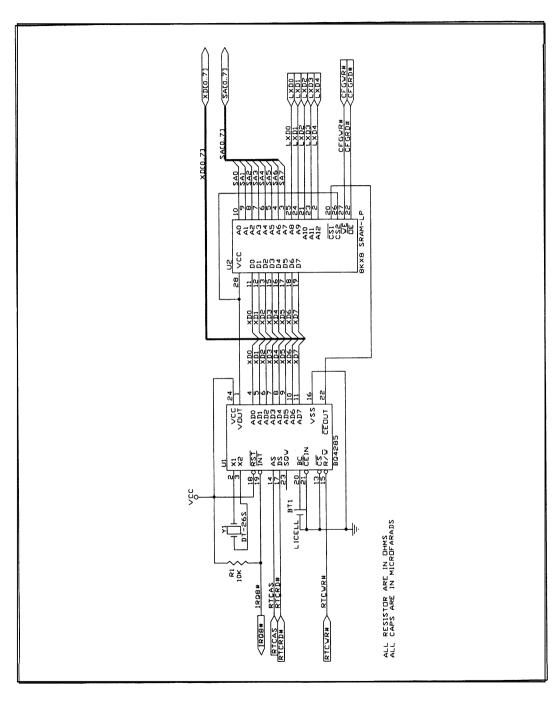
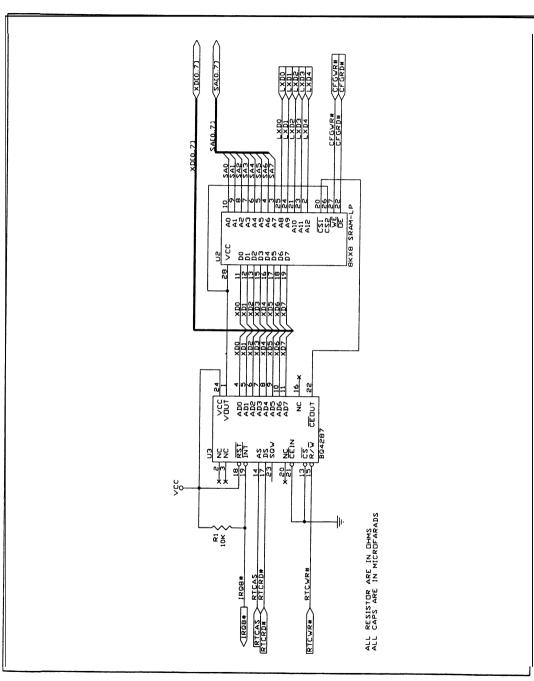



Figure 7. bq4285 EISA or MCA Example

10/12 Oct. 1993

Oct. 1993

Table 8. bq4285 EISA or MCA Parts List (Figure 7)

item	Quantity	Reference	Part
1	1	BT1	Li œll
2	1	R1	10K
3	1	U1	bq4285
4	1	U2	8Kx8 SRAM-LP
5	1	Y1	DT-26

Notes: Possible crystal/battery suppliers include:

- Daiwa DT-26 or equivalent crystal
- Rayovac/Panasonic lithium coin cells:

BR1225 38-39mAh BR2032 180-200mAh BR2325 165-180mAh

These cells and cells of other sizes are available 'tabbed' for soldering directly into boards. These types of lithium coin cells are safe for all modes of transportation per U.S.Department of Transportation records.

- Rayovac U.L.#MH12542
- Panasonic U.L.#MH12210

Table 9. bq4287 EISA or MCA Parts List (Figure 8)

Item	Quantity	Reference	Part
1	1	R1 10K	
2	1	U2	8Kx8 SRAM-LP
3	1	U3	bq4287

12/12 _______Oct. 1993

Introduction

The RAM clear function is useful for resetting data in battery-backed CMOS RAM. This function can, however, be detrimental when inadvertently activated. When activated, the RAM clear function on the **bq3285** and bq3287 A RTCs sets the **contents** of the 114 (or 242) bytes of CMOS RAM to "FF" (hex).

Figure 1 shows the circuit configuration required to use the RAM clear function. The Benchmarq RTC uses the on-chip time-base oscillator to de-bounce the momentary switch, SW1, over a period of 100 ms. This requires that the time-base oecillator and the divider chain must be turned on by writing a 02 (hex) in bit locations OSC2-OSCO of register A. Although Figure 1 shows a momentary switch, an electronic signal can also be used with the same considerations.

All CMOS RAM locations are 'cleared' when the **Bench**-marq **RTC senses a low-level pulse** of at least **100ms** on the RAM clear pin, RCL, when Vcc = 5V.

Clearing RAM

Follow theee **steps** to clear **RAM** using the Benchmarq and Dallas Semiconductor**RTCs**:

1. Turn on the oecillator (this is a normal part of initialization when power is on).

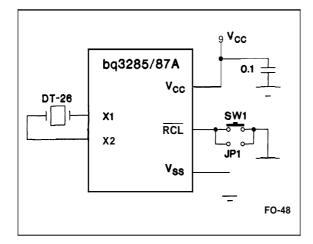


Figure 1. Recommended Hookup for RAM Clear Function

- 2. Clear the RAM: Jumper JP1.
- Remove the JP1 jumper.

Implementation Differences

Although the hardware requirements for activating the Dallas Semiconductor RAM clear pin, RCLR, are identical to those for activating the Benchmarq RCL pin, the function is implemented differently:

- a Dallas Semiconductor's RAM clear function provides access to the internal lithium power source. Shorting RCLR to ground drains the lithium cell.
- Benchmard's RCL pin is internally de-bounced (oscillator on).
- Benchmard's RCL pin is active when power is on.

Benchmarq Advantages

The Benchmarq **RTCs** have the following advantages over the Dallas **Semiconductor** parts:

- When the Dallas Semiconductor RCLR pin is exposed to any low-impedance path including metal trays, conductive bags, conductive foam, ground, etc., the battery will be drained. This may severely limit the battery life of the RTC. The battery in the Benchmarq RTC will not be drained.
- The Dallas Semiconductor RTC is prone to inadvertent clearing of RAM while the system is off because the RAM clear function is active when power is not valid.
- The de-bouncing capability of the Benchmarq RTC preventa inadvertent clearing of the CMOS RAM as a result of spurious noise on the RCL pin.

Dec. 1993

2/2 Dec. 1993

For RTC ICs

Introduction

The operation of the **time-base** oscillator **is** critical to the time-keeping functions of the **bq3285**, **bq4285**, and **bq4845** series of Real-Time-Clocks. For simplicity, the term **"RTC"** refers to this **product** family.

This application note describes some basic characteristics of the piezoelectric crystal and the on-chip crystal oscillator circuitry designed into the RTC. This application note also includes suggestions for achieving time-keeping accuracy and circumventing oscillator start-up problems.

Time-Base Crystal

The RTC time-base oscillator is designed to work with an external piezoelectric 32.768kHz crystal. A crystal can be represented by its electrical equivalent circuit and associated parameters as shown in Figure 1 and Table 1, respectively.

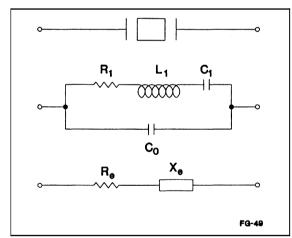


Figure 1. Equivalent Circuit of a Quartz Crystal

L₁, C₁, and R₁ are known as the motional arm of the circuit. L₁ is the motional inductance, C₁ represents the motional capacitance of the quartz, and R₁ represents the equivalent motional arm resistance or series resistance. C₀ is the static or shunt capacitance and is the sum of the capacitance between electrodes and the capacitances added by the leads and mounting structure. The basic circuit can be resolved into equivalent resistive (R_e) and reactive (X_e) components.

Table 1. Crystal Parameters

Parameter	Symbol	Unit
Nominal frequency	F	kHz
Load capacitance	CL	pF
Motional inductance	L ₁	Н
Motional capacitance	C ₁	pF
Motional resistance	R ₁	ΚΩ
Shunt capacitance	C ₀	pF

Crystal Operating Medic

The equivalent crystal impedance varies with the fiequency & oscillation. 2 and 3 show the variation of the equivalent reactance, X_0 , with respect to frequency for KDS's DT-26 crystal. Figure 2 shows two points at which the crystal appears purely resistive (points at which $X_0 = 0$). These points are defined as the series resonant (Fs) and anti-meonant (Fa) frequencies. Series

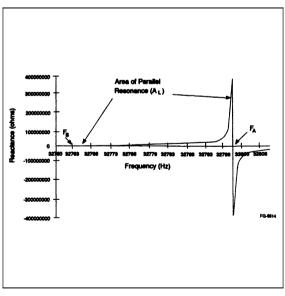


Figure 2. Variation of Reactance Around Resonance **Points**

Aug. 1996 1/10

resonant oecillator **circuits** are designed to oscillate at or near **Fs.** Parallel **resonant** circuits oscillate between Fs and Fa, depending upon the value of a parallel loading capacitor, **CL.** The Benchmarq RTC **uses** a parallel resonant oscillator circuit.

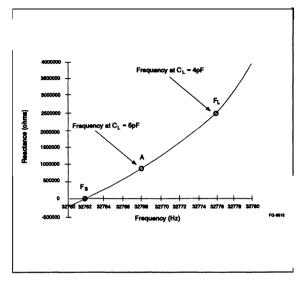


Figure 3. Detailed Area of Parallel Resonance

When a crystal is operating at parallel **resonance**, it **looks** inductive in a circuit (see Figure 4). Frequency will increase as load capacitance decreases. The load capacitance is the dynamic capacitance of the total circuit as measured or computed across the crystal terminals. In parallel circuit designs, the load capacitance should be selected to operate the crystal at a stable point on the Fs-Fa reactance curve as close to Fs as possible.

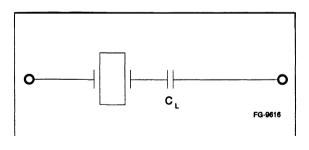


Figure 4. Parallel Resonance

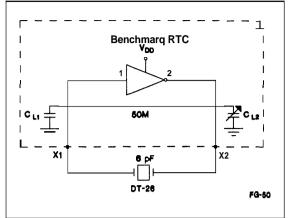


Figure 5. RTC Oscillator Circuit Block Diagram

Benchmarq RTC Oscillator

The parallel resonant RTC oecillator circuit **comprises** an **inverting** micro-power amplifier with a PI-type feedback network. Figure 5 **illustrates** a block diagram of the **os**-cillator circuit with the crystal **as** part of the PI-feedback network. The oecillator **circuit ensures** that the **crystal** is operating in the area of parallel resonance (AL) as shown in Figure 2.

Again, the actual frequency at which the circuit will **os**-cillate depends on the load capacitance, CL A parallel resonant crystal, such as the DT-26 with a specified CL = **6pF**, is calibrated using a parallel resonant **circuit**. The approximate **expression** of the load capacitance, **CL**, is computed from **CL1** and **CL2** as given below:

$$C_{L} = \frac{(C_{L1} * C_{L2})}{(C_{L1} + C_{L2})}$$

The RTC C_{L1} and C_{L2} values are trimmed to provide approximately a load capacitance of 6pF across the crystal terminals, thus matching the specified load capacitance at which the crystal is calibrated to resonate at the nominal frequency of 32.768kHz. Referring to the impedance curve of Figure 3,'A' indicates the point of resonance when C_L equals the specified load capacitance of the crystal.

Time-Keeping Accuracy

The RTC time-keeping accuracy **mostly** depends on the accuracy of the crystal, even though other **considerations** may affect it. The accuracy of the frequency of **oscillation** depends on the following:

Aug. 1996

- Crystal frequency tolerance
- Crystal frequency stability
- Crystalaging
- Effective load capacitance in oscillator circuit
- Board layout
- Drive level

Crystal Frequency Tolerance

The frequency tolerance parameter **is** the maximum **fre**quency deviation from the nominal frequency (in **this** case, 32.768kHz) at a **specified** temperature, expressed in ppm of nominal frequency. The frequency tolerance, Δf/f, should typically be around **±20ppm** at 25°C, which is the case for the Grade A, **DT-26** crystal.

Crystal Frequency Stability

The maximum allowable deviation from nominal frequency over a specified range is the stability tolerance or temperature coefficient. This factor depends upon the angle of cut, the width/length ratio, the mode of vibration, and harmonics. This factor is normally expressed in terms of ppm or % of nominal frequency. Figure 6 shows a typical curve of frequency variation with temperature for the KDS DT-26 crystal.

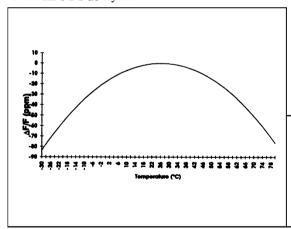


Figure 6. Typical Temperature Characteristics

Crystal Aging

Quartz crystal aging refers to the permanent change in operating frequency which occurs over time. The rate of change in frequency is fastest during the first 45 days of operation. Many factors affect aging, and the most common include the following: drive level, internal contami-

nation, **crystal surface** change, ambient temperature, wire fatigue, and frictional wear. **Diff** with age is typically 4 ppm for the **first** year and 2 ppm per year for the life of the **DT-26** crystal.

Load Capacitance

For a parallel remnant calibrated crystal, the crystal manufacturer specifies the bad capacitance at which the crystal will "parallel" resonate at the nominal insquency. As the graph in Figure 3 displays, increasing the effective load capacitance by hanging additional capacitors on either of the RTC's X1 or X2 pins will effectively lower the resonant frequency, noint "A," toward Fs. The resonant fiequency with load capacitance, % is given by the

$$F_L = F_S(1 + \frac{C_1}{2(C_0 + C_1)})$$

where **C**_L is the effective load capacitance across the crystal inputs, which includes any stray capacitances.

Allowing for capacitance due to board layout traces leading to the X₁ and X₂ pins, the RTC oscillator circuit is trimmed internally to provide an effective load capacitance of less than 6pF. Therefore, if the X₁ and X₂ pine were bent up from the PCB traces and a crystal specified with a C_L of 6pF was soldered directly to these pins, the clock should oscillate approximately 40-50 ppm faster than the nominal frequency of 32.768kHz.

Load Capacitance Trimming

If the RTC clock is running faster than the nominal &-quency, a small trim capacitor (preferably <8pF) should be placed from the X2 pin to ground to move the remnant point closer to the nominal frequency. The graph of Figure 7 shows the variation of frequency with additional load capacitance on the RTC X2 pin.

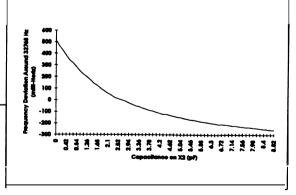


Figure 7. Frequency Variation Versus Load Capacitance

Aug. 1996

The trimming capacitors normally should be ceramic. Ideally, use a COG- or NPO-type of ceramic or a polyester film capacitor, as these are better suited for timing applications.

Here is a **practical** rule of thumb deriving from the data in **Figure** 7: for every additional **1.54pF** capacitance on the X_2 pin, the frequency will decrease by **0.8Hz** or a $\Delta f/f$ of -24.4 ppm around **32.768kHz**.

Using Crystals with CL other than 6pF

Sometimes, a crystal with a **C**_L specification other than **6pF** is used, either because of availability or a stocking issue. Again, because **Benchmarq's RTCs** are trimmed for use with **C**_L = **6pF** crystals, timing accuracy will most likely be outside ±20 ppm.

A popular alternative is a crystal with a $C_L = 12.5 pF$. By using a crystal with this load capacitance specification, the RTC will resonate much closer to the anti-resonant frequency, Fa. Thus, a larger trim capacitor is necessary. Benchmarq suggests using a 10pF from the X_2 pin to ground in order to achieve ± 30 ppm accuracy. Please take ± 100 considerationboard trace capacitances.

Parallel trim capacitors can also be used, which would place the trim capacitor directly across the XI, X2 pins. Parallel trim capacitors, however, require an increased voltage on the BC pin to maintain oscillations in battery backup mode. Hence, Benchmarq still suggests using a trim capacitor from the X2 pin to ground.

Table 2 represents typical data taken with a **bq3285** using a KDS crystal with a $C_L = 12.5 pF$ and parallel trim capacitors. The leads were bent up, directly connecting the crystal to them, so a 2-3pF capacitor from both the X_T , X_2 pins to ground were added to simulate trace capacitances. The part was monitored by using an HP5370B Universal Time Interval Counter tied to the SQW output pin.

This data shows that a **6.8pF** parallel trim capacitor has better pprn performance, but the oscillator was not sustained in battery back-up mode at the **minimum** battery voltage of **2.5V**. Benchmarq suggests using a **4.7pF** parallel trim capacitor if using a crystal with a $C_L = 12.5pF$.

Board Layout

Given the high-input impedance of the crystal input pins X_1 and X_2 , take care to route high-speed switching signal traces away from them. Preferably use a ground-plane layer around the crystal area to isolate capacitive-coupling of high-frequency signals. The traces from the crystal leads to the X_1 , X_2 pins must be kept short with minimal bends. A **good** rule of thumb is to keep the crystal traces within 5mm of the X_1 , X_2 pins.

Table 2. Parallel Trim Capacitance Data

Ср	BC Voltage	pprn	Oscillator sustained	Start- up
6.8pF	2.1V 2.15V 2.5V 3.0V	+7-10	No No No Yea	Yes Yes Yes Yes
4.7pF	<2.15V 2.15V 2.5V 3.0V	+15-20	No Yes Yes Yes	No Yes Yes Yes

Notes:

- 1) Cp = Parallel trim capacitor
- 2) BC voltage = Voltage present on BC pin
- 3) pprn = pprn data
- 4) Osc. sustained = Oscillator running in battery backup mode?
- 5) Start-up = Did oscillator start up on power-up?

Finally, place a 0.1µF ceramic by-pass capacitor close to the RTC Vcc pin to provide an improved supply into the clock.

Drive Level

The drive level is the power dissipated through a crystal in an operating circuit. A drive level (measured in microwatts) which is too high or too low can cause undesirable effects. If the level is too high, it can cause the oscillator frequency to change, cause a fracture of the quartz element, or lead to a permanent shift in frequency output. If the drive level is too low, it can prevent oscillator function completely. Generally, keep the drive level at the minimum level required for high stability and adequate oscillator output. Benchmarq designs RTCs for minimum drive level for reduced power dissipation to achieve maximum battery life when oscillating in battery backup mode.

Measuring for Accuracy

When checking for clock accuracy, use either a scope or a universal time counter connected to the SQW output pin.

Do not place probes on the XI or X_2 pins to check for oscillations, as **this** action may load the crystal and reduce the output amplitude or prevent the oscillator **from** functioning.

Oscillator Start-up

Barring accuracy issues, the RTC will oscillate with any 32.768kHz crystal. When hooked to the Xi, X2 pins in Aug. 1996

certain configurations, however, passive **components** can lead to oscillator start-up problems through the following:

- Excessive loading on the crystal input pins Xi, X₂.

 Table 2 shows a **6.8pF** parallel trim cap trimming in a **12.5pF** CL **crystal**. The **6.8pF** trim cap provides for better ppm accuracy, but the **oscillator** will not oscillate in battery backup mode with the minimum battery voltage of **2.5V**, even though the oscillator will start-up upon power-up.
- Use of a resistive feedback element **across** the crystal.

Benchmarq builds the feedback element into the RTC for start-up, so no resistive feedback external to the part is required.

Also, for start-up, a voltage within the **VBC** voltage range must be present on the BC pin upon power-up for the oscillator to start-up. This voltage provides biasing to the oscillator circuit for operation.

Figure 8 shows **"good"and** "bad" circuit configurations for the RTC oscillator.

References

- 1. KDS America, Quartz Crystals and Oscillators User's Guide
- Eaton, S. S., Timekeeping Advances Through COS/MOS Technology, RCA Application Note ICAN 6086.

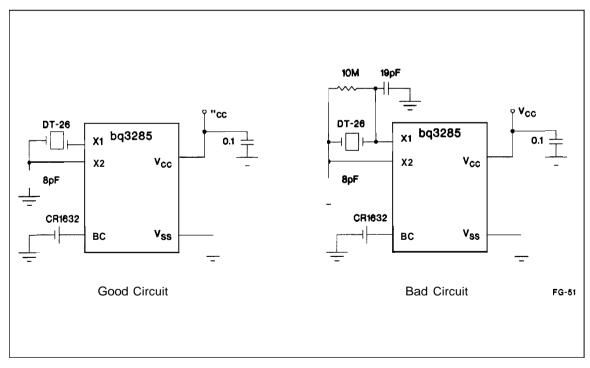


Figure 8. Typical Crystal Hookup Circuits

Aug. 1996

Suggested Crystals and Manufacturers

Here are a few suggestions for 32.768kHz crystals for use with Benchmarq RTCs:

Item		Symbol	KDS DT-26	Epson C-002RX	Epson MC-306	Epson MC-405/406	
Frequencyrange		f	32.768kHz				
Temperature range	Stôrage	TsTG	-30°C to +70°C	-10°C to +60°C	-55°C to +125°C	-55°C to +125°C	
Tamparauterange	Operating	_Topr_	-lO°C to +60°C	-10°C to +60°C	-40°C to +85°C	-40°C to +85°C	
Maximum drive le	vel	GL		1.0	μW		
Soldering condition	n	T_{SOL}				under 230°C within 3 min.	
Frequencytoleran	ce	Δf/f			± 20 ppm or ±50 ppm		
Peak temperature	(frequency)	ΘТ		25°C	± 5°C		
Temperature coeffic	cient (freq.)	а		-0.04 ppm	/°C ² max.		
Load capacitance		$C_{\mathbf{L}}$		6pF (plear	se specify)		
Series resistance		R_1	45kΩ max.	50 k Ω max.	50kΩ max.	50 k Ω max.	
Motional capacitar	nce	C ₁	2.6fF typ.	2.0fF typ.	1.8fF typ.	2.0fF typ.	
Shunt capacitance		C ₀	1.1pF typ.	0.8pF typ.	0.9pF typ.	0.85pF typ.	
Insulation resistar	nce	IR	R 500M Ω min.				
Aging		fa	- ±5 ppm/year max. ±3 ppm/year max. ±3 ppm/year		±3 ppm/year max.		
Shock resistance		S.R.	±3 ppm max.	±5 ppm max.	±5 ppm max.	±5 ppm max.	
Package type			cylinder	cylinder	SOIC	SOIC	

Epson America, Inc. 20770 **Madrona** Avenue

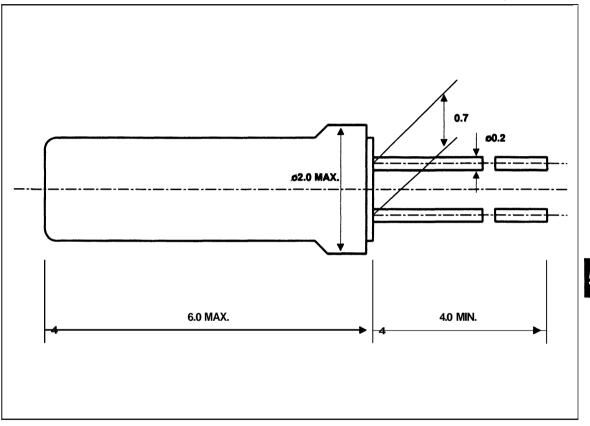
Torrance, California 90509-2842

P.O.Box 2842

Tel: (310) 787-6300 Fax: (310) 782-5320

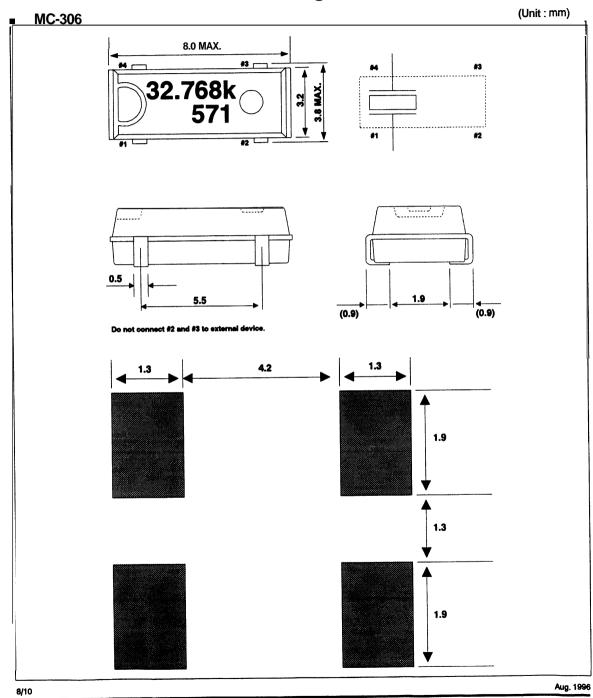
KDS America 10901 Granada Lane Overland Park, Kansas 66211 Tel: (913) 491-6825 Fax: (913) 491-6812

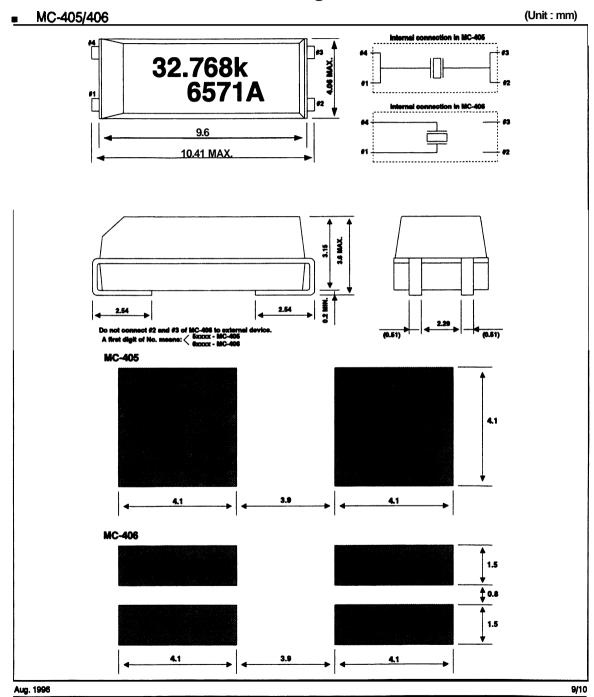
Epson Taiwan, Inc. 10 F, No. 287, Nanking E. Road Sec. 3, Taipei, Taiwan, ROC Tel: (02) 717-7360


Epson Hong Kong Limited **20/F** Harbour Centre 25 Harbour Road Wancha, Hong Kong Tel: (852) 2585-4600 Fax: (02) 718-9366 Fax: (852) 2827-4346,2152 **Epson** Korea, Inc. IOF. **KLI** 63 Building 60 Yoido-Dong Youngdeungpo-Ku Seoul, Korea Tel: (02) 784-6027 **Fax:** (02) 784-0087

Epson Singapore PTE LTD No. 1 Raffles Place OUB Centre #25-00 Singapore 048616 Tel: 5330477 Fax: 5345109

External Dimensions


■ DT-26, C-002RX



Aug. 1996 7/10

External Dimensions and Soldering Patterns

External Dimensions and Soldering Patterns

Notes

10/10 Aug. 1996

Using the bq3285/7E in a

Green or Portable Environment

Introduction

The **bq3285/TE** Real-Time Clock is a **PC/AT-compatible** real-time clock that **incorporates** three enhanced features to facilitate power management in Green desktop *or* portable computers:

- 32kHz output
- 128 extra bytes of CMOS nonvolatile SRAM
- Alarm interrupt active in battery-backup mode

The 32kHz output provides a clock signal for power management timers and DRAM refresh control in powersensitive systems. The output must be enabled with software and appears on the SQW pin.

Most RTCs and chip sets on the market have 114 bytes of general-purpose CMOS RAM. The bq3285/7E adds 128 additional bytes of memory to give the designer and user greater flexibility in defining system configuration settings. The added CMOS RAM is paged to by asserting the EXTRAM pin on the bq3285/7E. It can be used to store power management time-out settings, plug-and-play configuration data, or additional chip set parameters.

The bq3285/TE allows the alarm interrupt from the realtime dock to be active when no power is applied to the part. This enables a properly designed system to be programmed to "wake-up" from a power-off state and perform a function, minimizing the system on time.

32.768kHz Output

The **bq3285/TE** can be configured to generate a buffered **32.768kHz** output on the SQW pin. This signal can be used as a **timebase** for **system** timers in a power **management** environment and as a clock reference for DRAM refresh.

In a Green or portable system, a number of timers are needed to track system and peripheral activity in order to enter different power states and turn off peripherals like hard drives and monitors. For example, a power-managed system may require countdown power state timers to transition the computer from full operation to doze, standby, and suspend states. Peripheral timers may be needed to count how long each peripheral has been inactive. Some chip sets allow the DRAM refresh rate to be slowed to rates based on the 32kHz timer when in suspended states. The power management controller

(PMC) on the core logic **takes** the timer **inputs** and minimizes system **power consumption** by generating the appropriate control signals to the **rest of the system**.

Enabling the 32.768kHz Output

The 32.768kHz output is only available when Vcc to the RTC is valid (5V ± 10%). The following settings in the control registers A, B, and C enable the 32.768kHz output onto the SQW pin.

- 1. Set the **Register** A **OS2-OS0** bite **BS** shown:
- 2. Set the Register B SOWE bit as shown:

	Register A Bits						
7	7 6 5 4 3 2 1 0						
UIIP	OS2	OS1	OS0	Rs3	Rs2	RS1	Rso
-	0	1	1	-	-	-	-

3. Set the **Register** C **32KE** bit as shown:

	Register B Bits						
7	6	5	4	3	2	1	0
UTI	PIE	AIE	UIE	SQWE	HF	DSE	RS0
				1		-	-

The above settings do not affect the periodic interrupt

Register C Bits							
7	6	5	4	3	2	1	0
INTF	PF	AF	UF	0	32KE	0	0
					1	•	

rate or other time-keeping functions.

Disabling the 32.768kHz Output

The 32.768kHz output is disabled under the following conditions.

- 1. Clearing either of the **SQWE/32KE** bite or the **OS1/OS0 bits** in the above registers.
- 2. Asserting the \overline{RST} pin low.
- Putting the device in battery-backup mode (Vcc < VBC).

Sept. 1994 1/6

Extra CMOS NVSRAM

Because bit 7 at I/O port address 70H in a PC/AT environment is the NMI, additional I/O ports are needed to access the extra 128 bytes of CMOS RAM. The following table shows the I/O ports used by the PC/AT BIOS to access CMOS RAM. Note the CMOS RAM includes the RTC information in the uppermost 14 locations.

I/O Address	Read/ Write	Description
070Н	w	CMOS RAM address register port, where: Bit 7 = 1; NMI disabled = 0; NMI enabled Bits 6–0 = Register and CMOS RAM address
071H	R/W	CMOS RAM data register port
074H	w	Extended CMOS RAM address register port, least-significant byte
075H	w	Extended CMOS RAM address register port, most-significant byte
076H	R/W	Extended CMOS RAM data register port

The two CMOS RAM data areas are shown below.

Data Area	I/O Locations	Size (bytes)	Description
Default CMOS Data Area	070H and 071H	Default: 64 Maximum: 128	All BIOS varia- tions use this area to store RTC, POST, and system configura- tion data.
Extended CMOS RAM Data Area	074H, 075H, and	Default: 2K Maximum: 64K	The PS/2 uses this area to store POS data. The Intel SL uses 074H and 076H to provide 'extended' 128 CMOS RAM bytes for APM data.

The EXTRAM pin controls **access** to the extra **128** bytes of memory on the bq3285/7E. The EXTRAM signal can be generated in two ways:

 Hook up SA3, SA2, or SA1 from the ISA address bus to the EXTRAM pin. The address/data ports through which the 'extra' 128 bytes are accessed depend on which address line is used, as shown in the following table.

Address Line	I/O Ports	Read/ Write	Description
SA3	078H	w	Extra CMOS RAM address register port, where: Bit 7 = Reserved Bits 6-0 = Extra CMOS RAM address
SA3	079H	R/W	Extra CMOS RAM data register port
SA2	074H	w	Same as 078H
SA2	075H	R/W	Same as 079H
SA1	072H	w	Same as 078H
SA1	073H	R/W	Same as 079H

Any one of the above **I/O** port pains that asserts RTC control signal AS, DS, or WR should be selected.

 Hook up an unused general-purpose I/O port pin to EXTRAM pin. When this pin is asserted high on a write to the assigned I/O port, successive accesses to port 070H and 071H are directed to the extra 128byte RAM bank.

Refer to Figure 1 for a diagram of a complete PC/AT interface.

Alarm Interrupt

The alarm interrupt on the **bq3285/7E** functions with or without Vcc power. It can be used in a power-managed system to wake the system up from suspend mode or turn the system or **parts** of the system on from the power-off mode. In suspend mode, most of the computer is shut down except for the power management controller and the DRAM. The PMC needs an interrupt from a push-button resume switch, an incoming modem ring, or the RTC to resume operation. The **bq3285/7E** RTC can either be left on or turned off during **suspend** mode depending on the level of functionality required. In **W** suspend mode, the **32kHz** output may not be needed because all the DRAM information is stored to disk and refresh is not required. In this **case**, the **bq3285/7E** can be powered Sept. 1994

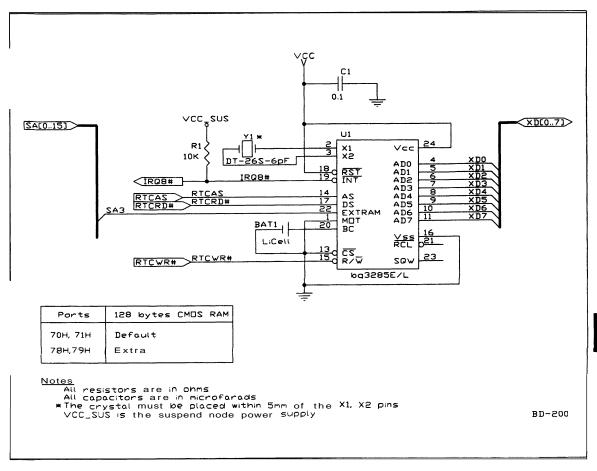


Figure 1. bq3285/7E PC/AT Design Example

Sept. 1994

off during **suspend** and still be able to supply the alarm interrupt to the power management controller. In **3V/5V** suspend where the DRAM is kept alive, the **bq3285/7E** should be in the powered-up mode. **This has** little impact on power consumption, however, **because** the **bq3285/7E** has low standby **current** when deselected.

The **bq3285/TE** can be also be **used** to **turn** a **system** on from the power-off mode for periods of short **duration**. Figure 2 shows how this could be implemented. The INT pin alerts the power management controller, which in **turn** activates a **p-FET** to turn on the necessary **subsystems** to perform the required function. After **completion** of the task, the **system** shuts down except for the power management controller.

PC/AT Environment

Most advanced power-managed chip sets have a direct input for a 32kHz signal. A common way of generating this signal is to use a CMOS buffered inverter like the MC14069 with a 32.768kHz quartz crystal and R-C components. The bq3285/7E contains its own built-in 32.768kHz quartz crystal for the real-time clock oscillator. To eliminate redundancy and component count, the 32kHz output on the bq3285/7E SQW pin can be used in place of the MC14069, external crystal, and other passive components. The SQW pin has not been used in PC/AT

designs in the **past**, so using it for this function **does** not impact other **aspects** of the motherboard design.

Figure 3 shows a real-time clock and timer generation using the MC146818A and the MC14069 in conjunction with Green core logic chips. Figure 4 shows the much simplified bq3285/TE design using the 32kHz output on the SQW pin and the extra NVSRAM enabled. Ports 70H and 71H address the upper 128 bytes of CMOS RAM including the RTC information. Ports 78H and 79H address the extra 128 bytes of CMOS RAM.

From a software standpoint, the PC BIOS must incorporate the appropriate routine to enable the 32kHz output and use the extra NVSRAM. The 32kHz enable routine should be placed as part of the system cold-boot initialization procedure.

Other Considerations

If the height of the **bq3285/TE** DIP module is an issue in portable designs, the part is also available in a 300-mil **SOIC** and a 150-mil SSOP (**bq3285ES** and **bq3285ESS**). Both variations provide direct connections for an external crystal and battery. The devices are also available with 3V **Vcc** operation (**bq3285LS** and **bq3285LSS**) for use in 3V systems.

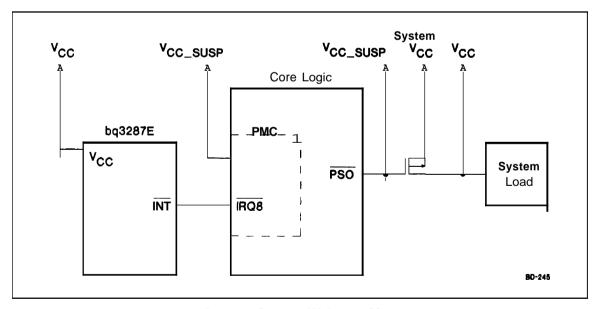


Figure 2. System Wake-up Alarm

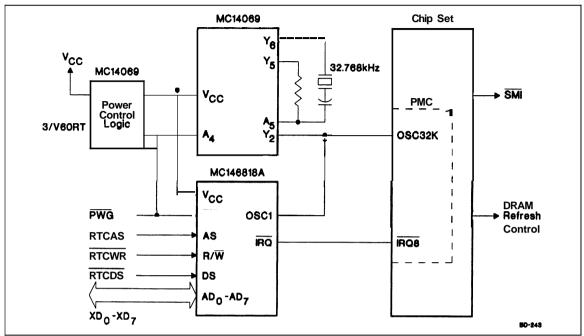


Figure 3. MC14069 Implementation

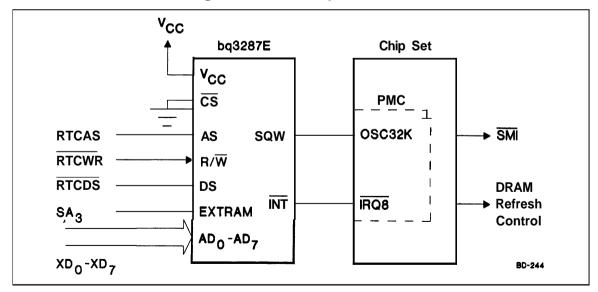


Figure 4. bq3285/7E Implementation

Sept. 1994

6/6 Sept. 1994

Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

bq4010/bq4010Y

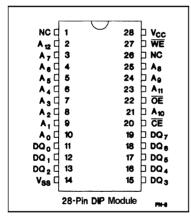
8Kx8 Nonvolatile SRAM

Features

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- Industry-standard 28-pin 8K x 8 pinout
- Conventional SRAM operation; unlimited write cycles
- 10-year minimum data retention in absence of power
- Battery internally isolated until power is applied

General Description

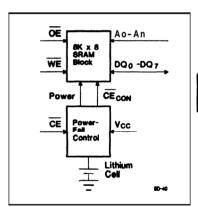
The CMOS **bq4010** is a nonvolatile **65,536-bit static RAM organized as** 8,192 **words** by 8 bite. **The** integral control circuitry and lithium energy source provide reliable nonvolatility coupled with the unlimited write cycles of standard SRAM.


The control circuitry constantly monitors the single 5V **supply** for an out-of-tolerance condition. When Vcc **falls** out of tolerance, the **SRAM** is unconditionally write-protected to prevent inadvertent write operation.

At this time the integral energy source is switched on to sustain the memory util after $V \approx \text{returns}$ valid.

The bq4010 uses an extremely low standby current CMOS SRAM, coupled with a small lithium coin cell to provide nonvolatility without long write-cycle timer, and the write-cycle limitations associated with EEPROM.

The bq4010 requires no external circuitry and is socket-compatible with industry-standard SRAMs and most EPROMs and EEPROMs.


Pin Connections

Pin Names

Ao -A ₁₂	Address inputs
DQ0-DQ7	Data input/output
CE	Chip enable input
ŌĒ	Output enable <i>input</i>
WE	Write enable input
NC	No connect
vcc	+5 volt supply input
V_{SS}	Ground

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
			bq4010Y -70	70	-10%
bq4010 -85	85	-5%	bq4010Y -85	85	-10%
bq4010 -150	150	-5%	bq4010Y -150	150	-10%
bq4010 -200	200	-5%	bq4010Y -200	200	-10%

Sept. 1996 D

Functional Description

When power is valid, the **bq4010** operates as a standard CMOS **SRAM**. During power-down and power-up cycles, the **bq4010** acts as a nonvolatile memory, automatically protecting and **preserving** the memory contents.

Power-down/power-up control circuitry constantly monitors the Vcc supply for a power-fail-detect threshold VppD. The bq4010 monitors for VppD = 4.62V typical for use in systems with 5% supply tolerance. The bq4010Y monitors for VppD = 4.37V typical for use in systems with 10% supply tolerance.

When **V**_{CC} falls below the **V**_{PP} threshold, the **SRAM** automatically write-protects the data. All outputs become high impedance, and all inputs are treated as 'don't care." If a valid access is in process at the time of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time **twp**, write-protection takes place.

As **Vcc falls** past VPFD and approaches **3V**, the control circuitry switches to the internal lithium backup supply, which provides data retention until valid **Vcc** is applied.

When Vcc returns to a level above the internal backup cell voltage, the supply is switched back to Vcc. After Vcc ramps above the VPFD threshold, write-protection continues for a time tcer (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cell used by the **bq4010** has an extremely long shelf life and provides data retention for more than 10 years in the absence of system power.

As shipped **from Benchmarq**, the integral lithium **cell** is electrically isolated from the memory. (Self-&charge in this condition is approximately **0.5%** per year.) Following the f i t application of Vcc, this isolation is broken, and the lithium backup cell provides data retention on subsequent power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	Н	Х	Х	High Z	Standby
Output disable	L	Н	Н	High Z	Active
Read	L	Н	L	Dout	Active
Write	L	L	X	Din	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
_		0 to +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial "N"
İ		- 40 to +70	°C	Commercial
Tstg	Storage temperature	-40 to +85	°C	Industrial "N"
		-10 to +70	°C	Commercial
TBIAS	Temperature under bias	-40 to +85	°C	Industrial "N"
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

2/10 Sept. 1996 D

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
**		4.5	5.0	5.5	V	bq4010Y/bq4010Y-xxxN
Vcc	Supply voltage	4.75	5.0	5.5	V	bq4010
v_{ss}	Supply voltage	0	0	0	V	
VIL	Input low voltage	-0.3		0.8	V	
VIH	Input high voltage	2.2		Vcc + 0.3	V	

Note: Typical values indicate operation at $TA = 25^{\circ}C$.

DC Electrical Characteristics (TA = TOPR, VCCmin < VCC < VCCmax)

Symbd	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μA	V _{IN} = V _{SS} to V _{CC}
Iro	Output leakage current			± 1		$\frac{\overline{CE}}{WE} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } $ $WE = V_{IL}$
Voh	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	v	I _{OL} = 2.1 mA
Isrı	Standby supply current	_	4	7	mA	CE = V _{IH}
I_{SB2}	Standby supply current		2.5	4		CE ≥ Vcc · 0.2V, CV ≤ V _{IN} ≤ 0.2V, or V _{IN} ≥ Vcc · 0.2V
Icc	Operating supply current		65	75	mA	The ValeInder On 100%,
		4.55	4.62	4.75	v	bq4010
V_{PFD}	Power-fail-detect voltage	4.30	4.37	4.50	V	bq4010Y,
V _{SO}	Supply switch-over voltage		3		v	

Note: Typical values indicate operation at TA = 25°C, Vcc = 5V.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Cyo	Input/output capacitance			10	рF	Output voltage = 0V
CIN	Input capacitance			10	рF	Input voltage = 0V

Note: These parameters are sampled and not 100% tested.

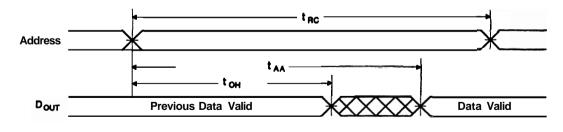
Sept. 1996 D

AC Test Conditions

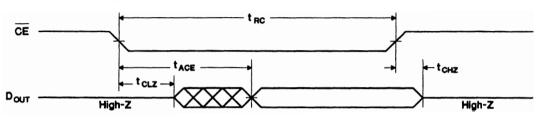
Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 1 and 2
0+5ν 1.9ΚΩ 1ΚΩ 100pF	D out 0 1.9KΩ 5pF

Figure 1. Output Load A

Figure 2. Output Load B

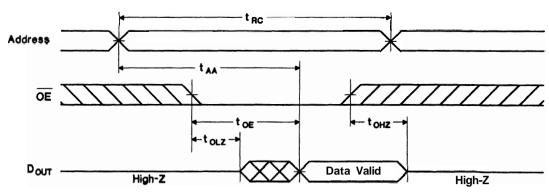

Read Cycle (TA = TOPR, VCCmin \leq VCC \leq VCCmax)

		-70/-	70N	-85/-	85N	-150/-	-150N	-2	:00		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Conditions
trc	Read cycle time	70		85		150	-	200	-	ns	
taa	Address access time	-	70	-	85	-	150		200	ns	Output load A
tace	Chip enable access time	-	70	-	85	-	150		200	ns	Output load A
toE	Output enable to output valid		35	•	45	-	70	-	90	ns	Output load A
tclz	Chip enable to output in low Z	5	•	5	-	10	-	10		ns	Output load B
toLZ	Output enable to output in low Z	5	-	5	-	5	-	5		ns	Output load B
tchz	Chip disable to output in high Z	0	25	0	40	0	60	0	70	ns	Output load B
tonz	Output disable to output in high Z	0	25	0	30	0	50	0	70	ns	Output load B
ton	Output hold from address change	10	•	10	-	10	-	10.	-	ns	Output load A


4/10 Sept. 1996 D

6

Read Cycle No. 1 (Address Access) 1,2


Read Cycle No. 2 (CE Access) 1,3,4

RC-2

RC-1

Read Cycle No. 3 (OE Access)

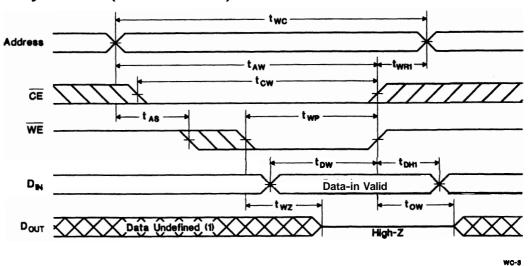
RC-3

Notes:

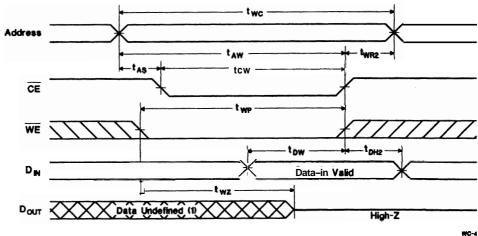
- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$
- 3. Address is valid prior to or coincident with \overline{CE} transition low,
- 4. $\overline{OE} = V_{IL}$.
- 6. Device is continuously selected: $\overline{CE} = V_{IL}$

Sept. 1996 D

Write Cycle (TA = TOPR, VCCmin \leq VCC \leq VCCmax)


		-70/-	-70N	-85/	-85N	-150/	-150N	-2	00		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	70	-	85	-	150	-	200	-	ns	
tcw	Chip enable to end of write	55	-	75	-	100		150	-	ns	(1)
taw	Address valid to end of write	55	-	75	-	90	-	150	-	ns	(1)
tas	Address setup time	0	-	0	-	0	-	0	-	ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	55	-	65	-	90	-	130	-	ns	Measured from beginning of write to end of write. (1)
twr1	Write recovery time (write cycle 1)	5	-	5	-	5	-	5	-	ns	Measured from WE going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15	-	15	-	15	-	15	-	ns	Measured from \overline{CE} going high to end of write cycle. (3)
t _{DW}	Data valid to end of write	30	-	35		50	-	70	-	ns	Measured from first low-to-high transition of either CE or WE.
t _{DH1}	Data hold time (write cycle 1)	0		0	-	0	-	0	-	ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10	-	10	-	0	-	0	-	ns	Measured from \overline{CE} going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	25	0	30	0	50	0	70	ns	I/O pins are in output state. (5)
tow	Output active from end of write	5	-	5		5		5		ns	I/O pins are in output state. (5)

Notes:


- 1. A write ends at the earlier transition of $\overline{\bf CE}$ going high and $\overline{\bf WE}$ going high.
- 2. A write occurs during the overlap of a low \overline{CE} and a low \overline{WE} . A write begins at the later transition of \overline{CE} going low and \overline{WE} going low.
- 3. Either twn1 or twn2 must be met.
- 4. Either tph1 or tph2 must be met.
- If CE goes low simultaneously with WE going low or after WE going low, the outputs remain in high-impedance state.

Sept. 1996 D

Write Cycle No. 1 (WE-Controlled) 1,2,3

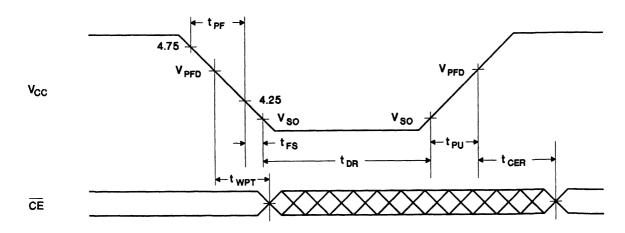
Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. $\overline{\textbf{CE}}$ or $\overline{\textbf{WE}}$ must be high during address transition.
- 2. Because VO may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the L/O pins remain in a state of high impedance.
- 4. Either twR1 or twR2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1996 D

Power-Down/Power-Up Cycle (TA = TOPR)


Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
tpr	Vcc slew, 4.75 to 4.25 V	300			μа	
trs	V _{CC} slew, 4.25 to V_{SO}	10			μs	
tpu	Vcc slew, Vso to VPFD (max.)	0			μя	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after Vcc passes VPPD on power-up.
tDR	Data-retention time in absence of Vcc	10			years	T _A = 25°C. (2)
tdr-n	Data-retention time in absence of Vcc	6			years	T _A = 25°C (2); industrial temperature range (-N) only.
twpr	Write-protecttime	40	100	150	þв	Delay after Vcc slews down past Vppp before SRAM is write-protected.

Notes:

- 1. Typical values indicate operation at $T_A = 25$ °C, $V_{CC} = 5V$.
- 2. Battery is disconnected from circuit until after V_{CC} is applied for the **first** time. **tpr** is the accumulated time in **absence** of power beginning when power is **first** applied to the device.

Caution: Negative undershoots below the absolute maximum rating of **-0.3V** in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

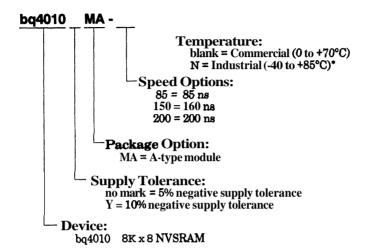
PD-B

8/10

Sept. 1996 D

Data Sheet Revision History

Change No.	Page No.	Description
1	2, 3, 4, 6, 8, 9	Added industrial temperature range for bq4010YMA-85N and -150N.
2	1, 4, 6, 9	Added 70 ns speed grade for bq4010-70 and bq4010Y-70 and added industrial temperature range for bq4010YMA-70N.
3	1	Removed 70ns speed grade for bq4010-70.


Notes:

Change 1 = Sept 1991 B c h a w from Sept. 1990 A.

Change 2 = Feb. 1994 Cchanges from Sept. 1991 B.

Change 3 = Sept 1996 D changes from Feb. 1994 C.

Ordering Information

*Note: Only 10% supply (Y") version is available in industrial temperature range; contact factory for speed grade

availability.

10/10 Sept. 1996 D

bq4011/bq4011Y

32Kx8 Nonvolatile SRAM

Features

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- Industry-standard 28-pin 32K x 8 pinout
- Conventional SRAM operation; unlimited write cycles
- 10-year minimum data retention in absence of power
- Battery internally isolated until power is applied

General Description

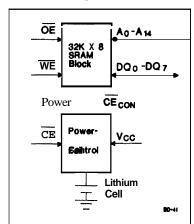
The CMOS **bq4011** is a nonvolatile 262,144-bit **static RAM** organized as 32,768 words by 8 **bits.** The integral control circuitry and lithium energy source **provide** reliable nonvolatility coupled with the unlimited write cycles of standard SRAM.

The control circuitry constantly **monitors** the single 5V supply for an out-of-toleraucecondition. When Vcc falls out of tolerance, the SRAM is unconditionally write-protected to prevent inadvertent write operation.

At this time the integral energy source is switched on to sustain the memory until after Voc returns valid.

The bq4011 uses an extremely low standby current CMOS SRAM, coupled with a small lithium coin cell to provide nonvolatility without long write-cycle times and the write-cycle limitations associated with EEPROM.

The **bq4011** requires no external circuitry and is **socket-compatible with** industry-standard **SRAMs** and most **EPROMs** and **EEPROMs**.


Pin Connections

		- \ 	_					
A ₁₄	1	28	₽ Vcc					
A 12	2	27						
A, [3	26	i					
A 6	4	25	1					
A ₅	5	24	, •					
A ₄	6	23						
Asc	7	22	1					
A ₂	8	21	1					
A, C	9	20	1					
Ao	10	19	1					
DQ ₀	11	18						
DQ 1	12	17	1 -					
DQ 2	13	16	1 -					
V 2	14	15	1					
V _{SS} □	17	10	P 003					
,	28-Pin DIP Module							
			PN-7					

Pin Names

A ₀ -A ₁₄	Address inputs
DQo-DQ1	Data input/output
CB	Chip enable input
ŌĒ	Output enable input
\overline{WE}	Write enable input
Vcc	+5 volt supply input
V_{SS}	Ground

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
			bq4011Y-70	70	-10%
bq4011 -100	100	-5%	bq4011Y -100	100	-10%
bq4011 -150	150	-5%	bq4011Y -150	150	-10%
bq4011 -200	200	-5%	bq4011Y -200	200	-10%

Aug. 1993 C 1/10

Functional Description

When power is valid, the **bq4011 operates** as a standard **CMOS SRAM.** During power-down and power-up cycles, the **bq4011 acts** as a nonvolatile memory, automatically protecting and preserving the memory **contents**.

Power-down/power-up control circuitry constantly monitors the Vcc supply for a power-fail-detect threshold VpfD. The bq4011 monitors for VpfD = 4.62V typical for use in systems with 5% supply tolerance. The bq4011Y monitors for VpfD = 4.37V typical for use in systems with 10% supply tolerance.

When **Vcc falls** below the **VPFD** threahold, the **SRAM** automatically write-protects the data. All **outputs** become high impedance, and all **inputs** are treated as 'don't care.' If a valid **access** is in **process** at the time of power-fail detection, the memory cycle **continues** to completion. If the memory cycle fails to terminate within time **twpT**, write-protectiontakes place.

As **V_{CC}** falls **past V_{PFD}** and approaches **3V**, the control circuitry switches to the internal lithium backup supply, which **provides** data retention until valid **V_{CC}** is applied.

When Vcc returns to a level above the internal backup cell voltage, the supply is switched back to Vcc. After Vcc ramps above the Vppp threshold, write-protection continues for a time tcer (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cell used by the **bq4011 has** an extremely long shelf life and **provides** data retention for more than 10 years in the **absence** of **system** power.

As shipped from **Benchmarq**, the integral lithium cell is electrically isolated **from** the memory. **(Self-discharge** in this condition is approximately 0.5% per year.) Following the first application of **Vcc**, **this** isolation is broken, and the lithium backup cell provides data retention on subsequent power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	Н	X	Х	High Z	Standby
Output disable	L	Н	Н	High Z	Active
Read	L	Н	L	Dour	Active
Write	L	L	X	Din	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
		0 to +70	°C	Commercial
Tom	Operating temperature	40 to +85	°C	Industrial "N"
		-40 to +70	°C	Commercial
T_{STG}	Storage temperature	-40 to +85	°C	Industrial "N"
		-10 to +70	°C	Commercial
TBIAS	Temperature under bias	-40to +85	°C	Industrial "N"
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

2/10 Aug. 1993 C

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
17	a 1 1	4.5	5.0	5.5	V	bq4011Y/bq4011Y-xxxN
Vcc	Supply voltage	4.75	5.0	5.5	V	bq4011
Vss	Supply voltage	0	0	0	V	
VIL	Input low voltage	-0.3	•	0.8	V	
V_{IH}	Input high voltage	2.2	•	V _{CC} + 0.3	V	

Note:

Typical values indicate operation at $T_A = 25$ °C.

DC Electrical Characteristics (TA = TOPR, VCCmin < VCC < VCCmax)

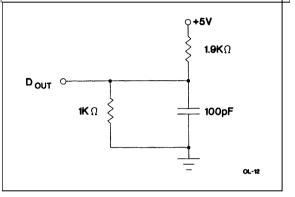
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 1	μA	V _{IN} = V _{SS} to V _{CC}
Iro	Output leakage current			± 1	μА	$\frac{\overline{CE}}{WE} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or }$ $\overline{WE} = V_{IL}$
VOH	Output high voltage	2.4			v	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	v	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current		4	7	mA	$\overline{CE} = V_{IH}$
I _{SB2}	Standby supply current		2,5	4	mA	$\overline{CE} \geq V_{CC} \cdot 0.2V,$ $OV \leq V_{IN} \leq 0.2V,$ $OF V_{IN} \geq V_{CC} \cdot 0.2V$
Icc	Operating supply current		65	75	mA	Min. cycle, duty = 100%, \overline{CE} = V_{IL} , I_{VO} = 0mA
		4.55	4.62	4.76	v	bq4011
V_{PFD}	Power-fail-detectvoltage	4.30	4.37	4.50	v	bq4011Y
Vso	Supply switch-over voltage		3		v	

Note:

Typical values indicate operation at $T_A = 25$ °C, $V_{CC} = 5V$.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			10	pF	Output voltage = OV
CIN	Input capacitance			10	рF	Input voltage = OV


Note:

These parameters are sampled and not 100% tested.

Aug. 1993 C

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V(unless otherwise specified)
Output load (including scope and jig)	See Figures 1 and 2

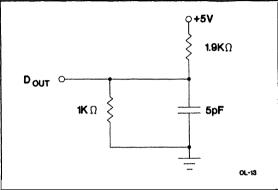
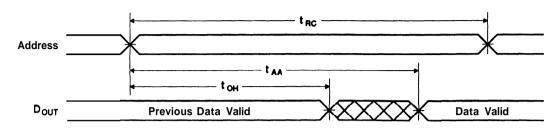


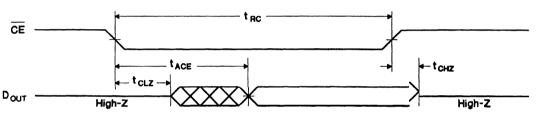
Figure 1. Output Load A

Figure 2. Output Load B

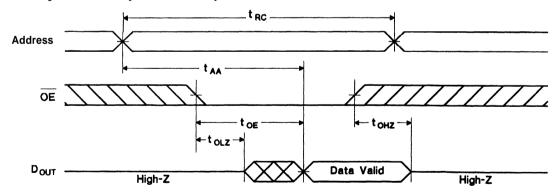
Read Cycle (TA = TOPR, VCCmin \leq VCC \leq VCCmax)


		-70/-	70N	-10	00	-150/-	-150N	-2	200		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Conditions
trc	Read cycle time	70	-	100	-	150	-	200	-	ns	
taa	Address access time	-	70	-	100	-	150	-	200	ns	Output load A
tace	Chip enable access time	-	70	-	100		150	-	200	ns	Output load A
toe	Output enable to output valid	-	35	-	50	-	70	_	90	ns	Output load A
tclz	Chip enable to output in low Z	5		5	-	10		10		ns	Output load B
tolz	Output enable to output in low Z	5	-	5		5	-	5	-	ns	Output load B
tchz	Chip disable to output in high Z	0	25	0	40	0	60	0	70	ns	Output load B
tonz	Output disable to output in high Z	0	25	0	35	0	50	0	70	ns	Output load B
ton	Output hold from address change	10	-	10	-	10	-	10	-	ns	Output load A

4/10 Aug. 1993 C


RC-1

RC-2


Read Cycle No. 1 (Address Access) 1,2

Read Cycle No. 2 (CE Access) 1,3,4

Read Cycle No. 3 (OE Access) 1,5

Notes:

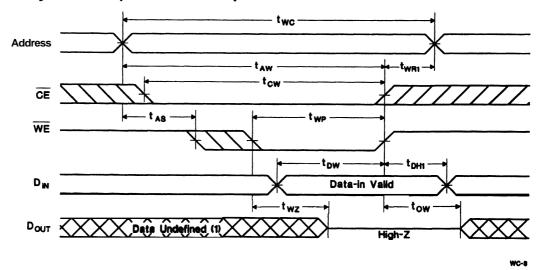
- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$

Aug. 1993 C

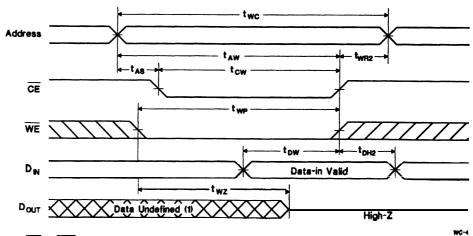
5/10

RC-3

Write Cycle (TA = TOPR, VCCmin \leq VCC \leq VCCmax)


		-70/	-70N	-1	00	-150/	-150N	-2	200		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	Conditions/Notes
twc	Writecycletime	70	•	100	-	150	•	200	-	ns	
tcw	Chip enable to end of write	55		90		100	-	150	-	ns	(1)
taw	Address valid to end of write	55		80	-	90	-	150	-	ns	(1)
tas	Address setup	o	-	o		0	-	0	•	ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	55		75	-	90		130	-	ns	Measured from beginning of write to end of write. (1)
tw _{R1}	Write recovery time (write cycle 1)	5	-	5	-	5		5	•	ns	Measured from WE going high to end of write cycle. (3)
tw _{R2}	Write recovery time (write cycle 2)	15	-	15	-	15	•	15	•	ns	Measured from CE going high to end of write cycle. (3)
tow	Data valid to end of write	30		40	-	50	-	70	-	ns	Measured from first low-to-high transition of either CE or WE.
tDH1	Data hold time (write cycle 1)	0		0	-	0	•	o	-	ns	Measured from WE going high to end of write cycle. (4)
tDH2	Data hold time (write cycle 2)	0		0	_	0	-	0		ns	Measured from \overline{CE} going high to end of write cycle.(4)
twz	Write enabled to output in high Z	0	25	0	35	0	50	0	70	ns	I/O pine are in output state. (5)
tow	Output active from end of write	5		5		5		5	-	ns	I/O pins are in output state. (5)

Notes:


- 1. A write ends at the earlier transition of $\overline{\textbf{CE}}$ going high and $\overline{\textbf{WE}}$ going high.
- 2. A write occurs during the overlap of a low $\overline{\bf CE}$ and a low $\overline{\bf WE}$. A write begins at the later transition of $\overline{\bf CE}$ going low and $\overline{\bf WE}$ going low.
- 3. Either twn or twn must be met.
- 4. Either tph1 or tph2 must be met.
- 5. If $\overline{\bf CE}$ goes low simultaneously with $\overline{\bf WE}$ going low or after $\overline{\bf WE}$ going low, the outputs remain in high-impedance state.

Aug. 1993 C

Write Cycle No. 1 (WE-Controlled) 1,2,3

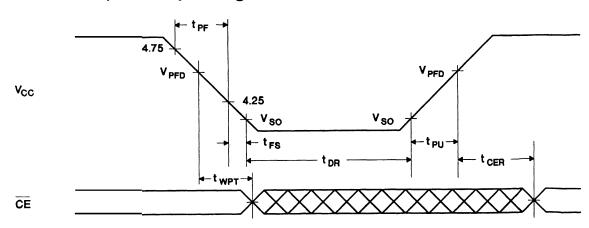
Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. CE or WE must be high during address transition.
- 2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twr1 or twr2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Aug. 1993 C

Power-Down/Power-Up Cycle (TA - TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpr	Vcc slew, 4.75 to 4.25 V	300			Ire	
tfs	Vcc slew, 4.25 to Vso	10			μв	
tpu	Vcc slew, Vso to Vppp (max.)	0			Ire	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after V _{CC} passes V _{PPD} on power-up.
tor	Data-retention time in absence of V _{CC}	10			years	TA = 25°C.(2)
t _{DR-N}	Data-retention time in absence of Vcc	6			years	$T_A = 25$ °C(2); industrial temperature range (·N) only.
twpr	Write-prokt time	40	100	150	μв	Delay after Vcc slews down past VPFD before SRAM is write-protected.

Notes:

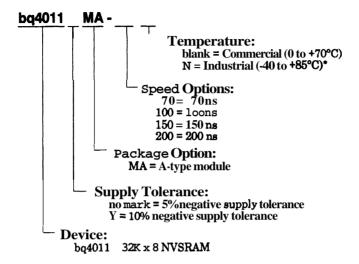
- 1. Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.
- 2. Battery is disconnected from circuit until after Vcc is applied for the first time. ton is the accumulated time in absence of power beginning when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

PO-B

8/10


Aug. 1993 C

Data Sheet Revision History

Change No.	Page No.	Description
1	2, 3, 4, 6, 8, 9	Added industrial temperature range for bq4011YMA-150N.
2	1, 4, 6, 9	Added 70 ns speed grade for bq4011Y-70 and added industrial temperature range for bq4011YMA-70N.

Change 1 = Sept 1992 B changes from Sept 1990 A. Change 2 = Aug. 1993 C changes from Sept. 1991 B. **Notes:**

Ordering Information

*Note: Only 10% supply ("Y") version is available in industrial temperature range; contact factory for speed grade availability.

Aug. 1993 C

bq4013/bq4013Y

128Kx8 Nonvolatile SRAM

Features

- ➤ Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- ➤ Induetry-standard 32-pin **128K** x 8 pinout
- ➤ Conventional SRAM operation; unlimited write cycles
- ➤ 10-year minimum data retention in **absence** of power
- Battery internally isolated until power is applied

General Description

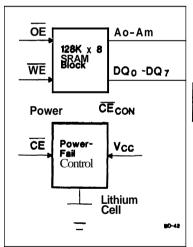
The CMOS bq4013 is a nonvolatile 1,048,576-bit static RAM organized as 131,072 words by 8 bits. The integral control circuitry and lithium energy source provide reliable nonvolatility coupled with the unlimited write cycles of standard SRAM.

The control circuitry constantly monitors **the** single 5V supply for an out-of-tolerance condition. When V constants falls out **of** tolerance, the SRAM is unconditionally **write-protected** to prevent **inadvertent** write operation.

At this time the integral energy source is switched on to sustain the memory until after V ∞ returns valid.

The **bq4013** uses an **extremely** low standby current CMOS SRAM, coupled with a **small** lithium coin cell to provide **nonvolatility** without long **write-cycle times** and the write-cycle limitations **associated** with EEPROM.

The **bq4013 requires** no external *cir*-**cuitry** and is **socket-compatible** with
inductry-standard **SRAMs** and most **EPROMs** and **EEPROMs**.


PIn Connections

NC U A 16 U U A 17 U A 16 U U A 17 U U	3 4 5 6 7 8 9 10 11 12 13	32 31 30 29 28 27 26 25 24 23 22 21 20	VCC A15 NC OWE A19 A8 A9 A11 OE DQ7 DQ6
DQ 1 C	14	19 18	
V ₈₈ [16 32-Pin DIF	17 Module	DQ ₃
		module	PN-0

Pin Names

A ₀ -A ₁₆	Address inputs
DQ ₀ -DQ ₇	Data input/output
CE	Chip enable input
ŌĒ	Output enable input
\overline{WE}	Write enable input
NC	No connect
Vcc	+5 volt supply input
Vss	Ground

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
			bq4013Y -70	70	-10%
bq4013 -85	85	-5%	bq4013Y -85	85	-10%
bq4013 -120	120	-5%	bq4013Y -120	120	-10%

Sept. 1996 D

Functional Description

When power is valid, the **bq4013** operates as a standard CMOS SRAM. During power-down and power-up **cycles**, the **bq4013** acts **as** a nonvolatile memory, automatically protecting and **preserving** the memory contents.

Power-down/power-up control circuitry constantly monitors the Vcc supply for a power-fail-detect **threshold** VppD. The **bq4013** monitors for VppD = **4.62V** typical for **use** in **systems** with 5% supply tolerance. The **bq4013Y** monitors for VppD = **4.37V** typical for **use** in systems with 10% supply tolerance.

When **V**_{CC} falls below the **V**_{PPD} **threshold**, the SRAM automatically write-protects the data. All outputs become high impedance, and all **inputs** are treated as "don't care." If a valid **access** is in **process** at the time of power-fail detection, the memory cycle continua to completion. If the memory cycle fails to terminate within time **twpT**, write-protection takes place.

As Vcc falls past VPFD and approaches 3V, the control circuitry switches to the internal lithium backup supply, which provides data retention until valid Vcc is applied.

When **Vcc returns** to a level above the internal backup cell voltage, the **supply** is **switched** back to **Vcc. After Vcc ramps** above the **VppD threshold**, write-protection continues for a time **tcer (120ms** maximum) to allow for **processor** stabilization. Normal memory operation may **resume** after **this** time.

The internal coin cell used by the **bq4013** has an extremely long shelf life and **provides** data retention for more than **10 years** in the absence of system power.

As shipped **from Benchmarq**, the integral lithium cell is electrically isolated from the memory. (Self-discharge in this condition is approximately **0.5%** per year.) Following the first application of **Vcc**, this isolation is broken, and the lithium backup cell provides data retention on subsequent power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	Н	х	Х	High Z	Standby
Output disable	L	н	Н	High Z	Active
Read	L	н	L	Dour	Active
Write	L	L	х	DIN	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
V_{CC}	DC voltage applied on Vcc relative to Vss	-0.3to 7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3to 7.0	v	VT ≤ V _{CC} + 0.3
m	0	0 to +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial "N"
m	Stanza and tanza and tanza	-40 to +70	°C	Commercial
Tstg	Storage temperature	-40to +85	°C	Industrial "N"
m	Towns of the Line	-10 to +70	°C	Commercial
TBIAS	Temperature under bias	-40 to +85	°C	Industrial "N"
TSOLDER	Solderingtemperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute **Maximum Ratings** are exceeded. **Functional** operation should be limited to the Recommended DC **operating** Conditions **detailed** in this data sheet. Exposure to conditions **beyond** the operational limits for extended periods of time may affect device reliability.

2/10 Sept. 1996 D

Recommended DC Operating Conditions(TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
		4.5	5.0	5.5	V	bq4013Y/bq4013Y-xxxN
Vcc	Supply voltage	4.75	5.0	5.5	V	bq4013
Vss	Supply voltage	0	0	0	V	
v_{iL}	Input low voltage	-0.3	•	0.8	V	
V _{IH}	Input high voltage	2.2	•	Vcc + 0.3	V	

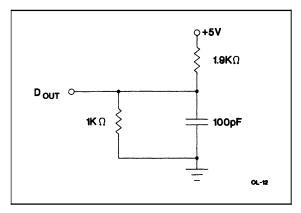
Note: Typical values indicate operation at $T_A = 25^{\circ}C$.

DC Electrical Characteristics (TA = TOPR, VCCmin \(\text{VCC} \(\text{VCCmax} \))

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
Iц	Input leakage current			±1	μA	$V_{\rm IN}$ = $V_{\rm SS}$ to $V_{\rm CC}$
ILO	Output leakage current			± 1	μА	$\overline{\frac{CE}{WE}} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$
Voh	Output high voltage	2.4			V	Іон = -1.0 mA
Vol	Output low voltage			0.4	V	IoL = 2.1 mA
I _{SB1}	Standby supply current		4	7	mA	CE = V _{IH}
I _{SB2}	Standby supply current		2.5	4	mA	$\overline{CE} \ge V_{CC} \cdot 0.2V$, $CV \le V_{IN} \le 0.2V$, or $V_{IN} \ge V_{CC} \cdot 0.2V$
Icc	Operating supply current		75	105	mA	$\frac{\text{Min. cycle, duty} = 100\%,}{\text{CE} = V_{\text{IL}}, I_{\text{VO}} = 0\text{mA}}$
		4.55	4.62	4.75	v	bq4013
V_{PFD}	Power-fail-detectvoltage	4.30	4.37	4.50	V	bq4013Y
Vso	Supply switch-over voltage		3		V	

Note: Typical values indicate operation at TA = 25°C, Vcc = 5V.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Ci/o	Input/output capacitance			10	рF	Output voltage = OV
CIN	Input capacitance			10	рF	Input voltage = OV

Note: These parameters are sampled and not 100% tested.

Sept. 1996 D 3/10

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 1 and 2

D OUT 0 1.9KΩ

1KΩ

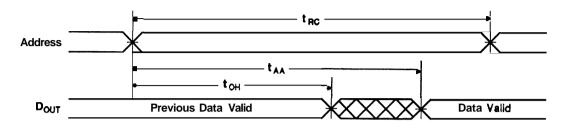
5pF

0L-18

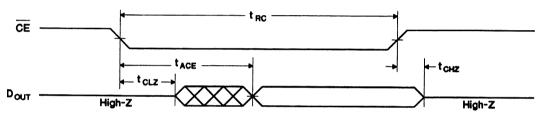
Figure 1. Output Load A

Figure 2. Output Load B

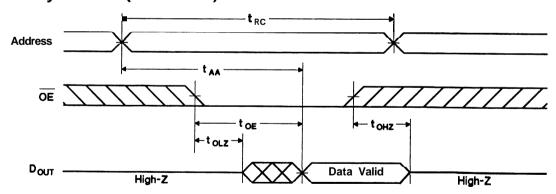
Read Cycle (TA = TOPR, VCCmin ≤ VCC ≤ VCCmax)


		-70/-70N -85/-85N		-120					
Symbol	Parameter	Min.	Min.	Min.	Max.	Min.	Max.	Unit	Conditions
trc	Read cycle time	70		85		120	-	ns	
taa	Address access time	-	70	-	85	-	120	ns	Output load A
tace	Chip enable access time	-	70	-	85		120	ns	Output load A
toE	Output enable to output valid		35	-	45	-	60	ns	Output load A
tclz	Chip enable to output in low Z	5		5		5	-	ns	Output load B
tolz	Output enable to output in low Z	0	-	0		0	-	ns	Output load B
tchz	Chip disable to output in high Z	0	25	0	35	0	45	ns	Output load B
tonz	Output disable to output in high Z	0	25	0	25	0	35	ns	Output load B
tон	Output hold from address change	10	-	10	-	10	•	ns	Output load A

4/10 Sept. 1996 D


RC-1

RC-2


Read Cycle No. 1 (Address Access) 1,2

Read Cycle No. 2 (CE Access) 1,3,4

Read Cycle No. 3 (OE Access) 1,5

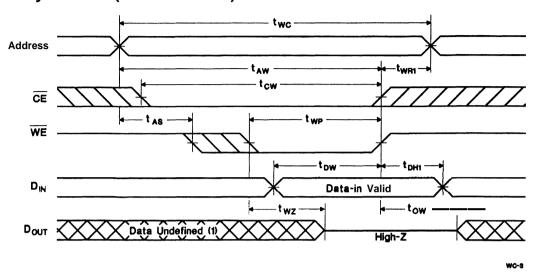
Notes:

- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = VIL$

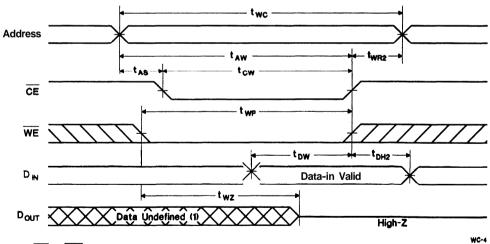
Sept. 1996 D

5/10

RC-3


Write Cycle (TA =TOPR, VCCmin \leq VCC \leq VCCmax)

		-70/	-70N	-85/	-85N	-1	20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	70		85		120	•	ns	
tcw	Chip enable to end of write	65	-	75	-	100		ns	(1)
taw	Address valid to end of write	65	-	75	-	100	-	ns	(1)
tas	Address setup time	0	-	0	-	0	-	ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	55	-	65	-	85	-	ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5	-	5	-	5	-	ns	Measured from \overline{WE} going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15	-	15	-	15	-	ns	Measured from \overline{CE} going high to end of write cycle. (3)
tDW	Data valid to end of write	30	-	35	-	45	-	ns	Measured to first low-to-high transition of either CE or WE.
t _{DH1}	Data hold time (write cycle 1)	0		0	-	0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10	-	10	-	10	-	ns	Measured from $\overline{\bf CE}$ going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	25	0	30	0	40	ns	I/O pins are in output state. (5)
tow	Output active from end of write	0	-	0	-	0	-	ns	I/O pins are in output state. (5)


Notes:

- 1. A write ends at the earlier transition of $\overline{\bf CE}$ going high and $\overline{\bf WE}$ going high.
- 2. A <u>write occurs during the</u> overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write begins at the later transition of $\overline{\textbf{CE}}$ going low and $\overline{\textbf{WE}}$ going low.
- 3. Either twr1 or twr2 must be met.
- 4. Either tph1 or tph2 must be met.
- 5. If $\overline{\bf CE}$ goes low simultaneously with $\overline{\bf WE}$ going low or after $\overline{\bf WE}$ going low, the outputs **remain in** high-impedance state.

Write Cycle No. 1 (WE-Controlled) 1,2,3

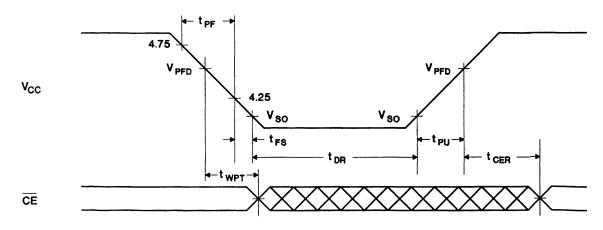
Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. $\overline{\mbox{CE}}$ or $\overline{\mbox{WE}}$ must be high during address transition.
- 2. Because VO may be active \overline{OE} low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twR1 or twR2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1996 D

Power-Down/Power-Up Cycle (TA = TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpF	Vcc slew, 4.75 to 4.25 V	300			με	
tfs	Vcc slew, 4.25 to Vso	10			με	
tPU	Vcc slew, Vso to VPFD (max.)	0			με	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after Vcc passes VPFD on power-up.
t _{DR}	Data-retention time in absence of V _{CC}	10			years	$T_A = 25^{\circ}C.(2)$
t _{DR-N}	Data-retention time in absence of V _{CC}	6			years	T _A = 25°C (2); industrial temperature range only
twpr	Write-protect time	40	100	150	μв	Delay after Vcc slews down past Vpp before SRAM is write-protected.

Notes:

- 1. Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.
- 2. Battery is disconnected from circuit until after **Vcc** is applied for the **first** time. **tDR** is the accumulated time in absence of power **beginning** when power is **first** applied to the device.

Caution: Negative undershoots below the **absolute** maximum rating of -0.3V in battery-backup mode may affect data integrity.

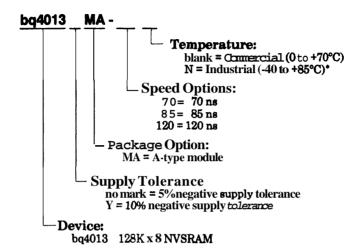
Power-Down/Power-Up Timing

PO-8

8/10

Sept. 1996 D

Data Sheet Revision History


Change No.	ge No. Page No. Description					
1	4 3, 4, 6, 8, 9	Added industrial temperature range.				
2	1, 4, 6, 9	Added 70 ns speed grade far bq4013Y-70.				
3		Removed industrial temperature range far bq4013YMA-120N				

Notes:

Change 1 = Sept 1992 B changes from Sept. 1990 A. Change 2 = Aug. 1993 C changes from Sept. 1991 B. Change 3 = Sept. 1996 D changes from Aug. 1003 C.

Sept. 1996 D

Ordering Information

'Note:

Only 10% supply ("Y") version is available in industrial temperature range; contact factory for speed grade availability.

bq4014/bq4014Y

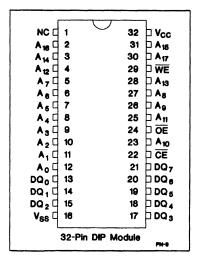
256Kx8 Nonvolatile SRAM

Features

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- Industry-standard 32-pin 256K x 8 pinout
- Conventional SRAM operation; unlimited write cycles
- 10-year minimum data retention in absence of power
- Battery internally isolated until power is applied

General Description

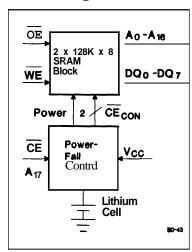
The CMOS bq4014 is a nonvolatile 2,097,152-bit static RAM organized as 262,144 words by 8 bite. The integral control circuitry and lithium energy source provide reliable nonvolatility coupled with the unlimited write cycles of standard SRAM.


The control circuitry constantly **monitors** the single 5V supply for an out-of-tolerance condition. When Vcc falls out of tolerance, the SRAM is unconditionally **write-protected** to prevent inadvertent write operation. At **this** time the integral energy

source is switched on to sustain the memory until after $V\infty$ returns valid.

The **bq4014** ueee extremely low etandby current CMOS **SRAMs**, coupled with **small** lithium coin **cells** to provide nonvolatility without long write-cycle times and the **write-cycle** limitations accordated with EEPROM.

The **bq4014** requires no external circuitry and ie compatible with the industry-standard 2Mb SRAM pinout.


Pin Connections

Pin Names

A ₀ -A ₁₇	Address inputs
DQ ₀ -DQ ₇	Data input/output
CE	Chip enable input
ŌĒ	Otpt enable input
$\overline{ ext{WE}}$	Write enable input
NC	N_0 connect
Vcc	+5 volt supply input
v_{ss}	Ground

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
bq4014 -85	85	-5%	bq4014Y -85	85	-10%
bq4014 -120	120	-5%	bq4014Y -120	120	-10%

Sept. 1992

Functional Description

When power is valid, the **bq4014 operates** as a standard CMOS SRAM. During power-down and power-up cycles, the **bq4014 acts** as a nonvolatile memory, automatically protecting and **preserving** the memory contents.

Power-down/power-up control circuitry constantly monitors the Vcc supply for a power-fail-detect threshold VppD. The bq4014 monitors for VppD = 4.62V typical for use in systems with 5% supply tolerance. The bq4014Y monitors for VppD = 4.37V typical for use in systems with 10% supply tolerance.

When **Vcc** falls below the **Vppp threshold**, the SRAM automatically write-protects the data. All outputs become high impedance, and all inputs are treated as don't care. If a valid **access** is in process at the time of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time **twpp**, write-protection takes place.

As **Vcc** falls **past VPFD** and approaches 3V, the control circuitry **switches** to the internal lithium **backup supply**, which provides data retention until valid **Vcc** is applied.

When V_{CC} returns to a level above the internal backup cell voltage, the supply is switched back to V_{CC}. After V_{CC} ramps above the V_{PPD} threshold, write-protection continues for a time torm (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cells used by the **bq4014** have an extremely long shelf life and provide data retention for more than 10 years in the absence of **system** power.

As shipped from **Benchmarq**, the integral lithium cells are electrically isolated from the memory. (Self-diecharge in this condition is approximately 0.5% per year.) Following the **first** application of **Vcc**, this **isolation** is broken, and the lithium backup provides data retention on **subsequent** power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	н	Х	х	High Z	Standby
Output disable	L	Н	Н	High Z	Active
Read	L	н	L	Dout	Active
Write	L	L	Х	D _{IN}	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
Tom	Operating temperature	0 to +70	°C	
TsTG	Storage temperature	-40 to +70	°C	
TBIAS	Temperature under bias	-10 to +70	"C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may **occur** if Absolute **Maximum** Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed **in this** data sheet. **Exposure** to conditions beyond the operational limits for extended periods of time may affect device **reliability**.

2/10 Sept. 1992

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
		4.5	5.0	5.5	V	ba4014Y
vcc	Supply voltage	4.75	5.0	5.5	V	bq4014
vss	Supply voltage	0	0	0	V	_
V _{IL}	Input low voltage	-0.3		0.8	V	
V _{IH}	Input high voltage	2.2		Vcc + 0.3	V	

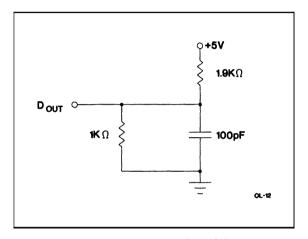
Note: Typical values indicate operation at $T_A = 25^{\circ}C$.

DC Electrical Characteristics (TA = 0 to 70 °C, VCCmin ≤ VCC ≤ VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 2	μA	V _{IN} = V _{SS} to V _{CC}
Iro	Output leakage current			± 2	μA	$\frac{\overline{CE}}{WE} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or }$
Voh	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current		5	12	mA	CE = V _{IH}
I _{SB2}	Standby supply current		2.5	5	mA	○E ≥ V _{CC} · 0.2V, OV ≤ V _{IN} ≤ 0.2V, or V _{IN} ≥ V _{CC} · 0.2
Icc	Operating supply current		75	110	mA	Min. cycle, duty = 100%, CE = V _{IL} , I _V O = 0mAV, A17 < V _{IL} or A17 > V _{IH}
		- 4.55	4.62	4.75	V	bq4014
V_{PFD}	Power-fail-detectvoltage	4.30	4.37	4.50	v	bq4014Y
Vso	Supply switch-over voltage		3		V	

Note: Typical values indicate operation at TA = 25°C, Vcc = 5V.

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			40	pF	Output voltage = OV
CIN	Input capacitance			40	рF	Input voltage = OV

Note: These parameters are sampled and not 100% tested.

Sept. 1992

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 1 and 2

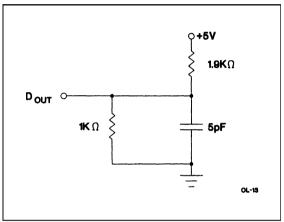
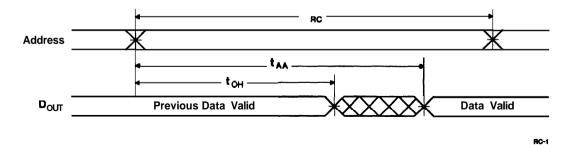


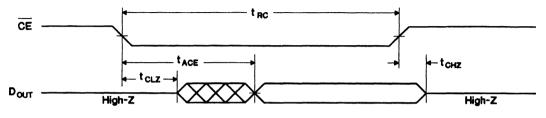
Figure 1. Output Load A

Figure 2. Output Load B

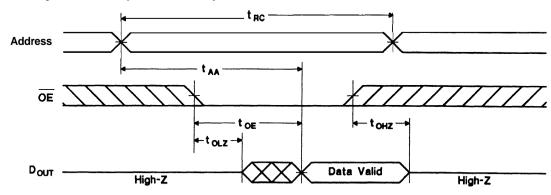
Read Cycle (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)


		-8	-85		20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Conditions
trc	Read cycle time	85	•	120	•	ns	
tAA	Address access time	-	85	-	120	ns	Output load A
tACE	Chip enable access time	-	85	-	120	ns	Output load A
toE	Output enable to output valid	-	45	-	60	ns	Output load A
tclz	Chip enable to output in low Z	5		5	-	ns	Output load B
toLZ	Output enable to output in low Z	0		0	-	ns	Output load B
tchz	Chip disable to output in high Z	0	35	0	45	ns	Output load B
tonz	Output disable to output in high Z	0	25	0	35	ns	Output load B
ton	Output hold from address change	10	-	10	-	ns	Output load A

4/10 Sept. 1992


6

RC-2


Read Cycle No. 1 (Address Access) 1,2

Read Cycle No. 2 (CE Access) 1,3,4

Read Cycle No. 3 (OE Access)

Notes:

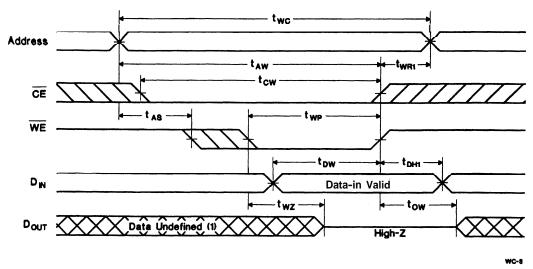
- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$

Sept. 1992

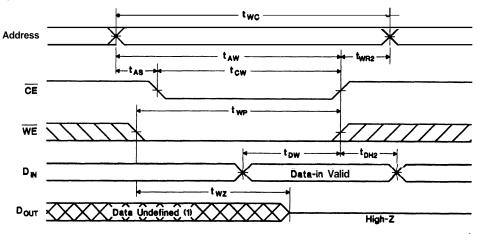
5/10

RC-3

Write Cycle (TA = 0 to 70°C, VCCmin ≤VCC ≤ VCCmax)


		-8	35	1:	120		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	85	-	120	-	ns	
tcw	Chip enable to end of write	75	-	100	-	ns	(1)
taw	Address validtoend of write	75	-	100	-	ns	(1)
tas	Addreea setup time	0		0		ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	65		85		ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5		5	-	ns	Measured from WE going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15	-	15	-	ns	Measured from $\overline{\textbf{CE}}$ going high to end of write cycle. (3)
tow	Data valid to end of write	35	-	45		ns	Measured to first low-to-high transition of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$.
t _{DH1}	Data hold time (write cycle 1)	0		0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10	-	10	-	ns	Measured from $\overline{\bf CE}$ going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	30	0	40	na	I/O pins are in output state. (5)
tow	Output active from end of write	0	•	0	-	ns	VO pine are in output state. (5)

Notes:


- 1. A write ends at the earlier **transition** of \overline{CE} going high and \overline{WE} going high.
- 2. A write occurs during the overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write begins at the later transition of $\overline{\text{CE}}$ going low and $\overline{\text{WE}}$ going low.
- 3. Either twn1 or twn2 must be met.
- 4. Either tph1 or tph2 must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the outputs remain in high-impedance state.

6/10 Sept. 1992

Write Cycle No. 1 (WE-Controlled) 1,2,3

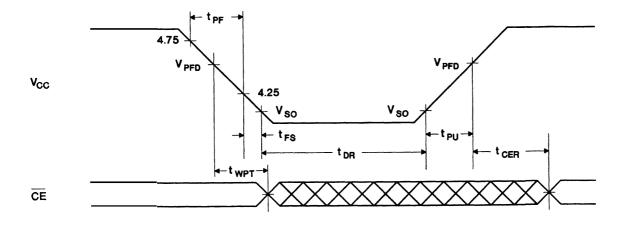
Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. \overline{CE} or \overline{WE} must be high during address transition.
- 2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twR1 or twR2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1992

Power-Down/Power-Up Cycle (TA = 0 to 70°C)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpf	Vcc slew, 4.75 to 4.25 V	300			μs	
tFS	V _{CC} slew, 4.25 to Vso	10			με	
tPU	Vcc slew, vso to VPFD (max.)	0			με	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after Vcc passes VPFD on power-up.
tDR	Data-retention time in absence of Vcc	10			years	TA = 25°C.(2)
twpr	Write-protecttime	40	100	150	με	Delay after Vcc slews down past Vppp before SRAM is write-protected.

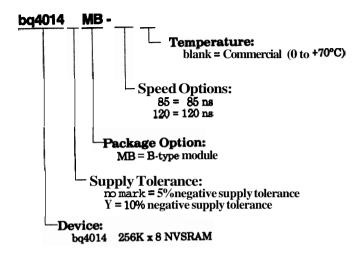
Notes:

- 1. Typical values indicate operation at TA = 25°C, Vcc = 5v.
- 2. Batteries are **disconnected from** circuit until after **Vcc is** applied for the **first** time. top is the accumulated time in **absence** of power beginning when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

8/10 Sept. 1992


PD-8

Data Sheet Revision History (Sept. 1992 Changes From Sept 1990)

Clarification of Icc test conditions, page 3.

Sept. 1992

Ordering Information

10/10 Sept. 1992

_bq4015/bq4015Y

512Kx8 Nonvolatile SRAM

Features

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- ➤ Industry-standard 32-pin **512K x** 8 pinout
- ➤ Conventional **SRAM** operation; unlimited write cycles
- ➤ 10-year minimum data retention in absence of power
- Battery internally isolated until power is applied
- Industrial temperature operation

General Description

The CMOS **bq4015** is a nonvolatile 4,194,304-bit static RAM organized as 524,288 words by 8 bits. The integral control circuitry and lithium energy source provide reliable nonvolatility coupled with the unlimited write cycles of standard SRAM.

The control circuitry constantly monitors the single 5V eupply for an out-of-tolerance condition. When Voc falls out of tolerance, the SRAM is unconditionally write-protected to prevent an inadvertent write operation.

At **this** time the integral energy source is switched on to sustain the memory until after Voc **returns** valid.

The **bq4015** uses extremely low etandby current CMOS **SRAMs**, coupled with small lithium coin cells to **provide nonvolatility** without long write-cycle times and the write-cycle limitations associated with EEPROM.

The bq4015 requires no external circuitry and is compatible with the industry-standard 4Mb SRAM pinout.

Pin Connections

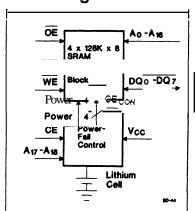
32 | Vcc D A 16 30 AT 29 28 27 WE 28 | A₁₈ 27 | A₈ 26 | A₉ 25 | A₁₁ 24 | OE 23 | DE 23 | CE 21 DQ, 20 000 10 DO. D04 000 17 32-Pin DIP Module

Pin Names

AO-A18 Address inputs

DQ0-DQ7 Data input/output

CE Chip enable input


OE Output enable input

WE Write enable input

Vcc +5 voh supply input

Vss Ground

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
bq4015MA -70	70	-5%	bq4015YMA -70	70	-10%
bq4015MA -85 bq4015MB -85	85	-5%	bq4015YMA -85 bq4015YMB -85	85	-10%
bq4015MB -120	120	-5%	bq4015YMB -120	120	-10%

June 1995 C

Functional Description

When power is valid, the **bq4015 operates** as a standard CMOS SRAM. During power-down and power-up **cycles**, the **bq4015** acts as a nonvolatile memory, automatically protecting and preserving **the** memory contents.

Power-down/power-up control circuitry constantly monitors the Vcc supply for a power-fail-detect threshold VPPD. The bq4015 monitors for VPPD = 4.62V typical for use in systems with 5% supply tolerance. The bq4015Y monitors for VPPD = 4.37V typical for use in systems with 10% supply tolerance.

When **Vcc** falls below the **Vppp threshold**, the **SRAM** automatically write-protects the data. All outputs become high impedance, and all inputs are treated as 'don't care.' If a valid **access** is in process at the **time** of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpp, write-protection takes place.

As V_{CC} falls past **V_{PPD}** and approaches **3V**, the control circuitry **switches** to the **internal** lithium backup supply, which provides data retention until valid **V_{CC}** is applied.

When VCC returns to a level above the internal backup cell voltage, the supply is switched back to VCC. After VCC ramps above the VPFD threshold, write-protection continues for a time tCER (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cells used by the **bq4015** have an extremely long shelf life and provide data retention for more than 10 years in the **absence** of system power.

As shipped from Benchmarq, the integral lithium cells are electrically isolated from the memory. (Self-discharge in this condition is approximately 0.5% per year.) Following the first application of **Vcc**, this isolation is broken, and the lithium backup provides data retention on subsequent power-downs.

Truth Table

Mode	CĒ	WE	ŌĒ	I/O Operation	Power
Not selected	Н	х	Х	High Z	Standby
Output disable	L	Н	Н	High Z	Active
Read	L	Н	L	Dout	Active
Write	L	L	х	Din	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
V _{CC}	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	V	
Vт	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	v	V _T ≤ V _{CC} + 0.3
		0 to +70	°C	Commercial
Topr	Operating temperature	-40 to +85	°C	Industrial "N"
		-40 to +70	°C	Commercial
TSTG	storage temperature	-40 to +85	°C	Industrial "N"
		-10 to +70	°C	Commercial
TBIAS	Temperature under bias	-40 to +85	°C	Industrial "N"
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Pennanent device damage may occur if **Absolute Maximum Ratings** are **exceeded. Functional** operation should be limited to the **Recommended DC** Operating Conditions detailed in **this** data sheet. **Exposure** to conditions beyond the operational **limits** for extended **periods** of time may affect device **reliability**.

2/10 June 1995 C

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
••		4.5	5.0	5.5	v	bq4015Y
Vcc	Supply voltage	4.75	5.0	5.5	v	bq4015
Vss	Supply voltage	0	0	0	v	
VIL	Input low voltage	-0.3	•	0.8	v	
V _{IH}	Input high voltage	2.2	•	Vcc + 0.3	v	

Note:

Typical values **indicate** operation at $T_A = 25$ °C.

DC Electrical Characteristics (TA = TOPR, VCCmin < VCC < VCCmax)

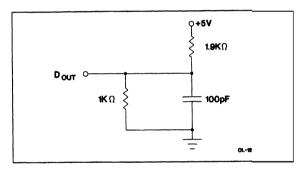
Symbol	Parameter	Minimum	Typical	Mulmum	Unit	Conditions/Notes
Ita	Input leakage current (bq4015MA)			± 1	μA	V _{IN} = V _{SS} to V _{CC}
*14	Input leakage current (bq4015MB)			± 4	μА	V _{IN} = V _{SS} to V _{CC}
Iω	Output leakage current (bq4015MA)			± 1	μА	$\overline{CE} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or }$
1110	Output leakage current (bq4015MB)			± 4	μA	WE = V _{IL}
VoH	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current (bq4015MA)		3	5	mA	
18BI	Standby supply current (bq4015MB)		7	17	mA	$\overline{\text{CE}} = \mathbf{V_{IH}}$
I _{SB2}	Standby supply current (bq4015MA)		0.1	1	mA	©E≥Vcc·0.2V,
	Standby supply current (bq4015MB)		2.5	5	mA	$OV \le V_{IN} \le 0.2V$, or $V_{IN} \ge V_{CC} - 0.2$
Icc	Operating supply current (bq4015MA)			90	mA	$\frac{\text{Min. cycle, duty} = 100\%,}{\text{CE} = V_{IL}, I_{VO} = 0\text{mA},}$
ICC	Operating supply current (bq4015MB)		75	115	mA	A17 < V _{IL} or A17 > V _{IH} , A18 < V _{IL} or A18 > V _{IH}
*7	Power-fail-detect voltage	4.55	4.62	4.75	٧	bq4015
V_{PFD}	rower-ran-detect voltage	4.30	4.37	4.50	V	bq4015Y
Vso	Supply switch-over voltage		3		V	

Note:

Typical values indicate operation at TA = 25°C, Vcc = 5V.

June 1995 C

3/10


Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
	Input/output capacitance (bq4015MA)	-	•	8	рF	Output valtage = OV
Ci⁄o	Input/output capacitance (bq4015MB)	-	-	40	рF	Output voltage = OV
	Input capacitance (bq4015MA)	•		10	рF	- T
	Input capacitance (bq4015MB)		•	40	рF	Input voltage = 0V

Note: These parameters are sampled and not 100% tested.

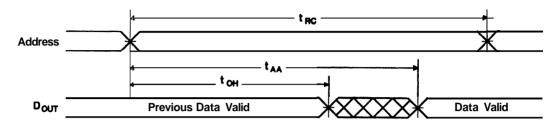
AC Test Conditions

Parameter	Test Conditions
Input pulse levels	0V to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 1 and 2

D OUT 0 1.9KΩ 5pF

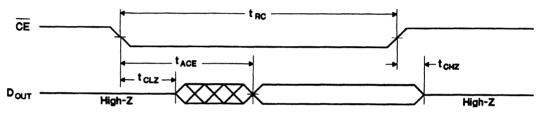
Figure 1. Output Load A

Figure 2. Output Load B

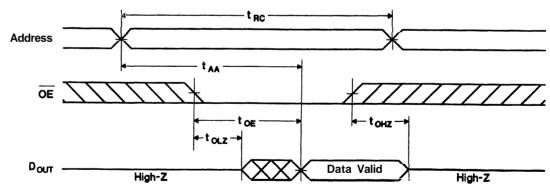

Read Cycle (TA = TOPR, VCCmin ≤ VCC ≤ VCCmax)

		-7	70	-85/	-85N	-120/-	-120N		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Conditions
t_{RC}	Read cycle time	70	-	85	•	120		ns	
taa	Address access time	-	70		85		120	ns	Output load A
tace	Chip enable access time	-	70	-	85		120	ns	Output load A
toe	Output enable to output valid		35	-	45		60	ns	Output load A
telz	Chip enable to output in low Z	5		5		5		ns	Output load B
tolz	Output enable to output in low Z	5	-	0	-	0		ns	Output load B
tchz	Chip disable to output in high Z	0	25	0	35	0	45	ns	Output load B
tonz	Output disable to output in high Z	0	25	0	25	0	35	ns	Output load B
ton	Output hold from address change	10		10	-	10		ns	Output load A

4/10 June 1995 C


6

Read Cycle No. 1 (Address Access) 1,2


RC-1

Read Cycle No. 2 (CE Access) 1,3,4

RC-2

Read Cycle No. 3 (OE Access)

RC-3

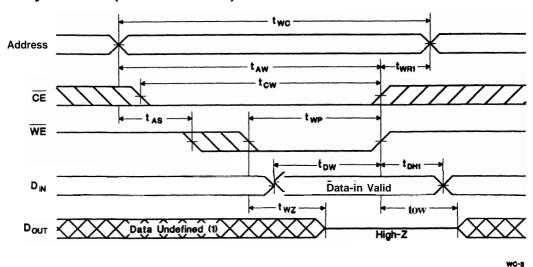
Notes:

- 1. WE is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$

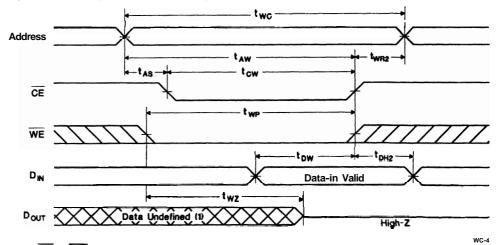
June 1995 C

5/10

Write Cycle (TA = TOPR, VCCmin ≤ VCC ≤ VCCmax)


		-7	70	-85/-	-85N	-120/	-120N		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	70	-	85	-	120	-	ns	
tcw	Chip enable to end of write	65	-	75	-	100	-	ns	(1)
taw	Address valid to end of write	65	-	75	-	100	-	ns	(1)
tas	Address setup time	0	-	0	-	0	-	ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	55	-	65	-	85	-	ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5		5	-	5	-	ns	Measured from WE going hightoend of write cycle. (3)
twR2	Write recovery time (write cycle 2)	15		15	•	15	-	ns	Measured from $\overline{\textbf{CE}}$ going high to end of write cycle. (3)
t _D w	Data valid to end of write	30	-	35	-	45	•	ns	Measured to first low-to- high transition of either CE or WE.
tDH1	Data hold time (write cycle 1)	0	-	0	•	o		ns	Measured from WE going high to end of write cycle. (4)
tDH2	Data hold time (write cycle 2)	10	-	10		10	-	ns	Measured from $\overline{\textbf{CE}}$ going hightoendofwrite cycle. (4)
twz	Write enabled to output in high Z	0	25	0	30	0	40	ns	I/O pins are in output state. (5)
tow	Output active from end of write	5	•	0	-	0		ns	L/O pins are in output state. (5)

Notes:


- 1. A write ends at the earlier transition of $\overline{\mathbf{CE}}$ going high and $\overline{\mathbf{WE}}$ going high.
- 2. A write occurs during the overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write begins at the later transition of $\overline{\textbf{CE}}$ going low and $\overline{\textbf{WE}}$ going low.
- 3. Either twr1 or twr2 must be met.
- 4. Either tDH1 or tDH2 must be met.
- 5. If $\overline{\bf CE}$ goes low simultaneously with $\overline{\bf WE}$ going low or after $\overline{\bf WE}$ going low, the outputs remain in high-impedance state.

June 1995 C

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (%Controlled) 1,2,3,4,5

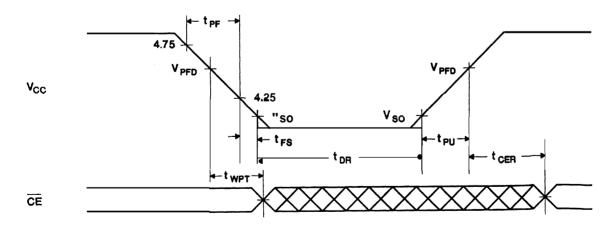
Notes:

- 1. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be high during address transition.
- 2. Because I/O may be active $(\overline{OE} \text{ low})$ during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twR1 or twR2 must be met.
- 5. Either tDH1 or tDH2 must be met.

June 1995 C

7/10

Power-Down/Power-Up Cycle (TA = TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpr	Vcc slew, 4.75 to 4.25 V	300			μя	
trs	Vcc slew, 4.25 to Vso	10			με	
t PU	Vcc slew, Vso to VpfD (max.)	0			μв	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is Write-protected after Vcc passes VPFD on power-up.
tor	Data-retention time in absence of V _{CC}	10			years	$T_A = 25^{\circ}C.(2)$
twpr	Write-protect time	40	100	150	με	Delay after Vcc slews down past Vppp before SRAM is write-protected.

Notes:

- 1. Typical values indicate operation at TA = 25°C, Vcc = 5V.
- 2. Batteries are disconnected from circuit until after Voc is applied for the first time. tor is the accumulated time in absence of power beginning when power is first applied to the device.

Caution: Negative undershoots **below** the absolute **maximum** rating of **-0.3V** in battery-backup **mode** may affect **data** integrity.

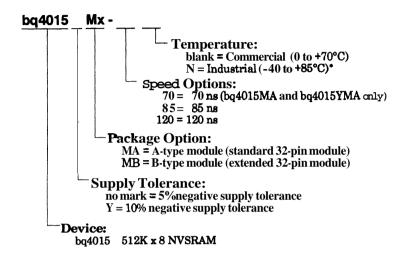
Power-Down/Power-Up Timing

PD-B

8/10

June 1995 C

Data Sheet Revision History


Change No.	Page No.	Description	Nature of Change
1	3	Icc test conditions	Clarification
2	1, 2, 3, 4, 7, 8, 10	bq4015MA part	Addition
3	2, 10	Added industrial temperature range	Addition

Note:

Change 1 = Sept. 1992 B changes from Sept. 1990 A Change 2 = Nov. 1993 C changw from Sept. 1992 B. Change 3 = June 1996 C changes from Nov. 1993 C.

June 1995 C 9/10

Ordering Information

'Note:

Only 10% supply "Y" version is available in industrial temperature range; contact factory for speed grade availability.

10/10 June 1995 C

bq4016/bq4016Y

1024Kx8 Nonvolatile SRAM

Features

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- ➤ Conventional SRAM operation; unlimited write cycles
- ➤ 10-year minimum data retention in absence of power
- ➤ Battery internally isolated until power is applied

General Description

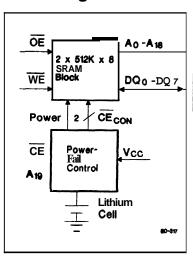
The CMOS **bq4016** is a nonvolatile 8,388,608-bit static **RAM** organized **as 1,048,576 words** by 8 bits. The integral **control** circuitry and lithium energy **source** provide reliable **non**volatility coupled with the unlimited write cycles of standard SRAM.

The control circuitry conetantly monitors the single 5V supply for an out-of-tolerance condition. When V∞ falls out of tolerance, the SRAM in unconditionally write-protected to prevent an inadvertent write operation.

At this time the integral energy source is switched on to sustain the memory until after V creturns valid.

The **bq4016** uses extremely low standby current CMOS SRAMs, coupled with a **small** lithium coin cell to provide **nonvolatility** without long write-cycle times and the write-cycle limitations associated with EEPROM.

The **bq4016** has the **same** interface **as** industry-standard SRAMs and requires no external circuitry.


Pin Connections

NC C Þ vcc NC 2 36 A NO 34 A₁₀ d 4 A₁₄ d 5 A₁₂ d 7 A₆ d 8 A₇ d 7 A₆ d 8 A₅ d 9 A₄ d 10 A₃ d 11 A₃ d 12 A₁ d 13 A₀ d 14 DQ₀ d 16 DQ₁ d 16 DQ₂ d 17 A 15 33 32 WE 31 An An An 30 29 28 싍 27 26 A 10 25 CE 24 DQ7 23 22 DO 21 DQ 5 20 b 004 19 DQ3 36-Pin DIP Module

Pin Names

A ₀ -A ₁₉	Address inputs
DQ ₀ -DQ ₇	Data input/output
CE	Chip enable input
ŌĒ	Output enable input
$\overline{ ext{WE}}$	Write enable input
Vcc	+5 volt supply input
Vss	Ground
NC	No connect

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
bq4016MC-70	70	-5%	bq4016YMC-70	70	-10%

Sept. 1996 B 1/10

Functional Description

When power is valid, the **bq4016** operates as a standard CMOS **SRAM.** During power-down and power-up cycles, the **bq4016** acts as a nonvolatile memory, automatically protecting and **preserving** the memory contents.

Power-down/power-up control circuitry constantly monitors the V_{CC} supply for a power-fail-detect threshold V_{PFD}. The bq4016 monitors for V_{PFD} ≈ 4.62 V typical for use in systems with 5% supply tolerance. The bq4016Y monitors for V_{PFD} ≈ 4.37 V typical for use in systems with 10% supply tolerance.

When **Vcc** falls below the **VPFD** threshold, the **SRAM** automatically write-protects the data. All outputs become high impedance, and all inputs are treated **as** 'don't care.' **If** a valid access is in **process** at the time of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time **twpT**, write-protectiontakes place.

As V_{CC} falls past V_{PFD} and approaches 3V, the control circuitry switches to the internal lithium backup supply, which provides data retention until valid V_{CC} is applied.

When Vcc returns to a level above the internal backup cell voltage, the supply is switched back to Vcc. After Vcc ramps above the Vppp threshold, write-protection continues for a time tcer (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cells used by the **bq4016** have an extremely long shelf life. The **bq4016** provides data retention for more than 10 **years** in the absence of **system** power.

As shipped from **Benchmarq**, the integral lithium cells are electrically **isolated** from the memory. (Self-discharge in this condition is approximately 0.5% per year.) Following the **first** application of **Vcc**, this isolation is broken, and the lithium backup provides data retention on subsequent power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	н	х	Х	High Z	Standby
Output disable	L	н	Н	High Z	Active
Read	L	н	L	Dour	Active
Write	L	L	х	DIN	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
v_{cc}	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	v	
Vī	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	v	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	"C	
T_{STG}	Storage temperature	-40 to +70	°C	
TBIAS	Temperature under bias	-10 to +70	"C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute **Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in **this** data sheet. **Exposure to conditions** beyond the operational limits for **extended** periods of time may **affect device** reliability.

2/10 Sept. 1996 B

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vœ Su		4.5	5.0	5.5	٧	bq4016Y
	Supply voltage	4.75	5.0	5.5	V	bq4016
V88	Supply voltage	0	0	0	V	
VıL	Input low voltage	-0.3		0.8	V	
VIH	Input high voltage	2.2		Vcc + 0.3	V	

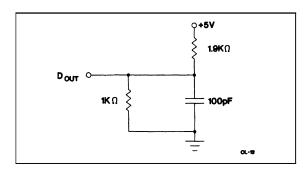
Note: Typical values indicate operation at $T_A = 25$ °C.

DC Electrical Characteristics (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
III	Input leakage current	•	-	± 2	μA	V _{IN} = V _{SS} to V _{CC}
Iro	Output leakage current	-	•	±2	μА	$\overline{\overline{CE}} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$
V _{OH}	Output high voltage	2.4	•	•	v	I _{OH} = -1.0 mA
Vol	Output low voltage	-	•	0.4	V	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current		5	12	mA	CE = V _{IH}
I _{SB2}	Standby supply current		2.5	5	mA	$OV \le Vm \le 0.2V$, $\overline{CE} \ge V_{CC} \cdot 0.2V$, or $V_{IN} \ge V_{CC} \cdot 0.2$
Icc	Operating supply current		75	115	mA	<u>Mirr.</u> cycle, duty = 100%, <u>CE</u> = V _{IL} , I _{VO} = 0mA, A19 < V _{IL} or A19 > V _{IH} ,
17	Power-fail-detect voltage	4.55	4.62	4.75	V	bq4016
VPFD	r ower-tan-uctect voltage	4.30	4.37	4.50	V	bq4016Y
Vso	Supply switch-over voltage		3		V	

Note: Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

Sept. 1996 B


Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance	•	-	20	рF	Output voltage = 0V
CIN	Input capacitance	•	-	20	рF	Input voltage = 0V

Note: These parameters are sampled and not 100% tested.

AC Test Conditions

Parameter	Test Conditions		
Input pulse levels	OV to 3.0V		
Input rise and fall times	5 ns		
Input and output timing reference levels	1.5 V (unless otherwise specified)		

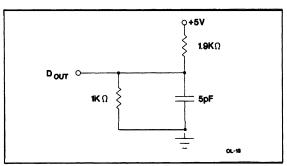
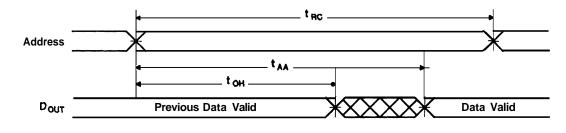


Figure 1. Output Load A

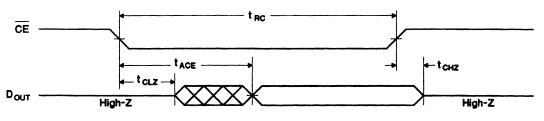
Figure 2. Output Load B

Read Cycle (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)

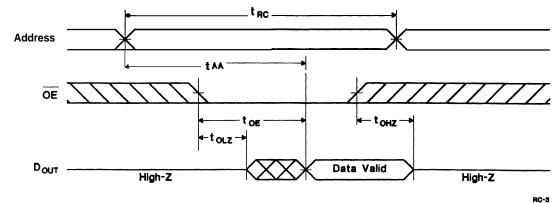
		-	70		
Symbol	Parameter	Min.	Max.	Unit	Conditions
trc	Read cycle time	70		ns	
taa	Address access time		70	ns	Output load A
tace	Chip enable access time		70	ns	Output load A
toe	Output enable to output valid		35	ne	Output load A
tclz	Chip enable to output in low Z	5		ns	Output load B
tolz	Output enable to output in low Z	5		ns	Output load B
tchz	Chip disable to output in high Z	0	25	ns	Output load B
tonz	Output disable to output in high Z	0	25	ns	Output load B
ton	Output hold from address change	10		ns	Output load A


4/10 Sept. 1996 B

RC-1


RC-2

6


Read Cycle No. 1 (Address Access) 1,2

Read Cycle No. 2 (CE Access) 1,3,4

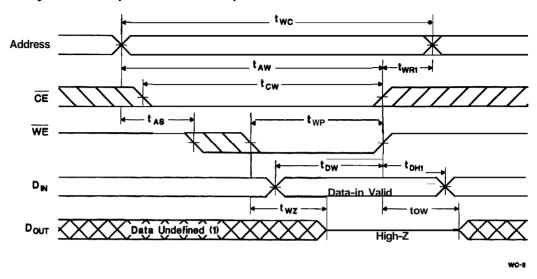
Read Cycle No. 3 (OE Access) 1,5

Notes:

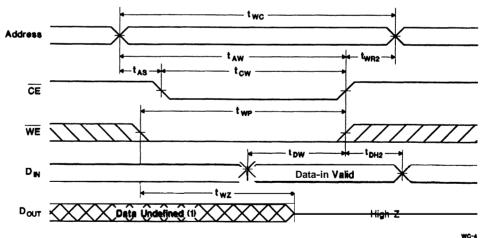
- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$.

Sept. 1996 B

5/10


Write Cycle (TA = 0 to 70 °C, VCCmin ≤ VCC ≤ VCCmax)

		-	70		
Symbol	Parameter	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	70		ns	
tcw	Chip enable to end of write	66		ns	(1)
taw	Address valid to end of write	66		ns	(1)
tas	Address setup time	0		ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	55		ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5		ns	Measured from WE going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15		ns	Measured from \overline{CE} going high to end of write cycle. (3)
tow	Data valid to end of write	30	-	ns	Measured to first low-to-transition of either CE or
t _{DH1}	Data hold time (write cycle 1)	0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10		ns	Measured from $\overline{\textbf{CE}}$ going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	25	ns	VO pins are in output state. (5)
tow	Output active from end of write	5		ns	I/O pins are in output state . (5)


Notes:

- 1. A write ends at the earlier transition of $\overline{\mathbf{CE}}$ going high and $\overline{\mathbf{WE}}$ going high.
- 2. A <u>write occurs during the</u> overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write **begins** at the later transition of $\overline{\text{CE}}$ going low and $\overline{\text{WE}}$ going low.
- 3. Either twn1 or twn2 must be met,
- 4. Either tph1 or tph2 must be met.
- 5. **If CE** goes low simultaneously with **WE** going low or after **WE** going low, the **outputs** remain in high-impedance state.

Write Cycle No. 1 (WE-Controlled) 1,2,3

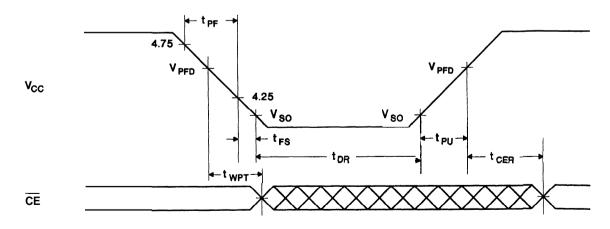
Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be high during address transition.
- 2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twn1 or twn2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1996 B 7/10

Power-Down/Power-Up Cycle (TA = 0 to 70°C)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpr	Vcc slew, 4.75 to 4.25 V	300			he	
trs	Vcc slew, 4.25 to Vso	10			μs	
tpu	Vcc slew, Vso to VPFD (max.)	0			μs	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after VCC passes VFPD on power-up.
t _{DR}	Data-retention time in absence of V _{CC}	10			years	Ta = 25°C.(2)
twpr	Write-protect time	40	100	150	μa	Delay after Vcc slews down past Vpp before SRAM is write-protected.

Notes:

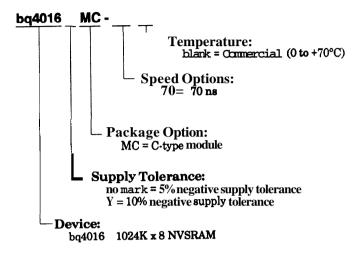
- 1. Typical values indicate operation at TA = 25°C, Vcc = 5V.
- 2. Batteries are disconnected from circuit until after V_{CC} is applied for the first time. ton is the accumulated time in absence of power beginning when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing

PO-B

8/10 Sept. 1996 B


Data Sheet Revision History

Change No.	Page No.	Description
1	All	Changed from "Preliminary" to 'Final* data sheet

Notes: Change 1 = Sept 1996 B changes from June 1996.

Sept. 1996 B 9/10

Ordering Information

10/10 Sept. 1996 B

bq4017/bq4017Y

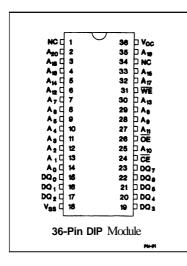
2048Kx8 Nonvolatile SRAM

Features

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- Conventional SRAM operation;
 unlimited write cycles
- ➤ 6-year minimum data retention in **absence** of power
- ➤ Battery internally isolated until power is applied

General Description

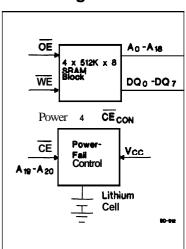
The CMOS **bq4017** is a nonvolatile 16,777,216-bit static **RAM** organized an **2,097,152** words by 8 bits. The integral control circuitry and lithium energy source provide reliable nonvolatility coupled with the unlimited write **cycles** of standard SRAM.


The control circuitry conetantly monitors the single 5V supply for an out-of-tolerance condition. When Voc falls out of tolerance, the SRAM is unconditionally write-protected to prevent an inadvertent write operation.

At this time the integral energy source is switched on to sustain the memory util after $V \infty$ returns valid.

The **bq4017** user extremely low standby current CMOS **SRAMs**, coupled with **small** lithium coin cells to provide **nonvolatility** without long write-cycle **times** and the **write-cycle** limitations associated with EEPROM.

The **bq4017** has the same interface as industry-standard **SRAMs** and requires no external circuitry.


Pin Connections

Pin Names

A ₀ -A ₂₀	Address inputs
DQ ₀ -DQ ₇	Data input/output
<u>CE</u>	Chip enable input
ŌĒ	Output enable input
WE	Write enable input
Vcc	+5 volt supply input
V_{SS}	Ground
NC	No connect

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
bq4017MC -70	70	-5%	bq4017YMC -70	70	-10%

May 1005

Functional Description

When power is valid, the **bq4017 operates** as a standard CMOS SRAM. During power-down and power-up cycles, the **bq4017** acts as a nonvolatile memory, automatically protecting and **preserving** the memory contents.

Power-down/power-up control circuitry constantly monitors the V_{CC} supply for a power-fail-detect threshold V_{PFD}. The bq4017 monitors for V_{PFD} = 4.62V typical for use in systems with 5% supply tolerance. The bq4017Y monitors for V_{PFD} = 4.37V typical for use in systems with 10% supply tolerance.

When Vcc falls below the VPFD threshold, the SRAM automatically write-protects the data. All outputs become high impedance, and all inputa are treated as don't care. If a valid access is in process at the time of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpT, write-protection takes place.

As Vcc falls past VPPD and approaches 3V, the control circuitry switches to the internal lithium backup supply, which provides data retention until valid Vcc is applied.

When Vcc returns to a level above the internal backup cell voltage, the supply is switched back to Vcc. After Vcc ramps above the Vpp threshold, write-protection continues for a time tcer (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cells used by the **bq4017** have an extremely long shelf life. The **bq4017** provides data retention for more than 5 **years** in the **absence** of system power.

As shipped from Benchmarq, the integral lithium cells are electrically isolated from the memory. (Self-discharge in this condition is approximately 0.5% per year.) Following the first application of Vcc, this isolation is broken, and the lithium backup provides data retention on subsequent power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	Н	х	Х	High Z	Standby
Output disable	L	Н	Н	High Z	Active
Read	L	Н	L	Dout	Active
Write	L	L	х	Din	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions	
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	v		
V _T	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	v	V_T ≤ V_{CC} + 0.3	
Topr	Operating temperature	0 to +70	°C		
T_{STG}	Storage temperature	-40 to +70	°C		
TBIAS	Temperature under bias	-10 to +70	°C		
TSOLDER	Soldering temperature	+260	°C	For 10 seconds	

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

2/10 May 1995

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbol	Parameter	Minimum	Typicai	Maximum	Unit	Notes
	Supply voltage	4.5	5.0	5.5	V	bq4017Y
VCC		4.75	5.0	5.5	V	bq4017
VSS	Supply voltage	0	0	0	V	
V_{IL}	Input low voltage	-0.3		0.8	V	
V _{IH}	Input high voltage	2.2		Vcc+0.3	V	

Note: Typical values indicate operation at $T_A = 25^{\circ}C$.

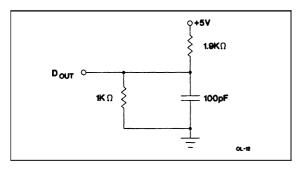
DC Electrical Characteristics (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			±4	μА	V _{IN} = V _{SS} to V _{CC}
IIO	Output leakage current			±4	μA	<u>CE</u> = V _{IH} or <u>OE</u> = V _{IH} or <u>WE</u> = V _{IL}
VoH	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	v	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current		7	17	mA	CE = V _{IH}
I _{SB2}	Standby supply current		2.5	5	mA	$\begin{array}{l} \underline{OV} \leq \mathbf{V_{IN}} \leq 0.2 \mathrm{V}, \\ \overline{\mathbf{CE}} \geq \mathbf{V_{CC}} \cdot \mathbf{0.2V}, \\ \mathrm{or} \ \mathbf{V_{IN}} \geq \mathbf{V_{CC}} \cdot 0.2 \end{array}$
Icc	Operating supply current		75	115	mA	Min. cycle, duty = 10096, CE = V _{IL} , I _{VO} = 0mA, A19 < V _{IL} or A19 > V _{IH} , A20 < V _{IL} or A20 > V _{IH}
Vom	Prop Power-fail-detect voltage	4.75	V	bq4017		
VPFD		4.30	4.37	4.50	V	bq4017Y
Vso	Supply switch-over voltage		3		V	

Note: **Typical** values indicate operation at TA = 25°C, Vcc = 5V.

May 1995 3/10

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Ci/o	Input/output capacitance			40	pF	Output voltage = OV
Cin	Input capacitance			40	pF	Input voltage = OV

Note:

These parameters are sampled and not 100% tested.

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load (including scope and jig)	See Figures 1 and 2

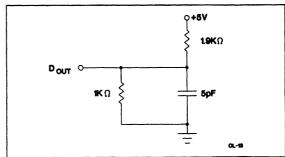
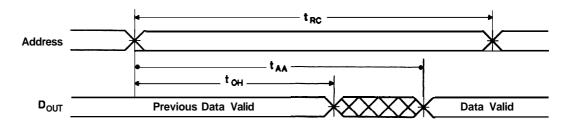
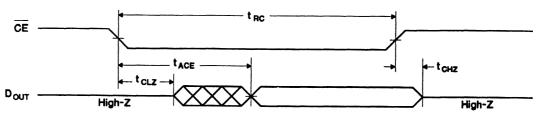


Figure 1. Output Load A

Figure 2. Output Load B

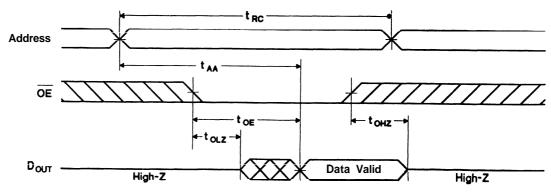

Read Cycle (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)

		-70			
Symbol	Parameter	in.	Max.	Unit	Conditions
t_{RC}	Read cycle time	70		ns	
taa	Address access time		70	ns	Output load A
tace	Chip enable access time		70	ns	Output load A
toE	Output enable to output valid		35	ns	Output load A
tclz	Chip enable to output in low Z	6		ns	Output load B
toLZ	Output enable to output in low Z	5		ns	Output load B
tcHz	Chip disable to output in high Z	0	25	ns	Output load B
tonz	Output disable to output in high 2	0	25	ns	Output load B
ton_	Output hold from address change	10		ns	Output load A


4/10 May 1995

6

Read Cycle No. 1 (Address Access) 1,2



Read Cycle No. 2 (CE Access) 1,3,4

RC-2

Read Cycle No. 3 (OE Access) 1,5

RC-3

Notes:

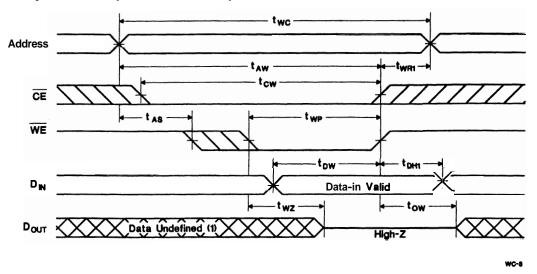
- 1. \overline{WE} is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$

May 1995

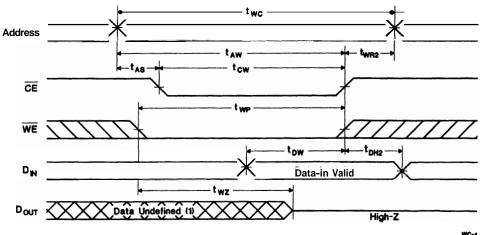
5/10

bq4017/bq4017Y

Write Cycle (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)


		-70			
Symbol	Parameter	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	70		ns	
tcw	Chip enable to end of write	65		ns	(1)
taw	Address valid to end of write	65		ns	(1)
tas	Address setup time	0		ns	Measured from address valid to beginning of writs. (2)
twp	Write pulse width	55		ns	Measured from beginning of write to end of write. (1)
twn1	Write recovery time (write cycle 1)	5		ns	Measured from WE going high to end of write cycle. (3)
twr2	Write recovery time (write cycle 2)	15		ns	Measured from \overline{CE} going high to end of write cycle. (3)
tow	Data valid to end of write	30		ns	Measured to first low-to-high transition of either CE or WE.
t _{DH1}	Data hold time (write cycle 1)	0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10		ns	Measured fmm $\overline{\bf CE}$ going high to end of write cycle. (4)
twz	Write enabled to output in high Z	0	25	ns	I/O pins are in output state. (5)
tow	Output active from end of write	5		ns	VO pins are in output state. (5)

Notes:


- 1. A write ends at the earlier transition of $\overline{\textbf{CE}}$ going high and $\overline{\textbf{WE}}$ going high,
- 2. A write occurs during the overlap of a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write begins at the later transition of $\overline{\text{CE}}$ going low and $\overline{\text{WE}}$ going low.
- 3. Either twn1 or twn2 must be met.
- 4. Either tohi or tohi must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the **outputs** remain in high-impedance **state.**

6/10 May 1995

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

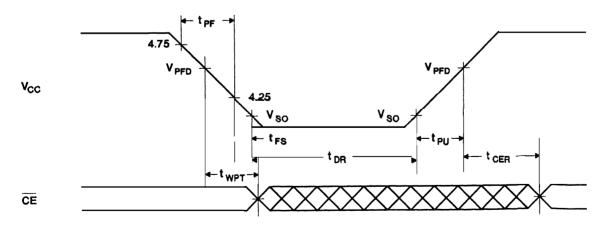
Notes:

- 1. \overline{CE} or \overline{WE} must be high during address transition.
- 2. Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the L/O pins remain in a state of high impedance.
- 4. Either twR1 or twR2 must be met.
- 5. Either tDH1 or tDH2 must be met.

May 1995

7/10

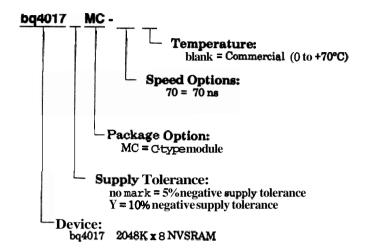
Power-Down/Power-Up Cycle (TA = 0 to 70℃)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpf	Vcc slew, 4.75 to 4.25 V	300			με	
trs	Vcc slew, 4.25 to Vso	10			μв	
tpu	VCC slew. Vso to VPFD (max.)	0			μs	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after Vcc passes VFPD on power-up.
t _{DR}	Data-retention time in absence of Vcc	5			years	$T_A = 25^{\circ}C.$ (2)
twpr	Write-protecttime	40	100	150	με	Delay after Vcc slews down past VPPD before SRAM is write-protected.

Notes:

- 1. Typical values indicate operation at TA = 25°C, Vcc = 5V.
- 2. **Batteries** are disconnected from circuit until after **V**_{CC} is applied for the first time. **tpR** is the accumulated time in **absence** of power **beginning** when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.


Power-Down/Power-Up Timing

PD-B

8/10 May 1995

Ordering Information

May 1995 9/10

10/10 May 1995

bq4024/bq4024Y

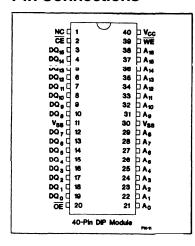
128Kx16 Nonvolatile SRAM

Features

- ➤ Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- ➤ Industry-standard 40-pin 128K x 16 pinout
- ➤ Conventional SRAM operation; unlimited write cycles
- ➤ 10-year minimum data retention in absence of power
- ➤ Battery internally isolated until power is applied

General Description

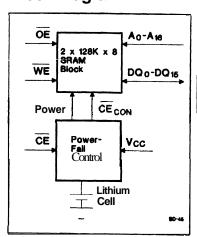
The CMOS **bq4024** is a nonvolatile 2,097,152-bit static **RAM** organized as 131,072 words by 16 **bits**. The integral control circuitry and lithium energy source provide reliable **nonvolatility** coupled with the unlimited write cycles of standard SRAM.


The control circuitry constantly monitors the single 5V supply for an out-of-tolerance condition. When Vcc falls out of tolerance, the SRAM is unconditionally write-protected to prevent an inadvertent write operation.

At this time the integral energy source is switched on to sustain the memory until after Vcc returns valid.

The **bq4024 uses** extremely low standby current CMOS **SRAMs**, coupled with small **lithium** coin **cells** to **provide** nonvolatility without long **write-cycle** times and **the** write-cycle **limitations** associated with **EEPROM**.

The bq4024 requires no external circuitry and is compatible with the industry-standard 2Mb SRAM pinout.


Pin Connections

Pin Names

A0-A16	Address inputs
DQ0-DQ15	Data input/output
CE	Chip enable input
ŌĒ	Output enable input
WE	Write enable input
NC	No connect
V_{CC}	+5 volt supply input
V_{SS}	Ground

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
bq4024 -85	85	-5%	bq4024Y -85	85	-10%
bq4024 -120	120	-5%	bq4024Y -120	120	-10%

Sept. 1990

Functional Description

When power is valid, the **bq4024** operates as a **standard** CMOS **SRAM**. During power-down and power-up **cycles**, the **bq4024** acts as a nonvolatile memory, automatically protecting and **preserving** the memory **contents**.

Power-down/power-up control circuitry constantly monitors the Vcc supply for a power-fail-detect threshold Vppp. The bq4024 monitors for Vppp = 4.62V typical for use in systems with 5% supply tolerance. The bq4024Y monitors for Vppp = 4.37V typical for use in systems with 10% supply tolerance.

When Vcc falls below the VPFD threshold, the SRAM automatically write-protect8 the data. All outputs become high impedance, and all inputs are treated as 'don't care.' If a valid access is in process at the time of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpp, write-protection takes place.

As Vcc falls past Vppp and approaches 3V, the control circuitry switches to the internal lithium backup supply, which provides data retention until valid Vcc is applied.

When V_{CC} returns to a level above the internal backup cell voltage, the supply is **switched** back to V_{CC}. After V_{CC} ramps above the V_{PPD} threshold, write-proketion continues for a time t_{CER} (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cells used by the **bq4024** have an extremely long shelf life and provide data retention for more than 10 **years** in the **absence** of **system** power.

As shipped from Benchmarq, the integral lithium cells are electrically isolated from the memory. (Self-discharge in this condition is approximately 0.5% per year.) Following the first application of VCC, this isolation is broken, and the lithium backup provides data retention on subsequent power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	н	х	х	High Z	Standby
Output disable	L	Н	Н	High Z	Active
Read	L	н	L	Dour	Active
Write	L	L	х	Dm	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	v	
VT	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	V	$V_T \le V_{CC} + 0.3$
Topr	Operating temperature	0 to +70	°C	
Tstg	Storage temperature	-40 to +70	°C	
TBIAS	Temperature under bias	-10 to +70	°C	
TSOLDER	Soldering temperature	+260	°C	For 10 seconds

Note:

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

2/10 Sept. 1990

6

Recommended DC Operating Conditions (TA = 0 to 70%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Vcc		4.6	5.0	5.5	v	bq4024Y
	Supply voltage	4.75	5.0	5.5	v	bq4024
Vss	Supply voltage	0	0	0	v	
VIL	Input low voltage	-0.3		0.8	v	
VIH	Input high voltage	2.2		Vcc + 0.3	v	

Note:

Typical values indicate operation at $T_A = 25$ °C.

DC Electrical Characteristics (TA = 0 to 70 ℃, VCCmin ≤ VCC ≤ VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
Iц	Input leakage current			± 2	μA	V _{IN} = V _{SS} to V _{CC}
ILO	Output leakage current			± 1	μА	CE = V _{IH} or \overline{OE} = V _{IH} or \overline{WE} = V _{IL}
VoH	Output high voltage	2.4			v	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	v	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current		5	11	mA	$\overline{CE} = V_{IH}$
I _{SB2}	Standby supply current		2.5	5	mA	$\overline{\text{CE}} \geq V_{CC} \cdot 0.2V$, $\text{OV} \leq V_{IN} \leq 0.2V$, $\text{Or } V \text{m} \geq V_{CC} \cdot 0.2V$
Icc	Operating supply current		95	200	mA	$\frac{\text{Min. cycle, duty} = 100\%,}{\text{CE} = V_{\text{IL}}, I_{\text{VO}} = 0\text{mA}}$
		4.55	4.62	4.75	V	bq4024
VPFD	Power-fail-detect voltage	4.30	4.37	4.50	V	bq4024Y
V _{SO}	Supply switch-over voltage		3		V	

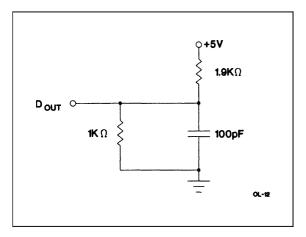
Note:

Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

Capacitance (TA = 25℃, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Ci⁄o	Input/output capacitance			10	рF	Output voltage = OV
Cin	Input capacitance			20	рF	Input voltage = 0V

Note:


This parameter is sampled and not 100% tested.

Sept. 1990

3/10

AC Test Conditions

Parameter	Ted Condition8			
Input pulse levels	OV to 3.0V			
Input rise and fall times	5 ns			
Input and output timing reference levels	1.5 V (unless otherwise specified)			
Output load (including scope and jig)	See Figures 1 and 2			

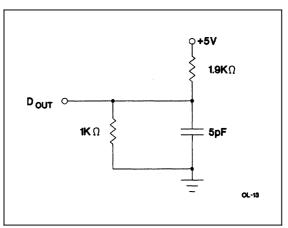
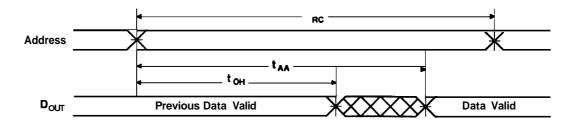


Figure 1. Output Load A

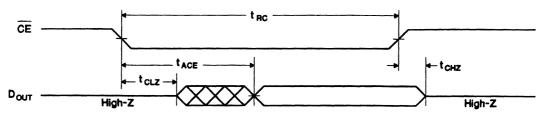
Figure 2. Output Load B

Read Cycle (TA = 0 to 70℃, Vccmin ≤ Vcc ≤ Vccmax)

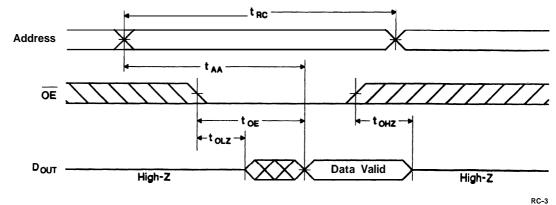
		-85		120			
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Conditions
trc	Read cycle time	85	•	120	•	ns	
taa	Address access time	-	85	•	120	ns	Output load A
tace	Chip enable access time	•	85	-	120	ns	Output load A
toe	Output enable to output valid	4	5	6	0	ns	Output load A
tclz	Chip enable to output in low Z	5	-	5	-	ns	Output load B
tolz	Output enable to output in low Z	0		0		ns	Output load B
tcHz	Chip disable to output in high Z	0	35	0	45	ns	Output load B
tom	Output disable to output in high Z	0	25	0	35	ns	Output load B
ton	Output hold from address change	10	•	10	-	ns	Output load A


4/10 Sept. 1990

RC-1


RC-2

6


Read Cycle No. 1 (Address Access) 1,2

Read Cycle No. 2 (CE Access) 1,3,4

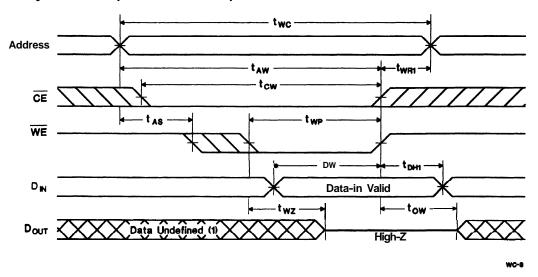
Read Cycle No. 3 (OE Access) 1,5

Notes:

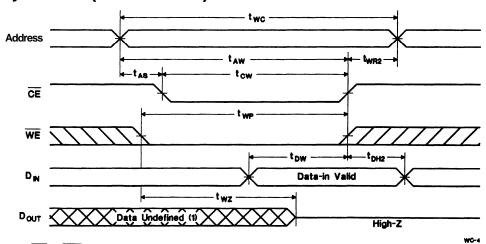
- 1. $\overline{\text{WE}}$ is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$.

Sept. 1990

5/10


Write Cycle (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)

		-4	35	-120			
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	Conditions/Notes
twc	Write cycle time	85	-	120	•	ns	
tcw	Chip enable to end of write	75	-	100	•	ns	(1)
taw	Address valid to end of write	75	•	100	•	ns	(1)
tas	Address setup time	O		0		ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	65		85		ns	Measured from beginning of write to end of write. (1)
twR1	Write recovery time (write cycle 1)	5		5		ns	Measured from WE going high to end of write cycle. (3)
twR2	Write recovery time (write cycle 2)	15	-	15	-	ns	Measured from CE going high to end of write cycle. (3)
t _D w	Data valid to end of write	35		45		ns	Measured to first low-to-high transition of either CE or WE.
tDH1	Data hold time (write cycle 1)	0		0		ns	Measured from WE going high to end of write cycle.(4)]
tDH2	Data hold time (write cycle 2)	10	-	10	-	ns	Measured from $\overline{\bf CE}$ going high to end of write cycle. (4)
twz	Write enabled to output in high-Z	0	30	0	40	ns	L/O pins are in output state. (5)
tow	Output active from end of write	0	-	0	-	ns	I/O pins are in output state. (5)


Notes:

- 1. A write ends at the earlier transition of $\overline{\textbf{CE}}$ going **high** and $\overline{\textbf{WE}}$ going high.
- 2. A write occur-during the **overlap of** a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write **begins** at the later transition of CE going low and WE going low.
- 3. Either twn or twn must be met.
- 4. Either tpH1 or tpH2 must be met.
- 5. **If \overline{CE} goes** low simultaneously with \overline{WE} going low or after \overline{WE} going low, the outputs remain **in** high-impedance state.

Write Cycle No. 1 (WE-Controlled) 1,2,3

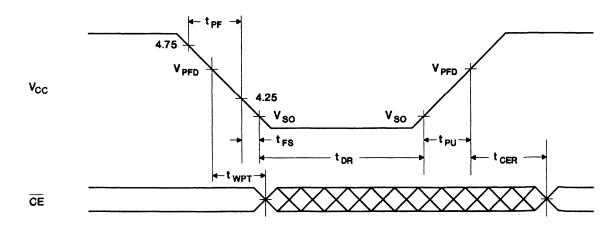
Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

Notes:

- 1. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be high during address transition.
- 2. Because I/O may be active $(\overline{OE} \text{ low})$ during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If \overline{OE} is high, the L/O pins remain in a state of high impedance.
- 4. Either twn1 or twn2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1990 7/10

Power-Down/Power-Up Cycle (TA = 0 to 70°C)

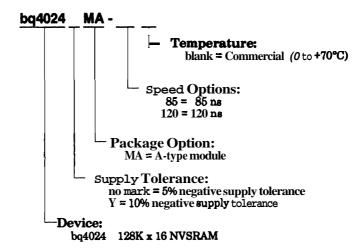

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
tpf	Vcc slew, 4.75 to 4.25 V	300			he	
tfs	Vcc slew, 4.25 to Vso	10			μs	
tpu	VCC slew, Vso to VPFD (max.)	0			μa	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-pro- tected after Vcc passes VPFD on power-up.
$t_{ m DR}$	Data-retentiontime in absence of V _{CC}	10			years	T _A =25°C. (2)
twpr	Write-protect time	40	100	150	ha	Delay after Vcc slews down past Vppp before SRAM is write- protected.

Notes:

- 1. Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.
- 2. Batteries are disconnected from circuit until after **Voc** is applied for the first time. top is the accumulated time in absence of power beginning when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.

Power-Down/Power-Up Timing



PD-B

8/10

Sept. 1990

Ordering Information

Sept. 1990

10/10 Sept. 1990

bq4025/bq4025Y

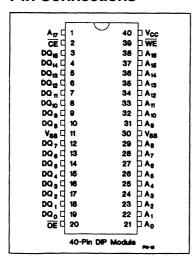
256Kx16 Nonvolatile SRAM

Features

- Data retention in the absence of power
- Automatic write-protection during power-up/power-down cycles
- ➤ Industry-standard 40-pin 256K x 16 pinout
- Conventional SRAM operation; unlimited write cycles
- 5-year minimum data retention in absence of power
- Battery internally isolated until power is applied

General Description

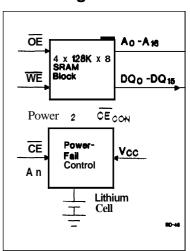
The CMOS **bq4025** is a nonvolatile 4,194,304-bit static RAM organized as 262,144 words by 16 bits. The integral control circuitry and lithium energy source provide reliable nonvolatility coupled with the unlimited write cycles of standard SRAM.


The control circuitry constantly monitors the single **5V** supply for an out-of-tolerance condition. When **Vcc** falls out of tolerance, the SRAM is **unconditionally** write-protected to prevent inadvertent write operation.

At this time the integral energy source is switched on to sustain the memory until after Voc returns valid.

The **bq4025** uses extremely low standby current CMOS **SRAMs**, coupled with small lithium coin cells to provide nonvolatility without long write-cycle times and the write-cycle limitations associated with **EEPROM**.

The bq4025 requires no **external** circuitry and is compatible with the industry-standard 4Mb SRAM pinout.


Pin Connections

Pin Names

A ₀ -A ₁₇	Address inputs
DQ ₀ -DQ ₁₅	Data input/output
CE	Chip enable input
OE	Output enable input
WE	Write enable input
v_{cc}	+5 volt supply input
Vss	Ground

Block Diagram

Selection Guide

Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
bq4025 -85	85	-5%	bq4025Y -85	85	-10%
bq4025 - 120	120	-5%	bq4025Y -120	120	-10%

Sept. 1992

Functional Description

When power is valid, the **bq4025** operates as a standard CMOS SRAM. During power-down and power-up cycles, the bq4025 acts as a nonvolatile memory, automatically protecting and preserving the memory contents.

Power-down/power-up control circuitry constantly monitors the Vcc supply for a power-fail-detect threehold VpFD. The bq4025 monitors for VpFD = 4.62V typical for use in systems with 5% supply tolerance. The bq4025Y monitors for VpFD = 4.37V typical for use in systems with 10% supply tolerance.

When Vcc falls below the VPFD threshold, the SRAM automatically write-protects the data. All outputs become high impedance, and all inputs are treated as 'don't care.' If a valid access is in process at the time of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpp, write-protection takes place.

As Vcc falls **past Vpp** and approaches **3V**, the **control** circuitry switches to the internal lithium backup supply, which provides data retention until valid **Vcc** is applied.

When Voc returns to a level above the internal backup cell voltage, the supply is **switched** back to Voc. After Voc ramps above the Vpp threshold, write-protection continues for a time toer (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cells used by the **bq4025** have an **extremely** long shelf life and provide data retention for more than 6 years in the absence of system power.

As shipped **from Benchmarq**, the **integral** lithium cells **are** electrically isolated from the memory. (Self-discharge in this condition is approximately 0.5% per year.) Following the **first** application of **Vcc**, this isolation is broken, and the lithium backup provides data retention on subsequent power-downs.

Truth Table

Mode	CE	WE	ŌĒ	I/O Operation	Power
Not selected	Н	х	X	High Z	Standby
Output disable	L	Н	Н	High Z	Active
Read	L	Н	L	Dour	Active
White	L	L	х	Din	Active

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
Vcc	DC voltage applied on Vcc relative to Vss	-0.3 to 7.0	v	
$V_{\mathbf{T}}$	DC voltage applied on any pin excluding Vcc relative to Vss	-0.3 to 7.0	v	V _T ≤ V _{CC} + 0.3
Topr	Operating temperature	0 to +70	"C	
TSTG	Storage temperature	-40 to +70	°C	
TBIAS	Temperature under bias	-10 to +70	°C	
TSOLDER	Solderingtemperature	+260	°C	For 10 seconds

Note:

Permanent device damage may cour if Absolute **Maximum** Ratings are exceeded. **Functional** operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. **Exposure** to conditions beyond the operational limits for extended **periods** of **time** may **affect** device reliability.

2/10 Sept. 1992

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
**		4.5	6.0	6.5	v	bq4025Y
Vcc Supply voltage	Supply voltage	4.75	5.0	5.5	v	bq4025
v_{ss}	Supply voltage	0	0	0	V	
$v_{\scriptscriptstyle \Pi\!L}$	Input low voltage	-0.3		0.8	V	
VIH	Input high voltage	2.2		Vcc + 0.3	V	

Note: Typic

Typical values indicate operation at $T_A = 25$ °C,

DC Electrical Characteristics (TA = 0 to 70 ℃, VCCmin ≤ VCC ≤ VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
ILI	Input leakage current			± 4	μA	$V_{\rm IN}$ = $V_{\rm SS}$ to $V_{\rm CC}$
Iro	Output leakage current			± 2	μА	$\overline{\underline{CE}} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{VE} = V_{IL}$
Vон	Output high voltage	2.4			V	I _{OH} = -1.0 mA
Vol	Output low voltage			0.4	V	I _{OL} = 2.1 mA
I_{SB1}	Standby supply current		7	18	mA	$\overline{CE} = V_{IH}$
I_{SB2}	Standby supply current		2.5	5	mA	$\overline{CE} \geq V_{CC} \cdot 0.2V,$ $CV \leq V_{IN} \leq 0.2V,$ or $V_{IN} \geq V_{CC} \cdot 0.2V$
Icc	Operating supply current		95	200	mA	Min. cycle, duty = 100%, CE = V _{IL} , I _V o = 0mA, A17 < V _{IL} or A17 > V _{IH}
		4.55	4.62	4.75	V	bq4025
VPFD	Power-fail-detectvoltage	4.30	4.37	4.50	V	bq4025Y
v_{so}	Supply switch-over voltage		3		V	

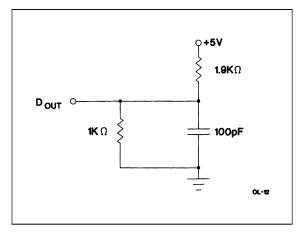
Note:

Typical values indicate operation at TA = 25°C, Vcc = 5V.

Capacitance (TA = 25℃, F = 1MHz, VCC = 5.0V)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
Civo	Input/output capacitance			20	pF	Output voltage = OV
CiN	Input capacitance			40	pF	Input voltage = OV

Note:


This parameter is sampled and not 100% tested.

Sept. 1992

3/10

AC Test Conditions

Parameter	Test Conditions
Input pulse levels	OV to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specified)
Output load(including scope and jig)	See Figures 1 and 2

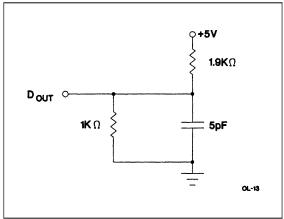
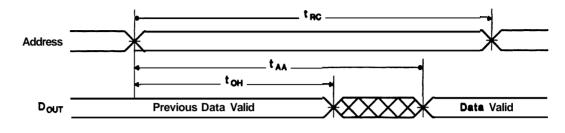
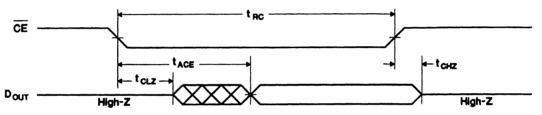


Figure 1. Output Load A

Figure 2. Output Load B

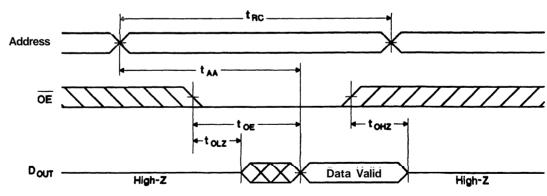

Read Cycle (TA = 0 to 70 ℃, Vccmin 5 Vcc ≤ Vccmax)

		-4	-85		20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Conditions
trc	Read cycle time	85	-	120		ns	
taa	Address access time	-	85	-	120	ns	Output load A
tACE	Chip enable access time	-	85	-	120	ns	Output load A
toe	Output enable to output valid	-	45	-	60	ns	Output load A
tclz	Chip enable to output in low Z	5		5		ns	Output load B
toLz	Output enable to output in low Z	0		0	-	ns	Output load B
tchz	Chip disable to output in high Z	0	35	0	45	ns	Output load B
tonz	Output disable to output in high Z	0	25	0	35	ns	Output load B
tон	Output hold from address change	10		10	-	ns	Output load A


4/10 Sept. 1992

6

Read Cycle No. 1 (Address Access) 1,2


Read Cycle No. 2 (CE Access) 1,3,4

RC-2

RC-1

Read Cycle No. 3 (OE Access) 1,5

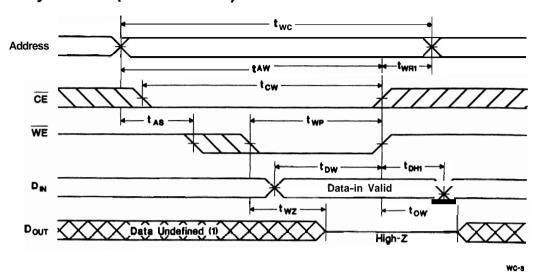
RC-S

Notes:

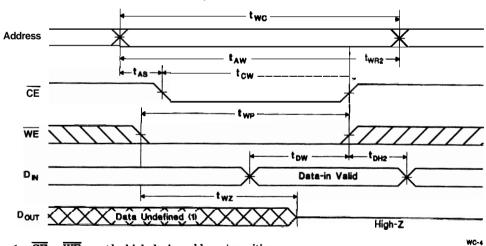
- 1. WE is held high for a read cycle.
- 2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$
- 3. Address is valid prior to or coincident with \overline{CE} transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Device is continuously selected: $\overline{CE} = V_{IL}$

Sept. 1992

5/10


Write Cycle (TA = 0 to 70°C, VCCmin ≤ VCC ≤ VCCmax)

		-85 120					
Symbol	Parameter	Min.		Min.	Max.	Units	 Conditions/Notes
twc	Write cycle time	85	-	120	•	ns	
tcw	Chip enable to end of write	75	-	100	-	D8	(1)
taw	Address valid to end of write	75	•	100	-	ns	(1)
tas	Address setup time	0		o		ns	Measured from address valid to beginning of write. (2)
twp	Write pulse width	65		85		ns	Measured from beginning of write to endofwrite. (1)
tw _{R1}	Write recovery time (write cycle 1)	5		5	-	ns	Measured from WE going high to end of write cycle. (3)
twR2	Write recovery time (write cycle 2)	15	-	15	•	ns	Measured from $\overline{\bf CE}$ going high to end of write cycle. (3)
tow	Datavalid to end of write	35		45		ns	Measured to first low-to-high transition of either CE or WE.
tDH1	Data hold time (write cycle 1)	o	-	0		ns	Measured from WE going high to end of write cycle. (4)
t _{DH2}	Data hold time (write cycle 2)	10	-	10	-	ns	Measured from \overline{CE} going high to end of write cycle. (4)
twz	Write enabled to output in high-Z	0	30	0	40	ns	I/O pins are in output state. (5)
tow	Output active from end of write	0	-	0		ns	I/O pine are in output state. (5)


Notes:

- 1. A write **ends** at the earlier transition of $\overline{\bf CE}$ going high and $\overline{\bf WE}$ going high.
- 2. A write occurs—during the **overlap of** a low $\overline{\textbf{CE}}$ and a low $\overline{\textbf{WE}}$. A write **begins** at the later transition of CE going low and $\overline{\text{WE}}$ going low.
- 3. Either twn1 or twn2 must be met.
- 4. Either tpH1 or tpH2 must be met.
- 5. If $\overline{\textbf{CE}}$ goes low simultaneously with $\overline{\textbf{WE}}$ going low or after $\overline{\textbf{WE}}$ going low, the outputs remain in high-impedance state.

Write Cycle No. 1 (WE-Controlled) 1,2,3

Write Cycle No. 2 (CE-Controlled) 1,2,3,4,5

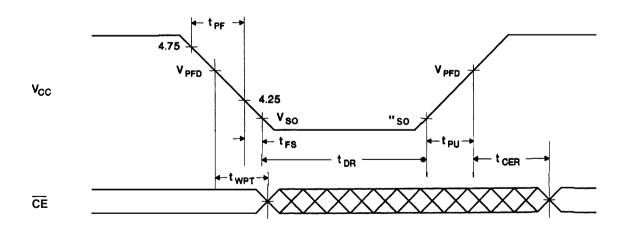
Notes:

- 1. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be high during address transition.
- Because I/O may be active (OE low) during this period, data input signals of opposite polarity to the
 outputs must not be applied.
- 3. If \overline{OE} is high, the I/O pins remain in a state of high impedance.
- 4. Either twn1 or twn2 must be met.
- 5. Either tDH1 or tDH2 must be met.

Sept. 1992

7/10

Power-Down/Power-Up Cycle (TA = 0 to 70°C)


Symbd	Parameter	Min.	Тур.	Max.	Unit	Conditions
tpr	Vcc slew, 4.75 to 4.25 V	300			μs	
tfs	Vcc slew, 4.25 to Vso	10			μs	
tpu	Vcc slew, Vso to VPFD (max.)	0			μв	
tcer	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after Vcc passes VPPD on power-up.
tDR	Data-retention time in absence of Vcc	5			years	T _A = 25°C. (2)
twpr	Write-protect time	40	100	150	he	Delay after Vcc slews down past Vpp before SRAM is write-protected.

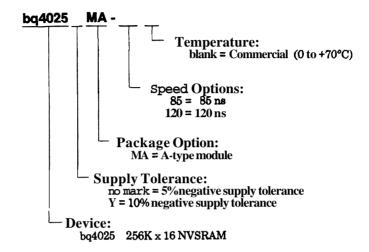
Notes:

- 1. Typical values indicate operation at $T_A = 25$ °C, $V_{CC} = 5$ V.
- 2. **Batteries** are **disconnected** from circuit until after **Vcc** is applied for the **first time**. **tor** is the accumulated time in **absence** of power beginning when **power** is **first** applied to the device.

Caution. Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may **affect** data integrity.

Power-Down/Power-Up Timing

PO-B


8/10

Sept. 1992

Revision History (Sept. 1992 Changes From Sept. 1990)

c test conditions, page 3.

Ordering Information

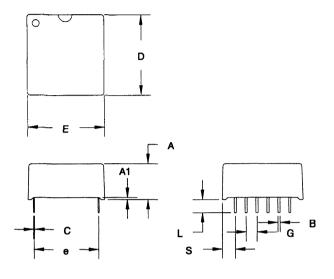
Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	. 9

	-	

Package Drawings

Benchmarq's standard packages are described in the following tables.

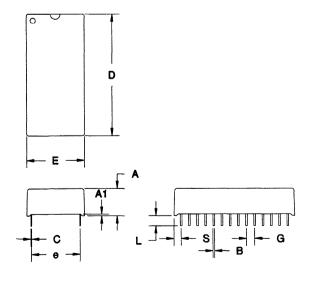
Package Type	Description	No. Pins	Device
		12	bq2502
			bq4010/bq4010Y
		28	bq4011/bq4011Y
			bq4830Y
	DIP		bq4013/bq4013Y
MA	Module, A-Type	32	bq4015/bq4015Y
		32	bq4832Y
			bq4842Y
			bq4850Y
			bq4024/bq4024Y
		40	bq4025/bq4025Y
	DIP	00	bq4014/bq4014Y
MB	Module, B-Type	32	bq4015/bq4015Y
	DIP Module, C-Type	36	bq4016/4016Y
MC			bq4017/4017Y
			bq4852Y
		24	bq3287/bq3287A
1	DIP		bq3287E/bq3287EA
MT	Module, T-Type		bq4287/bq4287E
		28	bq4847/bq4847Y
			bq3285
			bq3285E
			bq3285EC
P	Plastic DIP, 0.600"	24	bq3285L
	0.600"		bq3285LC
			bq4285
			bq4285E
			bq4285L
		28	bq4845/bq4845Y


Package Type	Description	No. Pins	Device						
			bq2002						
			bq2002T						
		8	bq2201						
			bq2902						
	Plastic DIP, 0.300"	14	bq2903						
			bq2003						
			bq2004						
		0.500	0.500	0.500	0.500	0.500	0.500	0.500	
			bq2031						
			bq2054						
		16	bq2202						
			bq2203A						
			bq2204A						
		20	bq2005						
		24	bq2007						

Package Drawings

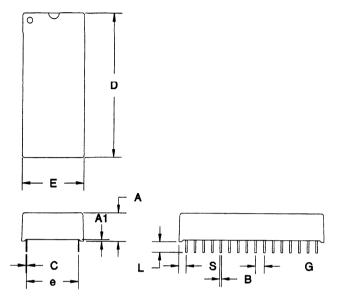
Package Type	Description	No. Pins	Device
			bq3285
Q	Quad	28	bq3285E
4	PLCC		bq4285
			bq4285E
		16	bq2003
	SOIC.	20	bq2005
			bq2007
			bq3285
		24	bq3285E
			bq3285EC
s	0.300"		bq3285L
			bq3285LC
			bq4285
			bq4285E
			bq4285L
		28	bq4845/Y

Package Type	Description	No. Pins	Device
		8	bq2002
			bq2002T
			bq2201
			bq2053
			bq2902
		14	bq2903
			bq2004
SN			bq2004E
			bq2010
			bq2011
	SOIC		bq2011J
	Narrow, 0.150"		bq2011K
			bq2012
		16	bq2014
			bq2014H
			bq2031
			bq2040
			bq2050
			bq2050H
			bq2054
			bq2058
			bq2090
			bq2091
			bq2202
			bq2203A
			bq2204A
			bq3285E
SS	SSOP,	24	bq3285EC
55	0.150"		bq3285L
			bq3285LC


MA: 12-Pin A-Type Module

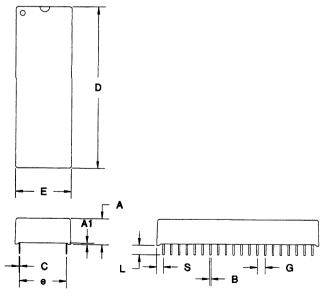
12-Pin MA (A-Type Module)

	Inches Millimeters					
Dimension	Min.	Max.	Min.	Max.		
A	0.365	0.375	9.27	8.53		
A 1	0.015	-	0.38	-		
В	0.017	0.023	0.43	0.58		
С	0.008	0.013	0.20	0.33		
D	0.710	0.740	18.03	18.80		
Е	0.710	0.740	18.03	18.80		
е	0.590	0.630	14.99	16.00		
G	0.090	0.110	2.29	2.79		
L	0.120	0.150	3.05	3.81		
S	0.105	0.130	2.67	3.30		


MA: 28-Pin A-Type Module

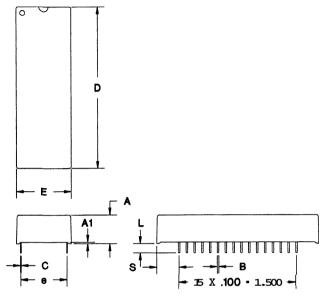
28-Pin MA (A-Type Module)

	Inches		Millin	eters
Dimension	Min.	Max.	Min.	Max.
A	0.365	0.375	9.27	9.53
A1	0.015	-	0.38	-
В	0.017	0.023	0.43	0.58
C	0.008	0.013	0.20	0.33
D	1.470	1.500	37.34	38.10
Е	0.710	0.740	18.03	18.80
е	0.590	0.630	14.99	16.00
G	0.090	0.110	2.29	2.79
L	0.120	0.150	3.05	3.81
S	0.075	0.110	1.91	2.79


MA: 32-Pin A-Type Module

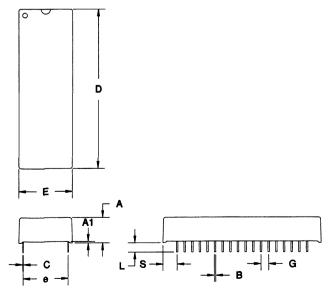
32-Pin MA (A-Type Module)

	Inc	nes	Millimeters				
Dimension	Min.	Max.	Min.	Max.			
A	0.365	0.375	9.27	9.53			
A1	0.015	-	0.38	-			
В	0.017	0.023	0.43	0.58			
C	0.008	0.013	0.20	0.33			
D	1.670	1.700	42.42	43.18			
E	0.710	0.740	18.03	18.80			
е	0.590	0.630	14.99	16.00			
G	0.090	0.110	2.29	2.79			
L	0.120	0.150	3.05	3.81			
S	0.075	0.110	1.91	2.79			


MA: 40-Pin A-Type Module

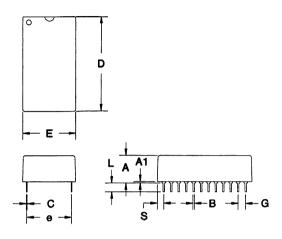
40-Pin MA (A-Type Module)

	Inc	hes	Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.365	0.375	9.27	9.53
A 1	0.015	-	0.38	-
В	0.017	0.023	0.43	0.58
C	0.008	0.013	0.20	0.33
D	2.070	2.100	52.58	53.34
E	0.710	0.740	18.03	18.80
е	0.590	0.630	14.99	16.00
G	0.090	0.110	2.29	2.79
L	0.120	0.150	3.05	3.81
S	0.075	0.110	1.91	2.79


MB: 32-Pin B-Type Module

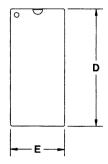
32-Pin MB (B-Type Module)

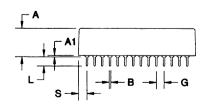
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
	Inches		Millin	neters			
Dimension	Min.	Max.	Min.	Max.			
A	0.365	0.375	9.27	9.53			
A1	0.015	-	0.38	-			
В	0.017	0.023	0.43	0.58			
C	0.008	0.013	0.20	0.33			
D	2.070	2.100	52.58	53.34			
E	0.710	0.740	18.03	18.80			
е	0.590	0.630	14.99	16.00			
G	0.090	0.110	2.29	2.79			
L	0.120	0.150	3.05	3.81			
S	0.275	0.310	6.99	7.87			


MC: 36-Pin C-Type Module

36-Pin MC (C-Type Module)

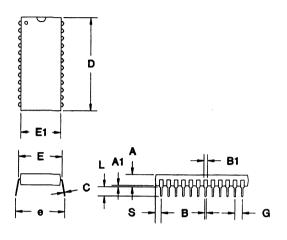
	Inches		Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.365	0.375	9.27	9.53
A1	0.015	-	0.38	
В	0.017	0.023	0.43	0.58
C	0.008	0.013	0.20	0.33
D	2.070	2.100	52.58	53.34
E	0.710	0.740	18.03	18.80
е	0.590	0.630	14.99	16.00
G	0.090	0.110	2.29	2.79
L	0.120	0.150	3.05	3.81
S	0.175	0.210	4.45	5.33


MT: 24-Pin T-Type Module


24-Pin MT (T-Type Module)

	(, ,)6	.	,	
	Inc	hes	Millimeters	
Dimension	Min.	Mu.	Min.	Max.
A	0.360	0.390	9.14	9.91
A1	0.015	-	0.38	-
В	0.015	0.022	0.38	0.56
C	0.008	0.013	0.20	0.33
D	1.320	1.335	33.53	33.91
E	0.710	0.740	18.03	18.80
е	0.590	0.620	14.99	15.75
G	0.090	0.110	2.29	2.79
L	0.110	0.130	2.79	3.30
S	0.100	0.120	2.54	3.05

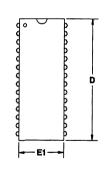
MT: 28-Pin T-Type Module

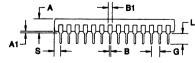


28-Pin MT (T-Type Module)

	Inches		Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.360	0.390	9.14	9.91
A1	0.015	-	0.38	-
В	0.015	0.022	0.38	0.56
С	0.008	0.013	0.20	0.33
D	1.520	1.535	38.61	38.99
E	0.710	0.740	18.03	18.80
е	0.590	0.620	14.99	15.75
G	0.090	0.110	2.29	2.79
L	0.110	0.130	2.79	3.30
S	0.100	0.120	2.54	3.05

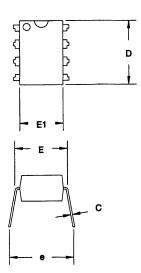
7

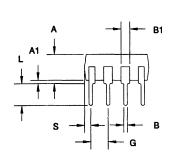

P: 24-Pin DIP (0.600")


24-Pin DIP (0.600" DIP)

	Inc	hes	Millimeters	
Dimension	Min.	Max.	Min.	Max.
A	0.160	0.190	4.06	4.83
A1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.045	0.065	1.14	1.65
С	0.008	0.013	0.20	0.33
D	1.240	1.280	31.50	32.51
E	0.600	0.625	15.24	15.88
E1	0.530	0.570	13.46	14.48
е	0.600	0.670	15.24	17.02
G	0.090	0.110	2.29	2.79
L	0.115	0.150	2.92	3.81
S	0.070	0.090	1.78	2.29

P: 28-Pin DIP (0.600")

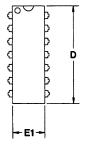


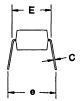


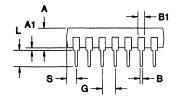
28-Pin DIP (0.600" DIP)

	Inc	hes	Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.160	0.190	4.06	4.83
A1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.045	0.065	1.14	1.65
С	0.008	0.013	0.20	0.33
D	1.440	1.480	36.58	37.59
E	0.600	0.625	15.24	15.88
E1	0.530	0.570	13.46	14.48
е	0.600	0.670	15.24	17.02
G	0.090	0.110	2.29	2.79
L	0.115	0.150	2.92	3.81
s	0.070	0.090	1.78	2.29

PN: 8-Pin DIP (0.300")

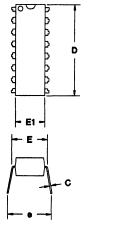


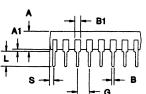



8-Pin PN (0.300" DIP)

	Inches		Millimeters	
Dimension	Mln.	Max.	Min.	Max.
A	0.160	0.180	4.06	4.57
A1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.055	0.065	1.40	1.65
C	0.008	0.013	0.20	0.33
D	0.350	0.380	8.89	9.65
E	0.300	0.325	7.62	8.26
E1	0.230	0.280	5.84	7.11
е	0.300	0.370	7.62	9.40
G	0.090	0.110	2.29	2.79
L	0.115	0.150	2.92	3.81
S	0.020	0.040	0.51	1.02

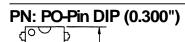
PN: 14-Pin DIP (0.300")

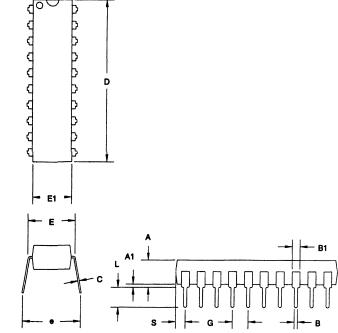




14-Pin PN (0.300" DIP)

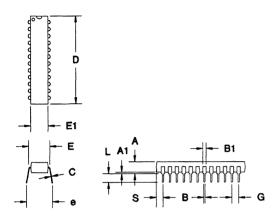
	Inches		Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.160	0.180	4.06	4.57
A 1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.055	0.065	1.40	1.65
C	0.008	0.013	0.20	0.33
D	0.740	0.770	18.80	19.56
E	0.300	0.325	7.62	8.26
E1	0.230	0.280	5.84	7.11
e	0.300	0.370	7.62	9.40
G	0.090	0.110	2.29	2.79
L	0.115	0.150	2.92	3.81
S	0.070	0.090	1.78	2.29


PN: 16-Pin DIP (0.300")



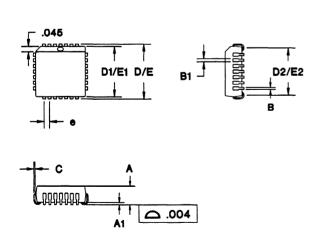
16-Pin PN (0.300" DIP)

	Inc	hes	Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.160	0.180	4.06	4.57
A 1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.055	0.065	1.40	1.65
C	0.008	0.013	0.20	0.33
D	0.740	0.770	18.80	19.56
E	0.300	0.325	7.62	8.26
E1	0.230	0.280	5.84	7.11
е	0.300	0.370	7.62	9.40
G	0.090	0.110	2.29	2.79
L	0.115	0.150	2.92	3.81
S	0.020	0.040	0.51	1.02



20-Pin PN (0.300" DIP)

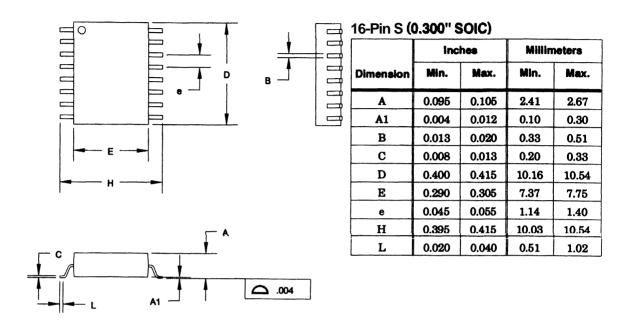
	Inches		Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.160	0.180	4.06	4.57
A1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.055	0.065	1.40	1.65
C	0.008	0.013	0.20	0.33
D	1.010	1.060	25.65	26.92
E	0.300	0.325	7.62	8.26
E1	0.230	0.280	5.84	7.11
е	0.300	0.370	7.62	9.40
G	0.090	0.110	2.29	2.79
L	0.115	0.135	2.92	3.43
S	0.055	0.080	1.40	2.03


PN: 24-Pin DIP (0.300")

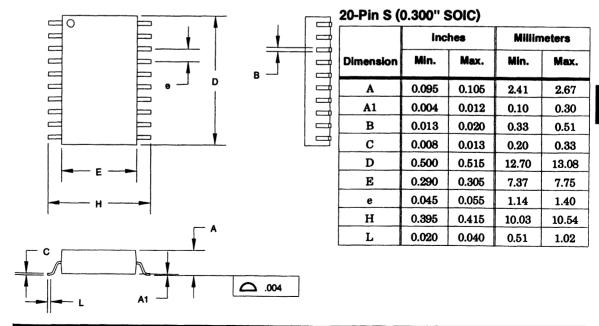
24-Pin PN (0.300" DIP)

ft series				
	Inci	ches Millimete		neters
Dimension	Min.	Max.	Mln.	Max.
A	0.160	0.180	4.06	4.57
A1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.045	0.055	1.14	1.40
C	0.008	0.013	0.20	0.33
D	1.240	1.280	31.50	32.51
E	0.300	0.325	7.62	8.26
E1	0.250	0.300	6.35	7.62
е	0.300	0.370	7.62	9.40
G	0.090	0.110	2.29	2.79
L	0.115	0.150	2.92	3.81
S	0.070	0.090	1.78	2.29

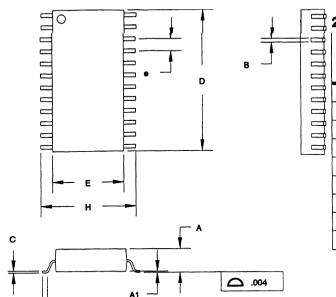
Q: 28-Pin Quad PLCC



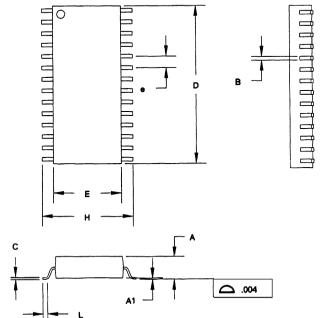
28-Pin Q (Quad PLCC)


	Inches		Millin	eters
Dimension	Min.	Max.	Min.	Max.
A	0.165	0.180	4.19	4.57
A1	0.020	-	0.51	-
В	0.012	0.021	0.30	0.53
B1	0.025	0.033	0.64	0.84
C	0.008	0.012	0.20	0.30
D	0.485	0.495	12.32	12.57
D1	0.445	0.455	11.30	11.56
D2	0.390	0.430	9.91	10.92
E	0.485	0.495	12.32	12.57
E1	0.445	0.455	11.30	11.56
E2	0.390	0.430	9.91	10.92
е	0.045	0.055	1.14	1.40

7


S: 16-Pin S (0.300" SOIC)

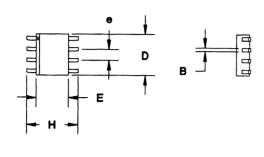
S: PO-Pin S (0.300" SOIC)

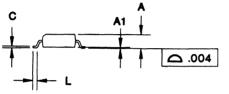

S: 24-Pin S (0.300" SOIC)

24-Pin S (0.300" SOIC)

	inc	hes	Millim	eters
Dimension	Min.	Max.	Min.	Max.
A	0.095	0.105	2.41	2.67
A1	0.004	0.012	0.10	0.30
В	0.013	0.020	0.33	0.51
С	0.008	0.013	0.20	0.33
D	0.600	0.615	15.24	15.62
E	0.290	0.305	7.37	7.75
е	0.045	0.055	1.14	1.40
Н	0.395	0.415	10.03	10.54
L	0.020	0.040	0.51	1.02

S: 28-Pin S (0.300" SOIC)

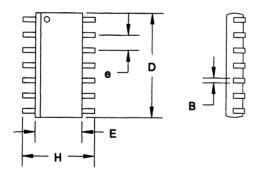


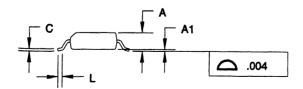

28-Pin S (0.300" SOIC)

	inches		Millim	eters
Dimension	Min.	Max.	Min.	Max.
A	0.095	0,105	2.41	2.67
A1	0.004	0.012	0.10	0.30
В	0.013	0.020	0.33	0.51
С	0.008	0.013	0.20	0.33
D	0.700	0.715	17.78	18.16
Е	0.290	0.305	7.37	7.75
е	0.045	0.055	1.14	1.40
Н	0.395	0.415	10.03	10.54
L	0.020	0.040	0.51	1.02

1

SN: 8-Pin SN (0.150" SOIC)





8-Pin SN (0.150" SOIC)

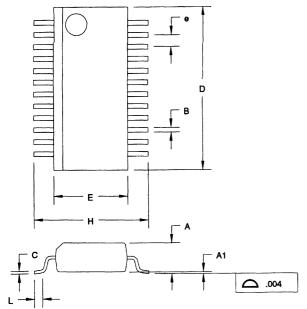
	inches		Millimeters	
Dimension	Min.	Max.	Min.	Max.
A	0.060	0.070	1.52	1.78
A1	0.004	0.010	0.10	0.25
В	0.013	0.020	0.33	0.51
C	0.007	0.010	0.18	0.25
D	0.185	0.200	4.70	5.08
E	0.150	0.160	3.81	4.06
e	0.045	0.055	1.14	1.40
H	0.225	0.245	5.72	6.22
L	0.015	0.035	0.38	0.89

SN: 14-Pin SN (0.150" SOIC)



14-Pin SN (0.150" SOIC)

	Inches		Millimeters	
Dimension	Min.	Max.	Min.	Max.
A	0.060	0.070	1.52	1.78
A 1	0.004	0.010	0.10	0.25
В	0.013	0.020	0.33	0.51
C	0.007	0.010	0.18	0.25
D	0.335	0.350	8.51	8.89
E	0.150	0.160	3.81	4.06
e	0.045	0.055	1.14	1.40
Н	0.225	0.245	5.72	6.22
L	0.015	0.035	0.38	0.89


SN: 16-Pin SN (0.150" SOIC)

16-Pin SN (0.150" SOIC)

,					
	Inches		Millimeters		
Dimension	Mln.	Max.	MIn.	Max.	
A	0.060	0.070	1.52	1.78	
A1	0.004	0.010	0.10	0.25	
В	0.013	0.020	0.33	0.51	
C	0.007	0.010	0.18	0.25	
D	0.385	0.400	9.78	10.16	
Е	0.150	0.160	3.81	4.06	
е	0.045	0.055	1.14	1.40	
Н	0.225	0.245	5.72	6.22	
L	0.015	0.035	0.38	0.89	

24-Pin SSOP(SS)

24-Pin SS (0.150" SSOP)

	Inches		Millin	neters
Dimension	Min.	Max.	Min.	Max.
A	0.061	0.068	1.55	1.73
A1	0.004	0.010	0.10	0.25
В	0.008	0.012	0.20	0.30
C	0.007	0.010	0.18	0.25
D	0.337	0.344	8.56	8.74
Е	0.150	0.157	3.81	3.99
е	.025 BSC		0.64	BSC
Н	0.230	0.244	5.84	6.20
L	0.016	0.035	0.41	0.89

Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

Quality and Reliability

The Benchmarq Quality Policy

It is the policy of Benchmarq to provide the highest-quality products in support of our customers' needs. We recognize that we are in the business of providing not only the physical product, but also documentation, technical support, sales and marketing support, and timely product delivery. Our commitment to our customers begins with product concept and must extend long after actual product purchase and receipt.

We are dedicated to establishing partnerships with our customers and know that to **succeed** we must help our customers succeed. We will do this by:

Holding ourselves and our vendors accountable for establishing carefully considered methods and procedures for design, test, and production with clear and concise documentation,

Responding professionally and expeditiously to customer or vendor problems that arise, bringing to bear the company's strongest resources,

Developing an industry-leading "Quality Technology" to drive incremental improvements in all the products we provide, and to contribute to a continuous reduction in new product time to market, and

Continuously providing products and services that meet or **exceed** the best **expectations** of our customers.

In **pursuing** this commitment to quality, we have performed extensive qualification testing on our devices to help ensure the highest levels of product reliability.

We feel confident that the reliability levels demonstrated by our qualification testing will allow us to provide a high-quality product that will meet or exceed our customers' needs. Benchmarq is continuously working toward improving product reliability.

An integral part of quality improvement is customer feedback. We encourage our customers to contact us with any questions or suggestions regarding their individual quality requirements or for information concerning up-to-date product enhancements.

Call us—we want to hear from you.

Underwriters Laboratory Recognition

Benchmarq's ICs and modules have been recognized by Underwriters Laboratory (U.L.®) under file E134016 (R). This helps to hasten U.L. approval of our customers' end equipment.

For detailed Quality and Reliability Reports, contact the factory or your sales representative.

Quality and Reliability

Quality Procedures

To help ensure that our final product is both consistent and reliable, the following quality tests and procedures have been implemented.

Test Probe

Each wafer is electrically tested at test probe to verify parametric integrity. Any wafer not meeting parametric specifications is rejected.

Wafer IQC

Wafer samples are periodically subjected to physical cross-sectional analysis to verify conformance to design and process specifications.

Final Visual

All lots are subjected to QC final visual inspection. The travelers are checked to make sure that the product was properly burned-in and tested. Additionally, lot numbers and counts are verified, and the devices are checked for mechanical integrity.

Board-Level Products

All printed circuit board level products are manufactured to meet ANSI/IPC-A-610A and ANSI/IPC-A-600D Class 2 specifications.

Traceability

N 1 traceability is maintained on all products. The devices are traceable to front-end wafer lot and to assembly lot. Top brand includes the **Benchmarq** logo, **part** number, date code, and unique lot number (module products).

Electrostatic Discharge (ESD)

It is recognized that electronic components are susceptible to damage due to electrostatic discharge. To help minimize this risk, the following safeguards have been put into place:

- All personnel who handle devices wear grounded wrist and heel straps and have been trained to use proper device-handling procedures.
- All work surfaces used in the test and QC areas have been grounded. Antistatic flooring is used in the test, QC, and finished goods areas.
- All device testers and handlers have adequate grounding.
- Devices are placed into antistatic tubes and kept in conductive totes or boxes during the manufacturing process.
 - Finished goods are stored in conductive boxes. Boxes and shipping containers are labeled with ESD warnings.

Packing and Shipping

Great care is taken to ensure that finished product reaches the customer in **perfect** condition. All devices are placed in antistatic tubes during the assembly and test operations. Before shipping, device tubes are placed in conductive **boxes** that **are** marked with ESD warning labels. The conductive **boxes** are then placed into non-conductive shipping containers for additional protection against rough handling. The shipping containers are also marked with ESD caution labels.

Process Monitoring

The materials, assembly process, and test process are constantly monitored for problems and inconsistencies. Operator traceability and accountability are maintained so that any problems can be identified earlier and corrections implemented quicker. The wafer foundry and assembly contractor are required to use Statistical Process Control (SPC) techniques to demonstrate that their manufacturing processes and hence, their final products, are in control and will not vary from lot to lot. This constant effort is provided to ensure the highest possible product quality.

Qualification Strategy

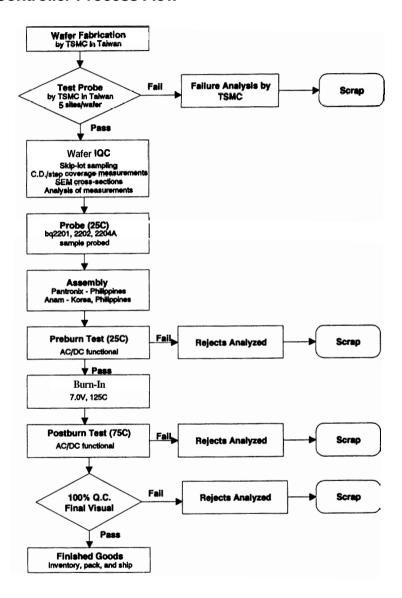
Benchmarq's goal is to provide the most reliable products possible. Hence, a combination of devices and packages representative of the front-end and back-end processes are selected for reliability testing. Three levels of qualification and reliability testing are performed on each product family. They are as follows:

Wafer Level

Wafer-level qualification is performed so that the reliability of the front-end process may be ascertained. Wafers from three front-end wafer lots **are** analyzed. Design **rules** such as critical dimensions, film thicknesses, step coverages, and oxide **integrity** are verified using a combination of electrical and visual analysis. Also, a **series** of tests designed to check the reliability of passivation, thin oxides, metal, and transistors are performed.

By analyzing the device in wafer form, any major process or design reliability problems are uncovered early in the product development phase where they can be more quickly **corrected**.

Package Level


An assessment is performed on various package types to determine the reliability and manufacturability of the packaging process and materials.

System Level

Finally, a series of stringent environmental and operating life stresses are performed on packaged devices so that the short-term and long-term reliability of the product may be ensured. Infant life and long-term life predictions are then made based on this data.

NVSRAM Controllers

NVSRAM Controller Process Flow

Qualification Summary—NVSRAM Controllers

Product: NVSRAM Controllers (bg2201, bg2202, bg2204)

Qual Vehicle: bq2201SN 8-pin, 150-mil SOIC

(Lot: **T044002AÁCPA** Date Code: 9046)

High-Temperature Operating Life Test (5.5V, 150°C)

<u>48 hrs</u> <u>96 hrs</u> <u>168 hrs</u> <u>0/100</u> 0/100 0/100

Operating Life Test (5.5V, 125°C)

Temperature/Humidity/Bias (5.5V, 85°C, 85%RH)

<u>48 hrs</u> <u>168 hrs</u> <u>500 hrs</u> <u>1000 hrs</u> <u>2000 hrs</u> 0/89 0/89 1/89 1/89 0/88

High-Temperature Storage (unbiased, 150°C)

<u>48 hrs</u> <u>168 hrs</u> <u>500 hrs</u> <u>1000 hrs</u> <u>2000 hrs</u> 0/50 0/50 0/50 0/50

Highly Accelerated Stress Test—HAST (5.5V, 130°C, 85%RH, 1.7 atm)

24 hrs 48 hrs 72 hrs 0/50 0/50 0/50 0/50

Temperature Cycling (-65°C to +150°C)

Thermal Shock (-55°C to 125°C)

30 cyc 0/50

Moisture Resistance (unbiased, -10°C to 65°C, 90%RH)

10 cyc 0/50

Resistance to Soldering Heat (260°C, 10 seconds)

1 cyc 0/10

Solderability (245°C, 5 seconds)

Lead Fatigue

Lead Finish

Resistance to Solvents

Electrostatic Discharge

Latch-up Immunity

O/24 leads fail
O/24 leads fail
O/4 devices fail
>± 1000V
>± 200mA

Refer to the August 1992 Benchmarq Quality and Reliability Report.

Predicted Failure Rates—NVSRAM Controllers

Most integrated circuit failure mechanisms **are based** on physical or chemical reactions. These reactions **are** accelerated by temperature **and can** be modeled **using** the **Arrhenius** equation. The acceleration factor (AF) between any two temperatures may be calculated as follows:

$$AF_{(T_1-T_2)} = e^{\frac{E_8}{k} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

where:

AF = acceleration factor

e = natural log

 E_a = activation energy in electron volts

k = Boltzman's constant (8.62 x 10⁻⁵ eV/°K)

T₁ = derated temperature (OK)

T₂ = stress temperature (OK)

The following assumptions have been made in **Benchmarq's** determination of failure rates:

Activation energy = 0.7 eV (based on 85°C/85% RH THB failure)

Temperature derated to 55°C (typical use condition)

 $AF(55^{\circ}C - 125^{\circ}C) = 77.8$

 $AF_{(55^{\circ}C - 150^{\circ}C)} = 259.9$

Total device hours:

bq2201 2000 hours **x** 298 devices **x** 77.8 = 46,368,800 device hours

bq2201 168 hours **x 100** devices **x** 259.9 **=** 4,366,320 device hours

<u>bq1001 1000 hours x 100 devices x 77.8 = 7,780,000 device hours</u>

Total device hours = 5.8515×10^7 hours

A single-point estimate of the mature life failure rate may be calculated as follows:

Failure rate =
$$\frac{\text{number of failures}}{\text{total device hours}}$$

= 1/5.815 x 10⁷ hours
= 17.1 FTTS

Next, a Chi square approximation of the mature life failure rate can be made using the following information:

Number of failures: 1 Confidence level: **60%**

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2f + 2, \alpha)}}{2 \times \text{total device hours}}$$

where:

f = number of failures
a = 1 - confidence level

Failure rate
$$(\chi^2)$$
 = $\frac{4 - 0.4}{2 \times (5.8515 \times 10^7)}$
= $4.1175/(1.1703 \times 10^8)$
= $3.52 \times 10^{-8}/\text{hours}$
= 35.2 FTTS

Therefore, for the NVSRAM controllers built using the TSMC 1.2 μ single-poly, double-level metal CMOS process, the mature life FIT rate is 36 FITS.

A similar determination of the infant life failure rate can be made. Benchmarq considers a failure that occurs within 1 year (8760 hours) at normal operating conditions an infant life failure

Derating for 125°C:

Infant life time = AF x device stress hours 8760 hours = 77.8 x device stress hours

Device stress hours = 112.6 hours

Derating for 150°C:

Infant life time = AF x device stress hours 8760 hours = 259.9 x device stress hours

Device stress hours = 33.7 hours

Therefore, any failure that occurs in the first 112.6 hours of **125°C** operating life or in the first 33.7 hours of 150°C operating life is considered an infant life failure.

Total device hours:

bq2201 112.6 hours **x** 298 devices x 77.8 = 2,610,563 device hours **bq2201** 33.7 hours **x** 100 devices **x** 259.9 = 875,863 device hours **bq1001** 112.6 hours **x** 100 devices x 77.8 = 876,028 device hours

Total device hours = 4.3624×10^6 hours

A single-point estimate of the infant life failure rate may be calculated as follows:

Failure rate = $\frac{\text{number of failures}}{\text{total device hours}}$ = $0/4.3624 \times 10^6 \text{ hours}$ = 0 FITS **Next,** a Chi square approximation of the infant life failure rate can be made using the following information:

Number of failures: 0 Confidence level: 60%

$$\chi_{(2f + 2, a)}^{2}$$
Failure rate $(\chi^{2}) = \frac{\chi_{(2f + 2, a)}^{2}}{2 \times \text{total device hours}}$

where:

f = number of failures
a = 1 = confidence level

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2, 0.4)}}{2 \times (4.3624 \times 10^6)}$$

= 1.8970/(8.7249 x 10⁶)
= 2.174 x 10⁻⁷/hours
= 217.4 FITS

Therefore, for the NVSRAM controllers built using the TSMC 1.2μ single-poly, double-level **metal** CMOS process, the infant life FIT rate is approximately **218 FITS**.

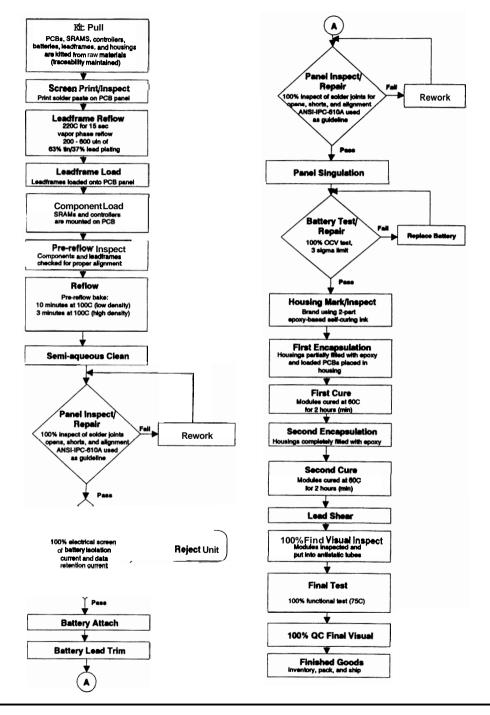
NVSRAMs

NVSRAM Module Construction

Benchmarq's NVSRAM modules are designed and built by Benchmarq in Dallas, Texas. Each module is constructed of one or more ICs mounted on a printed circuit board along with a lithium battery. This subassembly is then placed into a plastic housing and encapsulated with a specialized two-part epoxy. (The bq2502 Integrated Backup Unit is manufactured in the same manner.)

Quality Procedures

To help ensure that our final product is both consistent and reliable, the following quality inspections and tests are performed:


- SRAMs—Low-powered SRAMs are used in the manufacture of modules. At incoming inspection, data-retention current is measured on a representative sample from each lot. After the components are mounted on the circuit boards, the circuits are 100% tested for data-retention current.
- Batteries-Certificates of Compliance verifying the Open Circuit Voltage (OCV), Closed Circuit Voltage (CCV), and Internal Resistance (IR) are required from the manufacturer on each shipment. Historical statistical sampling indicates that a Lot Tolerant Percent Defective (LTPD) of less than 1% at a confidence level of 90% can be expected. After batteries are mounted on the circuit boards, they are 100% tested for OCV.
- **PCBs—A** sample from each lot of printed circuit boards is visually inspected for router damage, breakouts, opens, shorts, or misaligned solder masks.
- **Leads—Certificates** of Compliance verifying the plating thickness are required from the manufacturer. Periodic quality audits of the plating thickness are performed.

Traceability

N 1 traceability is maintained on both the integrated circuits and modules. The integrated circuits are traceable to front-end wafer lot and to assembly lot. The modules are traceable to housing, PCB, battery, controller, and SRAM lots.

8

NVSRAM Module Process Flow

Qualification Summary—NVSRAM Modules

Product

NVSRAM Modules (bq4010, bq4011, bq4011H, bq4013, bq4014, bq4015,

bq4016, bq4017, bq4024, bq4025, bq2502)

Qual Vehicle

bq4010MA 28-pin, 600-mil Module

(Lot: QM04901 Date Code: 9049)

Temperature/Humidity/Bias (5.5V, 85°C, 85%RH)

<u>48 hrs</u> <u>168 hrs</u> <u>500 hrs</u> <u>1000 hrs</u> <u>2000 hrs</u> 0/99 0/96 0/96 0/96

Highly Accelerated Stress Test*—HAST (5.5V, 130°C, 85%RH, 1.7 atm)

24 hrs 0/80 48 hrs 0/80

hrs 72 hrs 4/79 1

'(without battery)

Temperature Cycling (-40°C to +85°C)

 10 cyc
 100 cyc
 300 cyc
 600 cyc
 1000 cyc

 0/100
 0/100
 0/100
 0/100
 0/100

Thermal Shock (-55°C to 125°C) without battery

30 cyc 0/105

Moisture Resistance (unbiased, -10°C to 65°C, 90%RH)

10 cyc 0/50

Resistance to Soldering Heat (260°C, 10 seconds)

1 CYC 0/10

Solderability (245°C, 5 seconds)

Lead Fatigue

Lead Finish

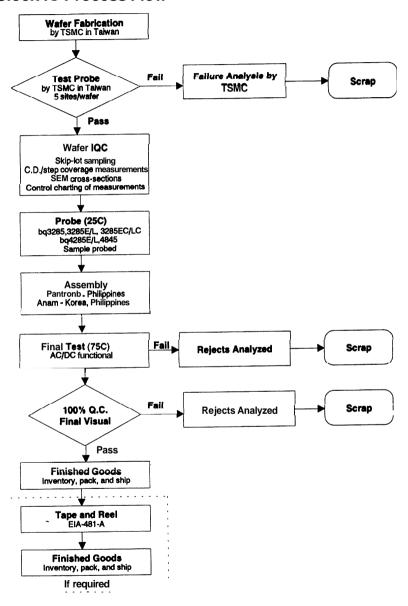
Resistance to Solvents

Electrostatic Discharge

Latch-up Immunity

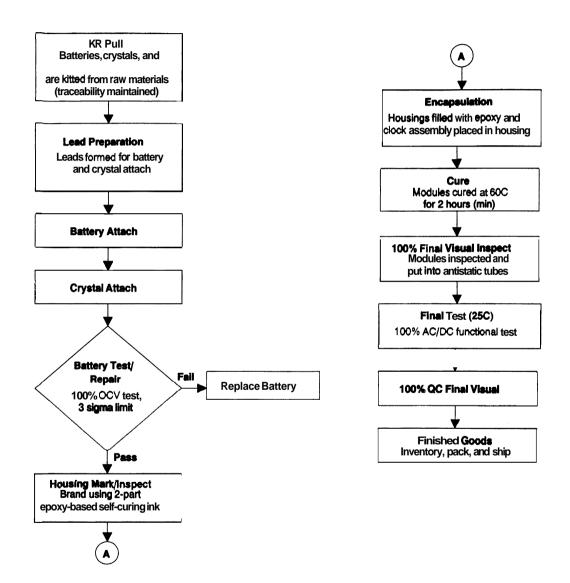
0/56 leads fail
0/56 leads fail
0/4 devices fail
>± 1000V
>± 200mA

¹ Refer to the August 1992 Benchmarq Quality and Reliability Report.


In the case of modules, an approximate FIT rate can be determined by adding together the FIT rates of the various components. The FIT rates used and their sources are listed below:

Component	FIT Rate	Source
Controller	36	Calculated in previous section
SRAM	35	SRAM manufacturer
Battery	<10	Panasonic (approximate)
Total	81 FITS	

Therefore, for Benchmarq's module products, the FIT rate is approximately 81 FITS.


Real-Time Clocks (RTCs)

Real-Time Clock IC Process Flow

Real-Time Clock Module Process Flow

All modules are built by Benchmarq in Dallas, Texas.

Qualification Summary—Real-Time Clock ICs

Product: RealTime Clocks (bq3285, bq3285E/L, bq3285EC/LC, bq4285, bq4285E/L,

bq4845)

Qual Vehicle: bq3285ES 24-pin, 300-mil SOIC

(Lot: 285AAEA, T346002, A61453.2 Date Code: 9332EP)

High-TemperatureOperating Life Test (5.5V, 125°C)

<u>48 hrs</u>	<u> 168 hrs</u>	500 hrs	$1000\mathrm{hrs}$	2000 hrs
0/400	0/400	0/400	0/400	0/400

Temperature/Humidity/Bias (5.5V, 85°C, 85%RH)

<u>48 hrs</u>	<u> 168 hrs</u>	<u>500 hrs</u>	<u> 1000 hrs</u>	<u>2000 hrs</u>
0/96	0/96	0/96	0/96	0/96

High-Temperature Storage (unbiased, 150°C)

<u>48 hrs</u>	<u> 168 hrs</u>	<u>500 hrs</u>	<u> 1000 hrs</u>	<u>2000 hrs</u>
0/30	0/30	0/30	0/30	* 1/30

Temperature Cycling (65°C to +150°C)

<u>100 cyc</u>	<u>300 cyc</u>	$600 \mathrm{cyc}$	1000 cyc
0/100	0/100	0/100	0/100

Thermal Shock (55°C to +125°C)

30 **cyc** 0/50

Resistance to Soldering Heat (260°C, 10 seconds)

1 cyc 0/5

Solderability (245°C, 5 seconds)	0/120 leads fail
Lead Fatigue	0/120 leads fail
Lead Finish	0/120 leads fail
Resistance to Solvents	0/5
Electrostatic Discharge	> ±2000 volts
Latchup Immunity	>±200 mA

 $^{^{\}star}$ Intermittent single-bit failure — destroyed in analysis.

Qualification Summary—Real-Time Clock Modules

Product:

Real-Time Clock Modules (bg3287, bg3287A, bg3287E, bq3287L, bq3287EA, bq3287LA, bq4287E, bq4287L, bq4847Y)

Qual Vehicle:

bq3287MT 24-pin, 600-mil Module

(Lot: QM147001

Date Code: 9147)

(Lot: PM205004

Date Code: 9205)

Temperature/Humidity/Bias (5.5V, 85°C, 85%RH)

48 hrs 0/100

168 hrs

500 hrs 0/100

1000 hrs 0/100

2000 hrs 0/100

Highly Accelerated Stress Test HAST (5.5V, 130°C, 85%RH, 1.7 atm)

24 hrs 0/75

48 hrs w 5

144 hrs 0/75

Temperature Cycling (65°C to +150°C)

10 cyc 0/100

100 cvc 0/100 300 cvc 0/100

600 cvc 0/100

1000 cyc 0/100

Thermal Shock (55°C to +125°C)

30 сус

0/95

Resistance to Soldering Heat (260°C, 10 seconds)

1 cyc 0/10

Solderability (245°C, 5 seconds) Lead **Fatigue** Lead Finish

0/24 leads fail **0/72** leads **fail 0/72** leads fail

Resistance to Solvents Physical Dimension

0/4

Predicted Failure Rates—Real-Time Clock ICs

Most integrated circuit failure mechanisms **are** based on physical or chemical reactions. These reactions are accelerated by temperature and **can** be modeled using the **Arrhenius** equation. The acceleration factor (AF) between any two temperatures may be calculated as follows:

$$AF_{(T_1-T_2)} = e^{\frac{E_a}{k} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

where:

AF = acceleration factor

e = natural log

 E_a = activation energy in electron volts

k = Boltzman's constant $(8.62 \times 10^{-5} \text{ eV/}^{\circ}\text{K})$

 T_1 = derated temperature (OK)

 T_2 = stress temperature (OK)

The following assumptions have been made in Benchmarg's determination of failure rates:

- Activation energy = 0.7 eV (conservative estimate)
- Temperature derated to 55°C (typical use condition)
- \blacksquare AF(55°C 125°C) = 77.8
- Voltage derated to 5.5V (typical use condition)

$$AF(5.5V - 7.0V) = 5.0$$
 (conservative estimate)

Total device hours:

bg3285 2000 hours x 400 devices x 77.8 x 5.0 = 311,200,000 device hours

Total device hours =
$$3.1120 \times 10^8$$
 hours

A single-point estimate of the mature life failure rate may be calculated as follows:

Failure rate =
$$\frac{\text{number of failures}}{\text{total device hours}}$$

= $0/3.1120 \times 10^8 \text{ hours}$
= 0 FITS

Next, a Chi square approximation of the mature life failure rate **can** be made using the following information:

Number of failures: 0 Confidence level: 60%

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2f + 2, \alpha)}}{2 \times \text{total device hours}}$$

where:

f = number of failures a=1 = confidence level

Failure rate
$$(\chi^2)$$
 = $\frac{\chi^2_{(2, 0.4)}}{2 \times (1.2448 \times 10^8)}$
= 1.8970/(6.224 x 10⁸)
= 3.05 x 10^{.9}/hours
= 3.05 FITS

Therefore, for the real-time clock integrated circuit built using the TSMC 0.8μ CMOS single-poly, double-level metal process, the mature life FIT rate is approximately **3 FITS.**

A similar determination of the infant life failure rate can be made. Benchmarq considers failures that occur within 1 year (8760 hours) at normal operating conditions an infant life failure.

Derating for 125°C:

Infant life time = AF x device stress hours 8760 hours = 77.8 x device stress hours

Device stress hours = 112.6 hours

Therefore, any failure that occurs in the first 112.6 hours of 125°C operating life is considered an infant life failure.

8

Total device hours:

bq3285 112.6 hours **x** 400 devices **x** 77.8 **x** 5.0 **=** 17,520,560 device hours

Total device hours = 1.7520×10^7 hours

A single-point estimate of the infant life failure rate may be calculated as follows:

Failure rate =
$$\frac{\text{number of failures}}{\text{total device hours}}$$

= $0/1.7520 \times 10^7 \text{ hours}$
= 0 FITS

Next, a Chi square approximation of the infant life failure rate can be made using the following information:

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2f + 2, \alpha)}}{2 \times \text{total device hours}}$$

Number of failures: **0** Confidence level: 60%

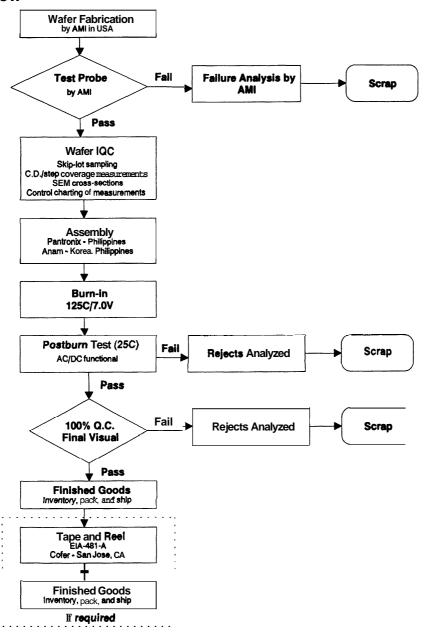
where:

f = number of failures a=1 = confidence level

Failure rate
$$(\chi^2)$$
 = $\frac{\chi^2_{(2, 0.4)}}{2 \times (7.0082 \times 10^6)}$
= 1.8970/(3.5041 x 10⁷)
= 5.4136 x 10⁻⁸/hours
= 54.1 FITS

Therefore, for the real-time clock integrated circuit built using the **TSMC** 0.8 **single-poly**, double-level metal CMOS process, the infant life **FIT** rate is approximately 54 **FITS**.

Predicted Failure Rates—Real-Time Clock Modules


In the case of modules, an approximate FTT rate can be determined by adding together the FTT rates of the various components. The FTT rates used and their sources are listed below:

Component	FIT Rate	Source
Real-Time Clock IC	3	Calculated in previous section
Crystal	<5	Daiwa (approximate)
Battery	<2	Panasonic (approximate)
Total	10 FITS	

Therefore, for Benchmarq's RTC module products, the FIT rate is approximately 10 FITS.

Lithium Ion Pack Supervisors (bq2053 and bq2058) and Rechargeable Alkaline Charge IC (bq2903)

Process Flow

Qualification Summary—Lithium Ion Pack Supervisor ICs and Recharge able Alkaline Charge IC

Product: bq2053, bq2058, bq2903

Qual Vehicle: bq2053 8-pin, 150-mil SOIC

High-Temperature Operating Life Test (7.0V, 125°C)

Temperature/Humidity/Bias (5.5V, 85°C, 85%RH)

<u>48 hrs</u> <u>168 hrs</u> <u>500 hrs</u> <u>1000 hrs</u> 0/100 0/100 0/100 0/100

High-Temperature Storage (unbiased, 150°C)

<u>168 hrs</u> <u>500 hrs</u> <u>1000 hrs</u> 0/50 0/50 0/50

Temperature Cycling (-65°C to +150°C)

<u>10 cyc</u> <u>300 cyc</u> <u>600 cyc</u> <u>1000 cyc</u> 0/100 0/100 0/100 1/100

Thermal Shock (-55°C to +125°C)

30 cyc 0/50

Resistance to Soldering Heat (260°C, 10 seconds)

1 cyc 0/5

Solderability (245°C, 5 seconds)

Lead Fatigue

Lead Finish

Resistance to Solvents

Electrostatic Discharge

Latch-up Immunity

0/96 leads fail
0/80 leads fail
0/80 leads fail
0/4 devices fail
>± 2000 volts
>± 200 mA

R

Predicted Failure Rates—Lithium Ion Pack Supervisor

Most integrated circuit failure mechanisms are based on physical or chemical reactions. These reactions are accelerated by temperature and **can** be modeled using the **Arrhenius** equation. The acceleration factor (AF) between any two temperatures may be calculated as follows:

$$AF_{(T_1-T_2)} = e^{\frac{E_a}{k} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

where:

AF = acceleration factor

e = natural log

 E_a = activation energy in electron volts

k = Boltzman's constant $(8.62 \times 10^{-5} \text{ eV/}^{\circ}\text{K})$

 T_1 = derated temperature (OK)

T₂ = stress temperature (OK)

The following assumptions have been made in **Benchmarq's** determination of failure rates:

- Activation energy = 0.7 eV (conservative estimate)
- Temperature derated to 55°C (typical use condition)

$$AF(55^{\circ}C - 125^{\circ}C) = 77.8$$

■ Voltage derated to 5.5V (typical use condition)

$$AF(5.5V - 7.0V) = 5.0$$
 (conservative estimate)

Total device hours:

bq2053 1000 hours **x** 498 devices x 77.8 **x** 5.0 = 193,722,000 device hours

A single-point estimate of the mature life failure rate may be calculated as follows:

Failurerate =
$$\frac{\text{number of failures}}{\text{total device hours}}$$

= $0/1.93722 \times 10^8 \text{ hours}$
= 0 FITS

Next, a **Chi** square approximation of the mature life failure rate **can** be made **using** the following information:

Number of failures: 0 Confidence level: **60%**

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2f + 2, \alpha)}}{2 \times \text{total device hours}}$$

where:

f = number of failures = 1 = confidence level

Failure rate
$$(\chi^2)$$
 = $\frac{\chi^2_{(2, 0.4)}}{2 \times (1.93722 \times 10^8)}$
= 1.8970/(3.87444 x 10⁸)
= 4.90 x 10^{.9}/hours
= 4.9 FITS

Therefore, for the bq2053 Lithium Ion Pack Supervisor IC built using the AMI 1.5µ double-level poly, single-level metal CMOS process, the mature life FIT rate is approximately 5 FITS.

A similar determination of the infant life failure rate can be made. Benchmarq considers failures that occur within 1 year (8760 hours) at normal operating conditions an infant life failure.

Derating for 125°C:

Infant life time = AF x device stress hours 8760 hours = 77.8 x device stress hours

Device stress hours = 112.6 hours

Therefore, any failure that occurs in the first 112.6 hours of 125°C operating life is considered an infant life failure.

Total device hours:

bq2053 112.6 hours x 498 devices x 77.8 x 5.0 = 21,813,097 device hours

A single-point estimate of the infant life failure rate may be calculated as follows:

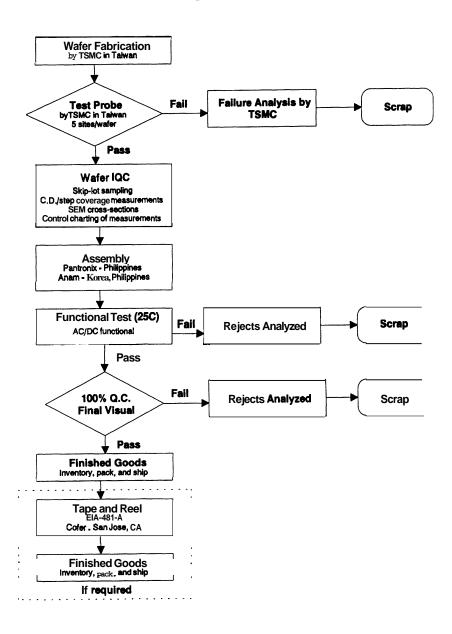
Failure rate = $\frac{\text{number of failures}}{\text{total device hours}}$ = 0/2.1813097 x 10⁷ hours = 0 FITS

Next, a Chi square approximation of the infant life failure rate can be made using the following information:

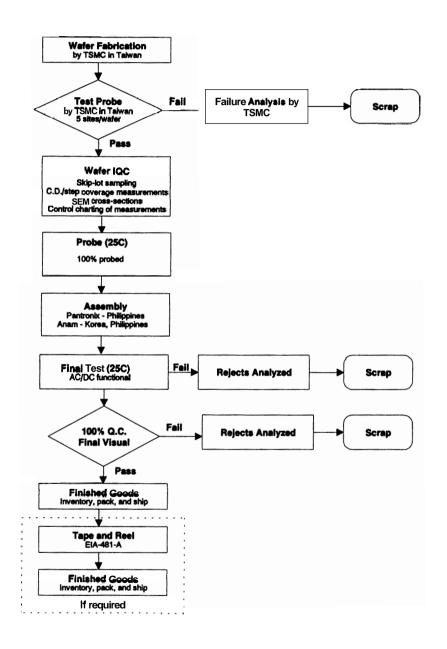
Number of failures: 0 Confidence level: 60%

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2f + 2, \alpha)}}{2 \times \text{total device hours}}$$

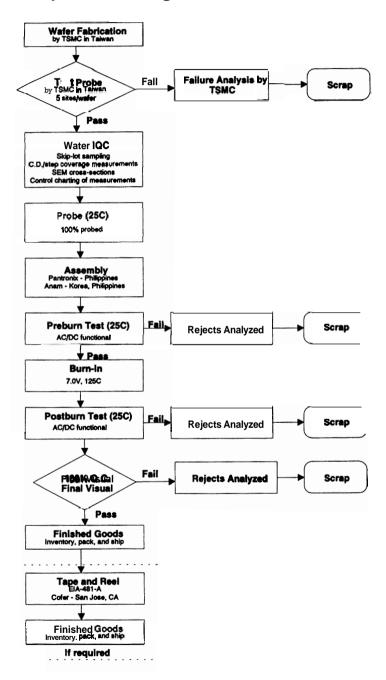
where:


f = number of failures a = 1 - confidence level

Failure rate
$$(\chi^2)$$
 = $\frac{\chi^2_{(2, 0.4)}}{2 \times (2.1913 \times 10^7)}$
= 1.8970/(4.3626 x 10⁷)
= 4.3483 x 10⁻⁷/hours
= 43.5 FITS


Therefore, for the bq2053 Lithium Ion Pack Supervisor IC built using the AMI 1.5μ double-level poly, single-level metal CMOS process, the infant life FIT rate is approximately 44 FITS.

Battery Management ICs


bq2002, bq2002T, bq2007 Fast Charge IC Process Flow

bq2003, 2004, 2004E, 2005 Fast Charge IC Process Flow

bq2010, bq2011, bq2011J, bq2011K, bq2012, bq2014, bq2040, bq2050, bq2090, and bq2091 Gas Gauge IC Process Flow

Ŏ

Qualification Summary—Fast Charge IC

Product:

bq2003 Fast Charge IC

Qual Vehicle:

20-pin, **300-mil PDIP**

(Lots: **T221001, T237001, T244012)**

(Lot: 211ABCP Date Code: 9226-EP)

High-Temperature Operating Life Test (7.0V, 125°C)

<u>48 hrs</u>	<u> 168 hrs</u>	<u>500 hrs</u>	<u> 1000 hrs</u>	<u>2000 hrs</u>
0/399	0/399	0/399	0/399	0/399

Temperature/Humidity/Bias (5.5V, 85°C, 85%RH)

48 hrs	<u>168 hrs</u>	<u>500 hrs</u>	<u>1000 hrs</u>	2000 hrs
0/120	0/120	0/120	0/120	0/120

High-Temperature Storage (unbiased, 150°C)

<u>48 hrs</u>	<u> 168 hrs</u>	<u>500 hrs</u>	<u> 1000 hrs</u>	<u>2000 hrs</u>
0/50	9/60	0/50	0/50	0/50

Temperature Cycling (65°C to +150°C)

<u>10 cyc</u>	$100\mathrm{cyc}$	$300\mathrm{cyc}$	$600 \mathrm{cyc}$	<u>1000 cyc</u>
0/100	0/100	0/100	0/100	0/100

Thermal Shock (55°C to +125°C)

30 cyc 0/50

Resistance to Soldering Heat (260°C, 10 seconds)

1 cyc 0/5

Solderability(245°C, 5 seconds)	0/96 leads fail
Lead Fatigue	0/80 leads fail
Lead Finish	0/80 leads fail
Resistance to Solvents	0/4 devices fail
Electrostatic Discharge	> ± 2000 volts
Latchup Immunity	$> \pm 200 \mathrm{mA}$

Qualification Summary—Dual-Battery Fast Charge IC

Product:

bg2005 Dual-Battery Fast Charge IC

Qual Vehicle:

20-pin, 300-mil SOIC

(Lot: 232AACA Date Code: 9329)

High-Temperature Operating Life Test (7.0V, 125°C)

 48 hrs
 168 hrs
 500 hrs
 1000 hrs

 0/144
 0/144
 0/144
 0/144

Temperature/Humidity/Bias (5.5V, 85°C, 85%RH)

<u>48 hrs</u> <u>168 hrs</u> <u>500 hrs</u> <u>1000 hrs</u> 0/99 0/99 0/99 0/99

High-Temperature Storage (unbiased, 150°C)

<u>48 hrs</u> <u>168 hrs</u> <u>500 hrs</u> <u>1000 hrs</u> 0/50 0/50 0/50 0/50

Temperature Cycling (65°C to +150°C)

100 cyc 300 cyc 600 cyc 1000 cyc 0/100 0/100 0/100

Thermal Shock (55°C to +125°C)

30 cyc 0/50

Resistance to Soldering Heat (260°C, 10 seconds)

1 cyc 0/5

Solderability (245°C, 5 seconds)

Lead Fatigue
U100 leads fail
U200 leads fai

Predicted Failure Rates—Fast Charge ICs

Most integrated circuit failure mechanisms are based on physical or chemical reactions. These reactions are accelerated by temperature and can be modeled using the Arrhenius equation. The acceleration factor (AF) between any two temperatures may be calculated as follows:

$$AF_{(T_1-T_2)} = e^{\frac{E_8}{k} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

where:

AF = acceleration factor

e = natural log

 $\mathbf{E}_{\mathbf{a}}$ = activation energy in electron volts

k = Boltzman's constant $(8.62 \times 10^{-5} \text{ eV/}^{\circ}\text{K})$

T₁ = **derated** temperature (OK)

T2 = stress temperature (OK)

The following assumptions have been made in **Benchmarq's** determination of failure rates:

Activation energy = 0.7 eV (conservative estimate)

Temperature derated to 55°C (typical use condition)

 $AF(55^{\circ}C - 125^{\circ}C) = 77.8$

Voltage derated to 5.5V (typical use condition)

AF(5.5V - 7.0V) = 5.0 (conservative estimate)

Total equivalent device hours:

bq2003 2000 hours x 399 devices x 77.8 x 5.0 = 310,422,000 device hours **bq2005** 1000 hours x 144 devices x 77.8 x 5.0 = 56,016,000 device hours

Total equivalent device hours: 366,438,000 device hours

8

A single-point estimate of the mature life failure rate may be calculated as follows:

Failure rate
$$= \frac{\text{number of failures}}{\text{total device hours}}$$

= 0/3.66438x 10⁸ hours
= 0 FITS

Next, a Chi square approximation of the mature life failure rate can be made using the following information:

Number of failures: 0 Confidence level: 60%

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2f + 2, \alpha)}}{2 \times \text{total device hours}}$$

where:

f = number of failures a = 1 = confidence level

Failure rate
$$(\chi^2)$$
 = $\frac{\chi^2_{(2, 0.4)}}{2 \times (3.10422 \times 10^8)}$
= 1.8970/(7.32876 x 10⁸)
= 2.59 x 10⁻⁹/hours
= 2.6 FITS

Therefore, for the Battery Management ICs built using the TSMC 1.2μ double-level poly, double-level metal CMOS process, the mature life FIT rate is approximately 3 FITS.

A similar determination of the infant life failure rate can be made. Benchmarq considers failures that occur within 1 year (8760 hours) at normal operating conditions an infant life failure.

Derating for 125°C:

Infant life time = A F x device stress hours = 77.8 x device stress hours

Device stress hours = 112.6 hours

Therefore, any failure that **occurs** in the first 112.6 hours of **125°C** operating life is considered **an** infant life failure.

Total equivalent device hours:

bq2003 112.6 hours x 399 devices x 77.8 x 5.0 = 17,476,759 device hours bq2005 112.6 hours x 144 devices x 77.8 x 5.0 = 6,307,402 device hours

Total equivalent device hours: 23,784,161 device hours

A single-point estimate of the infant life failure rate may be calculated as follows:

Failure rate = $\frac{\text{number of failures}}{\text{total device hours}}$ = $0/2.3784 \times 10^7$ hours = 0 FITS

Next, a Chi square approximation of the infant life failure rate can be made using the following information:

Number of failures: 0 Confidence level: 60%

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2f + 2, \alpha)}}{2 \times \text{total device hours}}$$

where:

f = number of failures a = 1 = confidence level

Failure rate
$$(\chi^2) = \frac{\chi^2_{(2, 0.4)}}{2 \times (1.7477 \times 10^7)}$$

= 1.8970/(4.7568 x 10⁷)
= 3.9880 x 10⁻⁸/hours
= 39.9 FITS

Therefore, for the Battery Management ICs built using the TSMC 1.2μ double-level poly, double-level metal CMOS process, the infant life FIT rate is approximately 40 FITS.

Fast Charge ICs	1
Gas Gauge ICs	2
Battery Management Modules	3
Static RAM Nonvolatile Controllers	4
Real-Time Clocks	5
Nonvolatile Static RAMs	6
Package Drawings	7
Quality and Reliability	8
Sales Offices and Distributors	9

Benchmarq Regional Sales Offices

Headquarters and Central Area

17919 Waterview Parkway Dallas, TX 75252 (800) 966-0011 (972) 437-9195 FAX (972) 437-9198

Eastern Area

3920 Montvale Crossing Cumming, GA **30131** (770) 664-8009 FAX (770) 752-0064

Western Area

15310 Blossom Hill Road Los Gatos, CA 95032 (408) 358-7466 FAX(408) 358-7467

Asia

Level **36**, Hong **Leong** Building **16** Raffles Quay Singapore **0104 65** 322 8521 FAX **65** 322 8558

Sales Offices-United States

Alabama

Interep Associates

2107 West Ferry Way Huntsville, AL 35801 (205) 881-1096 FAX (205) 881-1182

Interep Associates

Building A, Suite 203 2900 Highway 98 Daphne, AL 36526 (205)621-1036 FAX(205) 621-1038

Arizona

Aztech Component Sales

15230 N. 75th Street, Suite 1031 Scottsdale, AZ 85260 (602)991-6300 FAX (602)991-0563

Arkansas

TL Marketing

14850 Quorum Drive, Suite 100 Dallas, TX 75240 (972)490-9300 FAX (972) 960-6075

California (North)

Criterion Sales Inc.

3350 Scott Boulevard, Building #44 Santa Clara, CA 95054 (408) 988-6300 FAX (408) 986-9039

California (Los Angeles Area)

Harper and Two

2798 Junipero Avenue Signal Hill, CA 90806 (310)424-3030 FAX(310)424-6622

California (south)

Addem

832 Camino Del Mar, Suite 4 Del Mar, CA 92014 (619) 794-1999 FAX (619) 755-6757

Colorado

Wescom Marketing

4860 Ward Road Wheat Ridge, CO 80033 (303) 422-8957 FAX (303) 422-9892

Connecticut

Connecticut Applied Technology Inc.

558 Maple Avenue, Suite 2 Cheshire, CT 06410 (203) 272-6564 FAX(203) 271-3670

Delaware

Sunday-O'Brien

1 Executive Drive, Suite 11 Moorestown, NJ 08057 (609) 222-0151 FAX(609) 222-0153

District of Columbia

Avtek Associates, Inc.

10632 Little Patuxent Parkway, Suite 435 Columbia, MD 21044 (410) 740-5100 FAX(410) 740-5103

Florida

Dyne-A-Mark Corporation

500 Winderley Place, Suite 100 Maitland, FL 32751 (407) 660-1661 FAX (407) 660-9407

Dyne-A-Mark Corporation

Two Prospect Park Business Center 3351 NW 55th Street Fort Lauderdale, FL 33309 (305) 485-3500 FAX(305) 485-6555

Dyne-A-Mark Corporation

742 Penguin Avenue **NE** Palm Bay, **FL 32907** (407) **725-7470** FAX(**407**) **984-2718**

Georgia

Interep Associates

6855 Jimmy Carter Boulevard, Suite 2440 Norcross, GA 30071 (770) 449-8680 FAX(770) 447-1046

Idaho

Delta Technical Sales, Inc.

15050 SW Koll Parkway, Suite 2D Beaverton, OR 97006 (503) 646-7747 FAX (503) 643-9717

Illinois (North)

Micro Sales, Inc.

901 Hawthorn Drive Itasca, IL 60143 (708) 285-1000 FAX(708) 285-1008

Illinois (South)

M.I.N.K. Associates, Inc.

43 Teakwood Lane Cedar Rapids, IA **52402** (**319**) **393-0373** FAX(**319**) **393-1782**

Indiana

Giesting & Associates

370 Ridgepoint Drive Carmel, IN 46032 (317) 844-5222 FAX(317) 844-5861

lowa

M.I.N.K.Associates, Inc.

443 Teakwood Lane Cedar Rapids, IA 52402 (319) 393-0373 FAX(319) 393-1782

Kansas

M.I.N.K. Associates, Inc.

10100 Santa Fe, Suite 311 Overland Park, KS 66212 (913) 341-8309 FAX(913) 341-2605

M.I.N.K. Associates, Inc.

1231 Benene Wichita, KS **67209 (316)** 721-6444 FAX(**316**) **721-2567**

Kentucky

Giesting & Associates 475 Arrowhead Springe Lane Versailles, KY 40383 (606) 873-2330 FAX (606) 873-6233

Louisiana (South)

TL Marketing 14343 Torrey Chase Boulevard, Suite 1Houston, TX 77014
(713) 687-8100
FAX (713) 680-7517

Louisiana (North)

TL Marketing 14850 Quorum Drive, Suite 100 Dallas, TX 75240 (972) 490-9300 FAX (972) 960-6075

Maine

ProComp Associates Inc. 1049 East Street Tewksbury, MA 01876 (508) 858-0100 FAX (508) 858-0110

Maryland

Avtek Associates, Inc. 10632 Little Patuxent Parkway, Suite 435
Columbia, MD **21044**(410) 740-5100
FAX (410) 740-5103

Massachusetts

ProComp Associates Inc. 1049 East Street Tewksbury, MA 01876 (508) 858-0100 FAX (508) 858-0110

Michigan

Giesting & Associates 34441 Eight Mile Road, Suite 113 **Livonia,** MI 48152 (810) 478-8106 FAX (810) 477-6908

Minnesota

Vector Design Technology 3101 Old Highway 8, Strite, 202 Roseville, MN 56113 (612) 631-1334 FAX (612) 631-1329

Mississippi

Interep Associates Building A, Suite. 203 2900 Highway 98 Daphne, AL 36526 (205) 621-1036 FAX (205) 621-1038

Missouri

M.I.N.K. Associates, Inc. 2268 Schuetz Road, Suite 114 St. Louis, MO 63146 (314) 995-5355 FAX (314) 995-5736

Montana

Delta Technical Sales, Inc. 15050 SW Koll Parkway, Suite 2D Beaverton, OR 97006 (503) 646-7747 FAX (503) 643-9717

Nebraska

M.I.N.K.Associates, Inc. 10100 Santa Fe. Suite 311 Overland Park, KS 66212 (913) 341-8309 FAX (913) 341-2605

Nevada (North)

Criterion Sales Inc. 3350 sctt. Boulevard, Bldg. #44 Santa Clara, CA 95054 (408) 988-6300 FAX (408) 986-9039

Nevada (South)

Aztech Component Sales 15230 N. 75th Street, Suite 1031 Scottsdale, AZ 85260 (602) 991-6300 FAX(602) 991-0563

New Hampshire

ProComp Associates Inc. 1049 East Street Tewksbury, MA 01876 (508) 868-0100 FAX(508) 858-0110

New Jersey (North)

Metro Logic Corporation 271 Route 48 West, Suite D202 Fairfield, NJ 07006 (201) 575-5585 FAX(201) 575-8023

New Jersey (South)

Sunday-O'Brien 1 Executive Drive, Suite 11 Moorestown, NJ 08057 (609) 222-0151 FAX (609) 222-0153

New Mexico

Aztech Component Sales 15230 N. 75th Street, Suite 1031 Scottsdale, AZ 85260 (602) 991-6300 FAX (602) 991-0563

New York

Metro Logic Corporation 271 Route 48 West, Suite D202 Fairfield, NJ 07006 (201) 575-5585 FAX(201) 575-8023

Empire Technical Associates Binghamton, NY (607) 785-3865 FAX(607) 786-3616

Empire Technical Associates

Kingston, NY (914) 339-7139 FAX(914) 336-6274

Empire Technical Associates 349 W. Commercial Street, Suite 2920 East Rochester, NY 14445 (716) 381-8500 FAX(716) 381-0911

Empire Technical Associates 29 Fennell Street, Suite A Skaneateles, NY 13152 (315) 685-5703 FAX(315) 685-5979

North Carolina

Quantum Marketing 4801 E. Independence Boulevard, Suite **100**Charlotte, NC **28212**(704) **536-8558**FAX(704) **536-8768**

Quantum Marketing 6604 Six **Forks** Road, Suite **102** Raleigh, NC **27615** (**919**) **846-5728** FAX(**919**) **847-8271**

North Dakota

Vector Design Technology 3101 Old Highway 8, Suite 202 Roseville, MN 55113 (612) 631-1334 FAX(612) 631-1329

Ohio

Giesting & Associates 6200 S.O.M. Center Road, Suite D-20

Solon, OH 44139 (216) 498-4644 FAX (216) 498-4554

Giesting & Associates

2854 Blue Rock Road, P.O. Box 39398 Cincinnati, OH 45239 (513) 385-1105 FAX(513) 385-5069

Oklahoma

TL Marketing 14850 Quorum Drive, Suite 100 Dallas, TX 75240

(972) 490-9300 FAX (972) 960-6075

Oregon

Delta Technical Sales, Inc.

15050 SW Koll Parkway, Suite 2D Beaverton, OR 97006 (503) 646-7747 FAX(503) 643-9717

Pennsylvania (East)

Sunday-O'Brien

1 Executive Drive, Suite 11 Moorestown, NJ 08057 (609) 222-0151 FAX (609) 222-0153

Pennsylvania west)

Giesting & Associates

471 Walnut Street Pittsburgh, PA 15238 (412) 828-3553 FAX (412) 828-6160

Rhode Island

ProComp Associates Inc.

1049 East Street Tewksbury, MA 01876 (508) 858-0100 FAX (508) 858-0110

South Carolina

Quantum Marketing

4801 E. Independence Boulevard, Stritte 100 Charlotte, NC 28212 (704) 636-8658 FAX (704) 536-8768

South Dakota

Vector Design Technology

3101 Old Highway 8, Suite 202 Roseville, MN 55113 (612) 631-1334 FAX(612) 631-1329

Tennessee

Interep Associates

411-D Village Drive Greenville, TN 37743 (423) 639-3491 FAX (423) 639-0081

Texas (El Paso)

Aztech Component Sales

15230 N. 75th Street, Suite 1031 Scottsdale, AZ 85260 (602) 991-6300 FAX (602) 991-0563

Texas

TL Marketing

8100 Shoal Creek Boulevard, Suite 250 Austin, TX 78757 (512) 371-7272 FAX(512) 371-0727

TL Marketing

14850 Quorum Drive, Suite 100 Dallas, TX 75240 (972) 490-9300 FAX (972) 960-6075

TL Marketing

14343 Torrey Chase Boulevard, Suite I Houston, TX 77014 (713) 687-8100 FAX (713) 580-7517

Utah

Wescom Marketing

3500 South Main, Suite 110 Salt Lake City, **UT** 84115 (801) 269-0419 FAX (801) 269-0665

Vermont

ProComp Associates Inc.

1049 East Street Tewksbury, MA 01876 (508) 858-0100 FAX (508) 858-0110

Virginia

Avtek Associates, Inc.

10632 Little Patuxent Parkway, Suite 435 Columbia, MD 21044 (410) 740-5100 FAX (410) 740-5103

Washington

Delta Technical Sales, Inc.

11911 **NE** 1st Street, Suite 204 Bellevue, WA 98004 (206) 688-0812 FAX (206) 688-0813

West Virginia

Avtek Associates, Inc.

2658 Gatewood Circle Charlottesville, VA 22901 (804) 975-3620

Wisconsin (Southeast)

Micro Sales, Inc.

210 Regency Court, Suite L100 Brookfield, WI 53045 (414) 786-1403 FAX (414) 786-1813

Sales Offices-Canada

British Columbia

Electro Source

6875 Royal Oak Avenue Burnaby, British Columbia Canada V5J **4J3** (604)435-2533 FAX (604)435-2538

Alberta

Electro Source

2635 - 37th Avenue NE, Suite 245 Calgary, Alberta Canada T1Y 5Z6 (403) 735-6230 FAX (403) 735-0599

Ontario

Neutronics Components, Ltd.

240 Terence Matthews Cr., Suite 105 Kanata, Ontario Canada K2M 2C4 (613) 599-1263 FAX (613) 599-4750

Neutronics Components, Ltd.

5925 Airport Road, Suite 200 Mississauga, Ontario Canada LAV 1W1 (905) 405-6230 FAX (905) 405-6248

Quebec

Neutronics Components, Ltd.

3535 St. Charles Blvd., Suite 451 Kirkland, Quebec Canada H9H 5B9 (514) 428-5838 FAX (514) 428-5839

North American Distributors

Arrow Electronics (all locations)

Melville, NY (Corporate) 25 Hub Drive Melville, NY 11747 (516) 391-1300 FAX (516) 391-1707

Huntsville, AL (205) 837-6956

Tempe, AZ (602) 431-0030

Calabasas, CA (818) 880-9686

Irvine, CA (Orange County) (714) 687-0404

San **Diego,** CA (619) 565-4800

San Jose, CA (408) 441-9700

Englewood, CO (303) 799-0258

Wallingford, CT (203) 265-7741

Deerfield Beach, FL (South FL)

(305) 429-8200

Lake Mary, FL (North FL) (407) 333-9300

Duluth, GA (404) 497-1300

Itasca, IL (708) 250-0500

Indianapolis, IN (317) 299-2071

Columbia, MD (301) 696-7800

Boston, MA (508) 658-0900

Detroit, MI (313) 455-0860

Eden Prairie, MN (612) 941-5280

Pine Brook, NJ (201) 227-7880

Hauppauge, NY (Metro)

(516) 231-1000

Rochester, NY (716) 427-0300

Raleigh, NC (919) 876-3132

Centerville, OH (513) 435-6563

Solon, OH (216) 248-3990

Beaverton, OR (503) 629-8090

Philadelphia, PA (Marlton, NJ) (609) 596-8000

Austin, TX (512) 835-4180

Dallas, TX (972) 380-6464

Houston, TX (713) 647-6868

Salt Lake City, UT (801) 973-6913

Bellevue, WA (206) 643-9992

Brookfield, WI (414) 792-0150

9

In Canada: Arrow Electronics

Burnaby, British Columbia (Vancouver) (604) 421-2333

Mississauga, Ontario (Toronto) (416) 670-7769

Nepean, Ontario (Ottawa) (613) 226-6903

Dorval, Quebec (514) 421-7411

Marshall Industries (all locations)

Milpitas, CA (Corporate) 336 Los Coches Street Milpitas, CA 95035 (408) 942-4600 FAX (408) 942-4722

Huntsville, AL (205) 881-9235

Phoenix, AZ (602) 496-0290

Tucson, AZ (602) 790-5887

Irvine, CA (714) 458-5301

Sacramento, CA (916) 635-9700

San Diego, CA (619) 627-4140

Thousand Oaks, CA (805) 370-1988

Denver, **CO** (303) 451-8383

Wallingford, CT (203) 265-3822

Ft. Lauderdale, FL (305) 977-4880

Orlando, FL (407) 767-8585

Tampa, FL (813) 573-1399

Atlanta, GA (404) 923-5750

Chicago, IL (708) 490-0155

Indianapolis, IN (317) 388-9069

Kansas City, KS (913) 492-3121

Boston, MA (508) 658-0810

Columbia, MD (410) 880-3030

Livonia, MI (313) 525-5850

Minneapolis, MN (612) 559-2211

St. Louis, MO (314) 291-4650

Raleigh, NC (919) 878-9882

Fairfield, N J (201) 882-0320

Rochester, NY (716) 235-7620

Ronkonkoma, NY (516) 737-9300

Cleveland, OH (216) 248-1788

Dayton, OH (513) 898-4480

Portland, OR (503) 644-5050

Philadelphia, PA (609) 234-9100

Austin, TX (512) 837-1991

Dallas, TX (972) 705-0600

Houston, TX (713) 467-1666

Salt Lake City, UT (801) 973-2288

Seattle, WA (206) 488-5747

Milwaukee, WI (414) 797-8400

In Canada: G.S. Marshall Co.

Calgary, Alberta (403) 274-3717

Montreal, Quebec (514) 694-8142

Mississauga, Ontario (905) 612-1771

Vancouver, BC (604) 294-6505

Nu Horizons Electronics Corp. (all locations)

Amityville, NY (Corporate) 6000 New Horizons Boulevard Amityville, NY 11701 (516) 226-6000 FAX (516) 226-6140

Huntsville, AL (205) 722-9330

Irvine, CA (714) 470-1011 Los Angeles, CA (818) 889-9911

San Diego, CA (619) 576-0088

San Jose, CA (408) 434-0800 Altamonte Springs, FL (407) 831-8008

Fort Lauderdale, FL (305) 735-2555

Norcross, GA (770) 416-8666

Columbia, MD (410) 995-6330

Wakefield, MA (617) 246-4442

Edina, MN (612) 942-9030

Raleigh, NC (800) 929-5383

Pine Brook, NJ (201) 882-8300

Rochester, NY (716) 292-0777

Twinsburg, OH (216) 963-9933

Philadelphia, PA (609) 231-0900

Austin, TX (512) 467-2292

Dallas, TX (972) 488-2255

Vantage Components, Inc. (all locations)

Columbia, MD (Corporate) 6925R Oakland MILs Road Columbia, MD 21045 (410) 720-5100 FAX (410) 381-2172

Altamonte Springs, FL (407) 682-1199

Deerfield Beach, FL (305) 429-1001

Andover, MA (508) 667-2400

Clifton, N J (201) 777-4100

Smithtown, NY (516) 543-2000

Wyle Electronics (all locations)

Santa Clara, CA (Corporate) 3000 Bowers Avenue Santa Clara, CA 95051 (408) 727-2500 FAX (408) 727-5896

Huntsville, AL (205) 830-1119

Phoenix, AZ (602) 804-7000

Calabasas, CA (818) 880-9000

Irvine, CA (714) 863-9953

Rancho **Cordova**, CA (716) 638-5282

San **Diego,** CA (619) 565-9171

Denver, CO (303) 457-9953 Fort **Lauderdale**, FL (305) 420-0500

Tampa, FL (813) 576-3004

Atlanta, GA (404) 441-9045

Chicago, IL (708) 620-0969

Baltimore, MD (Washington, D.C.) (410) 312-4844

Boston, MA (617) 272-9953

Minneapolis, MN (612) 853-2280

Melville, NY (516) 293-8446

Raleigh, NC (919) 481-3737

Solon, OH (216) 248-9996

Portland, OR (503) 643-7900

Philadelphia, PA (609) 439-9110

Austin, TX (512) 345-8853

Dallas, TX (972) 235-9953

Houston, TX (713) 784-9953

Salt Lake City, UT (801) 974-9953

Seattle, WA (206) 881-1150

Milwaukee, WI (414) 879-0434

0

International entative

Australia

ī

Reptechnic Pty. Ltd.

3/36 Bydown Street Neutral Bay NSW Australia 2089 61-2-9953-9844 FAX 61-2-9953-9683

Austria

Allmos Electronics Handelsges. m.b.H

Esterhazystrasse 33 A-7000 Eisenstadt Austria 43-2682-67561 FAX 43-2682-675619

Belgium

Tekelec Belgium N.V.

J F Kennedyplein 8 B-1930 Zaventem Belgium 32-2-725-6520 FAX 32-2-725-1083

Brazil

Graftec Electronic Sales, Inc.

One Boca Place, Suite 305 East 2255 Glades Road Boca Raton, FL 33431 (561)994-0933 FAX (561)994-5518

China, Hong Kong Memec Asia Pacific Ltd.

Unit No. 2308–2319 Tower 1, Metroplaza Hing Fong Road Kwai Fong, New Territories Hong Kong 852-2-410-2777 FAX 852-2-418-1600

Denmark

Acte NC Denmark AS

Titangade 15 DK-2200 Copenhagen N Denmark **45-3586-9090** FAX 45-3586-9060

Finland

Computer 2000 Finland Oy

Pyyntitie 3 02230 Espoo Finland 358-0-887-33330 FAX 358-0-887-33289

France

Newtek S.A.

8, Rue De L'Esterel Silic 583 94663 Rungis Cedex France 33-1-4687 2200 FAX 33-1-4687 8049

Germany

Tekelec Airtronic GmbH

Kapuzinerstraße 9 80337 München Germany 49-89-51640 FAX 49-89-535129

India

Spectra Innovations Inc.

Unit S-822 Manipal Centre 47 Dickenson Road Bangalore 560 042 **Karnataka** India 91-812-588-323 FAX 91-812-586-872

780 **Montague** Expressway, Suite 208 San Jose, CA 95131-1316 (**408**) 954-8474 FAX (408) 954-8399

Ireland

Curragh Technology Ltd.

Block H., Lock Quay Clare Street Limerick, Ireland 353-61-316-116 FAX 353-61-316-117

Israel

Telsys Ltd.

Atidim-Industrial Park, Bldg. 3 Dvora Hanevia Street, Neve Sharet Tel Aviv 61431 Israel 972-3649-2001 FAX 972-3649-7407

Italy

Newtek Italia SpA

Viale Cassiodoro 16 20145 Milano Italy 39-2-4692156 FAX 39-2-4695197

Japan Macnica

Hakusan High-Tech Park 1-22-2 Hakusan, Midori-Ku Yokohama City, 226 Japan 81-45-939-6140 FAX 81-45-939-6167

Korea

ENC Korea

5 fl. JL Heung Sporex Bldg. 1490-25 Seocho-Dong Seocho-Ku Seoul, Korea 82-2-523-2220 FAX 82-2-523-2345

13620 Cimarron Avenue Gardena, CA 90246 (310) 366-1314 FAX (310) 366-1319

Mexico

Pan American Tech Sales

Av. Guadalupe No. 1555 Col. Chapalita Zapopan, Jalisco C.P. 45040 Mexico (523) 121-3695 FAX (523) 122-4120

414 Executive Center Boulevard, Suite 6 El Paso, TX 79902 (915)532-1900 FAX (915) 532-2180

Netherlands

Tekelec Airtronic B.V.

Ypsilon House Engelandlaan 310 2711 **DZ** Zoetermeer Netherlands 31-79-461430 FAX 31-79-3417504

New Zealand

Avnet Pacific (NZ) Ltd.

274 Church Street Penrose, Auckland New Zealand Postal: Private Bag 92821 Penrose Auckland 64-9-636 7801 FAX 64-9-636 7803

Norway

Acte NC Norway AS

P.O. Box 190 N-2020 Skedsmokorset Norway 47-63-879330 FAX 47-6-879000

Philippines

Crystalsem, Inc. 216 Ortega Street San Juan, Metro Manila Philippines 1500 63-2-790-529 or 63-2-793-979 FAX 63-2-722-1006

Puerto Rico

Semtronic Associates Crown Hills 125 Carite Street ESQ. Parana Avenue Rio Piedras, Puerto Rico 00926 (809) 766-0700 FAX (809) 763-8071

Singapore, Thailand, Malaysia Desner Electronics

42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 368086 65-28-51-566 FAX 65-28-49-466

Spain

Anatronic S.A.

Paseo Imperial, 8 Planta 3–3B 28005 Madrid Spain 34-1-366-01-59 FAX 34-1-365-50-95

9

South Africa

KH Distributors cc P.O. Box 1945 Lenasia 1820 South Africa 2711 854 5011 or 2711 854 2670 FAX 2711 852 6513

Sweden

IE Komponenter AB Box 11 113 S-161 11 Bromma Sweden 46-8-804685 FAX 46-8-262286

Switzerland

Memotec AG Gaswerkstraße 32 CH-4901 Langenthal Switzerland 41-63-281122 FAX 41-63-223506

Taiwan

Prospect Technology SF, No. 348, Section 7 Cheng-Teh Road Taipei, Taiwan R.O.C. 886-2-820-5353 FAX 886-2-820-5731

6524 Devonshire Drive San Jose, CA 96129 (408) 252-6836 FAX (408) 996-3690

United Kingdom Sequoia Technology Limited Tekelec House Back Lane, Spencers House

Reading Berks RG7 1PD United Kingdom 44-1-734-258000 FAX 44-1-734-258020

ı	N	_	•	_	_
И	N	u	L	œ	3